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PERTURBATION AND STABILITY BOUNDS FOR ERGODIC
GENERAL STATE MARKOV CHAINS WITH RESPECT TO

VARIOUS NORMS

Z. MOUHOUBI

This paper provides new perturbation bounds for general state Markov
chains with respect to various norms. The transition and stationary char-
acteristics estimates are given in terms of the generalized norm ergodic-
ity coefficient, the norm of a residual kernel, or the parameters given in
some drift condition. In fact, those results improve and generalize, for
general state-space with respect to various norms and for a more large
amplitude of perturbation of the transition kernel, the bounds obtained in
[1, 32, 40]. Furthermore, we improve some other inequalities established
in [22, 39, 41]. Theoretical comparison and on the basis of some examples
show the quality of the results obtained in this paper.

1. Introduction

Let X = (Xt , t = 0,1, . . .) an homogeneous Markov chain on the measurable
space (E,E) with a transition kernel P and having a unique and finite invariant
probability measure π . Suppose that X is perturbed to be another Markov chain
Y = (Yt , t = 0,1, . . .} with transition kernel Q. In regular perturbation theory, we
usually assume that the perturbed chain Y has also a unique invariant probability
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measure ν and we are interested in deriving the perturbation bounds (norm-wise
bounds) for the deviation ‖ν−π‖ in term of the difference ‖Q−P‖with respect
to a suitable norm. The perturbation analysis investigates the quantitative esti-
mates on the effect of switching from P to Q on the stationary distribution of the
chain. More precisely, we study the bounds of the type

‖ν−π‖ ≤ κ‖Q−P‖ (1)

where κ is the so called condition number. We have to point out that the most
results, in discrete state, are expressed in terms of the potential (fundamental
matrix) R = (I−P+Π)−1 or the group inverse A# of the matrix I−P; where
Π is the ergodic projector of P, i.e., the matrix with rows identical to πT and
π is the unique stationary distribution vector. We recall that the group inverse
K# =

(
k#

i j

)
for a finite matrix K = (ki j), is the unique square matrix satisfying

the following equalities : KK#K =K, K#KK# =K# andKK# =K#K. We should
notice that the group inverse is a particular case of the Drazin inverse (see [7]).
Let D denote the deviation matrix of P defined by :

D = (I−P+Π)−1−Π =
∞

∑
k=0

(
Pk−Π

)
= R−Π

provided that it exists. So from theorem 3.1 in [34], we have A# = D = R−Π.
According to [14], the generalized inverse plays a major role in perturbation
analysis for finite Markov chains and has computational advantages than the
deviation matrix D = R−Π. For more details on the potential matrix and the
group inverse, we can consult respectively [26, 48, 54] and [34]. The ergodicity
coefficient is also used in inequality (1). For a matrix B = (bi j) its ergodicity
coefficient is defined as follows :

τ (B) =
1
2

sup
i, j∈E

∑
k∈E
|bik−b jk|.

Some excellent summaries about the coefficient ergodicity for finite matrices
can be found in [18, 50] and for infinite case in [19, 45–47]. Let us review some
known results on perturbation and stability bounds.

The first type of results concerns the sensitivity of stationary distribution for
finite Markov chains established with respect to the Lp norm for p = 1 (total
variation norm : the sum of absolute values of the vector components) or p = ∞

(the maximum absolute value). Here the matrix analysis is the main tool to
obtain different inequalities. The conditional number κ given in (1) is investi-
gated in [9, 10, 15, 16, 28–31, 35, 36, 48, 50–53]. In the most framework, the
condition number is expressed in terms of the potential R = (I−P+Π)−1 (fun-
damental matrix : see [26, 48]) of the unperturbed transition matrix P, the group
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inverse A# of the square matrix I−P (see [8, 11, 17, 35, 43]) and the ergodic-
ity coefficients τ (P), τ (R) or τ

(
A#
)

(see [51, 53]). Especially, the following
norm-wise bounds are derived respectively in [51, 52] :

‖ν−π‖ ≤ ‖∆‖
1− τ (P)

(2)

if τ (P)< 1 and
‖ν−π‖ ≤ τ(A#)‖∆‖. (3)

Note that τ(A#) = τ(R). We may consult the main review of those results with
a comparison between different bounds in [6]. It is shown in [30] that (3) is the
best norm-wise bound. More recently, the graph approach theory is used in [55]
in order to obtain a specific norm-wise bound.

For denumerable Markov chains, the use of the weighted norms (v-norms)
is the rule. Thus the more general v-norm-wise perturbation bounds of the type
(1) are investigated deeply during the last decade. Indeed, under the drift condi-
tion D2(v,C,λ ,b) (will be exposed in subsection 3.2), a series expansion of the
unperturbed stationary distribution is established for regular and singular per-
turbation in [2]. Under the same condition, explicit bounds are obtained in [32]
and extended for continuous time Markov chains. Different type of bounds are
investigated in [40] and a strong stability estimates are derived under the con-
dition D1(n,T,h,α) (will be developed in subsection 3.2). Recently, a compar-
ison of some bounds found in the literature for finite and denumerable Markov
chains has been done in [1] and also introduced a new bound based on series
expansions developed in earlier [12, 13].

The third type of results are devoted to general state Markov chains. Unfor-
tunately there are few published research concerning the perturbed bounds of
type (1) since the problem is more hard to derive those corresponding bounds.
Using the operator perturbation theory, some transition and stationary estimates
are established in [22, 23] with respect to various norms and in [24] with re-
spect to the weighted norm. In [39, 41], a renewal theory is used in order to
obtain the transition and stationary bounds with respect to various norms. For
nonhomogeneous Markov chains, transition characteristics and stationary esti-
mates are considered in [3] and established with respect to the total variation
norm. The norm-wise bound (2) is extended for the general state space in [38,
Inequality (3.11)] with respect to the total variation norm. However, the per-
turbation bounds are established in [22, 23, 39, 41] for a wide class of various
norms where the total and weighted variation norm are particular cases. We
point out that the need of perturbation bounds with respect to various norms
comes from the fact that most of the results are established for a class of geo-
metrically Markov chains with respect to the total variation norm. However, a
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wide class of Markov chains are not geometrically or uniformly ergodic with
respect to the total variation norm like several processes in the queuing systems
or other (see e.g. [37]). For example, the simple Bernoulli random walk on
E = Z+ = {0,1, . . .} with absorption at zero is not uniformly ergodic with re-
spect to the total variation norm. The choice of the appropriate norm depends
on the structure of the process. For example, in queuing theory with an infinite
capacity of the queues and risk theory, we often use the weighted norms. For
quantum Markov processes we use the Schatten p-norm or any unitarily invari-
ant norm. For the most models described by finite-state Markov chains, we use
total variation norm (for example for some inventory models and finite queues).

The first goal of this paper is to establish new perturbation and stability
bounds for the transition and stationary characteristics as well as to extend for
general state and to various norms some existing results obtained either for dis-
crete state or for total variation norm. The second goal is to improve other
stability estimates in a more wide stability domain of the unperturbed kernel P.

This paper is organized as follows. Section 2 contains the necessary defi-
nitions and notations. In section 3 we expose the main results, with respect to
a large class of norms, concerning the transition characteristics. In section 4,
we provide the norm-wise bounds for the stationary distribution in terms of the
norm of the residual kernel, introduced in the mixing condition D1(n,T,h,α),
or of the norm ergodicity coefficient. Moreover, we derive explicit bounds un-
der the drift condition D2(v,C,λ ,b). In section 5 we expose examples showing
the quality of our results. Finally, to make reading easier for the reader, we
present in the appendix the most important results obtained in [32] for which
comparisons were made with respect to some results reported in this article.

2. Preliminaries and notations

Let us consider X = (Xt , t = 0,1, . . .) an homogeneous Markov chain taking
values in a measurable space (E,E), where E is the state space of the Markov
chain X and E is a countably generated σ -algebra. Moreover, we assume that
X is given by a regular transition kernel P(x,A), x ∈ E, A ∈ E and having a
unique and finite invariant probability measure π .

Denote by mE , fE , and bE the spaces of finite signed measures on E , mea-
surable functions on E, and measurable bounded functions on E, respectively.
Let mE+, fE+, and bE+ the cone of nonnegative elements in these spaces.

For all kernel K(x,A), x ∈ E, A ∈ E , all measurable function g ∈ fE , and
all signed measure µ ∈mE , we introduce the following well known operations:
K g(x) =

∫
E g(y)K(x,dy), µ K(A) =

∫
E K(x,A)µ(dx) and µ g =

∫
E g(x)µ(dx)

provided that these integrals are well defined. Assume that a Banach space M
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is given in mE with a norm ‖ · ‖ satisfying the following condition

|µ|(E)≤ k‖µ‖ for µ ∈M. (4)

Where |µ| is the variation of the measure µ and k is a finite positive constant.
We introduce the following consistency condition on the norm with the order
structure and the uniform topology in mE :

‖µ1‖ ≤ ‖µ1 +µ2‖∀µi ∈M+ ∀ i = 1,2 (5)

‖µ1‖ ≤ ‖µ1−µ2‖ ∀µi ∈M+ and µ1 ⊥ µ2. (6)

The conjugate norm is defined on the dual space N of functions with finite norm
as follows: ‖ f‖= sup{|µ f |,‖µ‖ ≤ 1}. Furthermore, we introduce the space B
of operators K such that MK ⊂M and the following corresponding operator
norm is finite ‖K‖ = sup{‖µK‖,‖µ‖ ≤ 1}. In the sequel of this paper, we use
the same notation ‖ ·‖ for the measure, function and operator norms. Moreover,
transition kernels and corresponding linear operators are denoted by the same
symbols. By definition, µ ≤ λ if and only if λ − µ ∈M+, and K1 ≤ K2 if and
only if µ (K2−K1) ∈M+ for µ ∈M+. We define the product K1K2 of two
kernels K1 and K2 as follows

∀(x,A) ∈ E×E : K1K2(x,A) =
∫
E

K1(x,dy)K2(y,A).

We denote by Kt the t-times product of K by itself and K0 = I, where here
I(x,A) = 1I{x∈A} is the unit operator in M. We assume P ∈B, that is,

MP⊂M and ‖P‖< ∞.

For a function f ∈N and measure µ ∈M, we denote f ⊗µ the kernel defined by
( f ⊗µ)(x,A) = f (x)µ(A) for all x∈ E and A∈ E . The stationary projector Π of
the kernel P on (E,E), is defined as a kernel which verifies ΠP = PΠ = Π2 = Π

and µΠ = µ provides that µP = µ for µ ∈M. If a kernel P admits a unique
invariant measure π , then P has a unique stationary projector Π of the form
Π = 1I⊗π where 1I is a function identically equals to the unit (see [24] for more
details). Observe that (4) ensures that ‖1I‖ ≤ k is finite and so if π ∈M then
‖Π‖= ‖1I⊗π‖ ≤ ‖1I‖‖π‖ is also finite.

Let a measurable function v on E such that }= inf
E

v(x)> 0. Define, for all

µ ∈mE , a weighted variation norm

‖µ‖v =
∫

E
v(x)|µ|(dx). (7)
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This class of norms will be considered in examples of section 7. Le denote
Mv = {µ ∈ mE : ‖µ‖v < ∞}. The corresponding norms in Nv and Bv are of
the form

‖ f‖v = sup
x∈E

(
| f (x)|
v(x)

)
and ‖K‖v = sup

x∈E

(∫
E v(y)|P(x,dy)|

v(x)

)
· (8)

For a signed measure µ ∈Mv, the v-norm, for v ≡ 1I, coincides with the total
variation norm of µ .

The following definition is a generalization, for any norms verifying (4)-(6),
of the classical uniform ergodicity of a Markov chain usually defined for either
weighted or total variation norm.

Definition 2.1. The chain X is called uniformly ergodic with respect to a given
norm ‖ · ‖ if there exist positive constants ρ < 1 and C < ∞ such that for all
t ∈ Z+, we have

‖Pt −Π‖ ≤Cρ
t . (9)

An alternative definition of the uniform ergodicity states: ‖Pt−Π‖ ≤ ρ t for
t ≥N. We point out that we do not know the length of the transition phase. Some
explicit estimates of the rate of convergence in (9) for general state space are
established earlier in [23], and recently in [41] for norms other than the weighted
or total variation norms. Bounds for some class of Markov chains (Doeblin’s
Chains, reversible chains, monotone chains, etc.) have been established with
respect to the weighted and total variation norms (see e.g. [37, Chapter 16] and
the references therein).

For a probability measure π(0), we define the distribution of X over t steps
by π(t) = π(0)Pt (transition distribution) where t ≥ 1. We introduce an other
Markov chain Y = {Yt , t ∈Z+} given on the same phase state (E,E). Let denote
Q the transition operator of Y and ν(t) = ν(0)Qt the distribution of Y over t
steps. Thus X is regarded as the unperturbed chain, whereas Y is considered as
the perturbed one.

It is well known in general perturbation theory that the first goal is to estab-
lish upper bounds for the deviation of transition or stationary characteristics in
term of the deviation of the transition operators ‖P−Q‖. For this, we denote
∆ = Q−P, ∆t = Qt −Pt and ∆(t) = ν(t)−π(t) for t ≥ 0.

To establish the perturbation bounds, we will use the generalization of the
concept of ergodicity coefficient of an operator. Thus, for all operator K ∈B
and an integer m≥ 1, we define the norm ergodicity coefficient of order m of K
as follows

Λm(K) = sup{‖µKm‖ : ‖µ‖ ≤ 1,µ ∈M0}

with M0 = {µ ∈M : µ(E) = 0}.
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For the total variation norm and discrete space, the norm ergodicity coef-
ficient Λm(K) coincides with the well known ergodicity coefficient denoted by
τm(K) (eg. [49]). It is easy to show that for transition operators K1, K2 we have
Λ1(Km

1 +Km
2 ) ≤ Λm(K1)+Λm(K2) and Λ1(Km

1 .K
m
2 ) ≤ Λm(K1)Λm(K2). More-

over, and in contrast to the total variation norm, we may have (for example for
the weighted variation norm) Λ1(K)> 1 for a transition operator K. It is of in-
terest to precise that for the norm which verifies (4)-(6), the uniform ergodicity
of the chain as it is stated in definition 2.1, is equivalent to the existence of an
integer m ≥ 1 such that Λm(P) < 1. Finally, in the sequel of this paper, we de-
note Λm = Λm(P), qs = max

0≤i≤s
‖Qi‖, ps = max

0≤i≤s
‖Pi‖, q = sup

s≥0
‖Qs‖, p = sup

s≥0
‖Ps‖,

∆s = max
1≤i≤s

‖∆i‖ and Λs = max
1≤i≤s

Λi(P). Furthermore, we denote bxc the largest in-

teger less than or equal to x. Henceforth, we use the generic ‖ · ‖ sign whenever
the result holds for any norm verifying (4). In the case of the v-norm (weighted
variation norm) or the total variation norm we use ‖ · ‖v and ‖ · ‖1 respectively.

3. Perturbation bounds of transition characteristics

3.1. General perturbation and stability bounds

We start our investigation by stating the following lemma which allows us to
establish the main results of this section and theorem 4.7 in section 4. For
this, we denote by B0 = {K ∈B : K1I = 0} the set of all weak derivatives of
transition kernels and Ω = {K ∈B : K1I = a1I, for some a ∈ R} ⊃B0 the set
of all Markov chains up to some normalizing constant. Note that any transition
operator belongs to Ω.

Lemma 3.1. Let L ∈B0, K ∈ Ω and µ ∈M0. Then, for all t ≥ 0 and m ≥ 1,
we get

‖LKtm‖ ≤ ‖L‖(Λm(K))t (10)

and
‖µKtm‖ ≤ ‖µ‖(Λm(K))t . (11)

Proof. Consider a fixed integer m ≥ 1 and the operators sequence {Ht}t≥0 de-
fined for all t ≥ 0 as follows

Ht =
1

‖LKtm‖
LKtm.

Notice that Ht ∈B0 for t ≥ 0 and ‖LKm‖ = ‖L‖‖H0Km‖. Thus, assuming the
following identity is true

‖LK(t−1)m‖= ‖L‖
t−2

∏
k=0
‖HkKm‖.
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Then we have

‖LKtm‖= ‖LK(t−1)m‖‖Ht−1Km‖=

(
‖L‖

t−2

∏
k=0
‖HkKm‖

)
‖Ht−1Km‖

= ‖L‖
t−1

∏
k=0
‖HkKm‖.

Hence, we obtain by induction that for all t ≥ 0,

‖LKtm‖= ‖L‖
t−1

∏
k=0
‖HkKm‖. (12)

Moreover, for all measure µ ∈M and t ≥ 1, the measure ν = µHt ∈M0 and
verifies ‖ν‖= ‖µHt‖ ≤ ‖µ‖. This yields the following assertion

‖HtKm‖= sup{‖µ(HtKm)‖ : ‖µ‖ ≤ 1}
≤ sup{‖µKm‖ : ‖µ‖ ≤ 1,µ(E) = 0,µ ∈M}= Λm(K).

Substituting the latter estimate in the identity (12), we obtain inequality (10).
Let denote

Bt =
1

‖µKtm‖
µKtm.

So in the same way, we obtain the following identity

‖µKtm‖= ‖µ‖
t−1

∏
k=0
‖BkKm‖. (13)

Furthermore, for all k ≥ 0, we have Bk ∈M0, and ‖Bk‖ = 1 and consequently
‖BkKm‖ ≤ Λm(K). Thus,by utilizing the previous estimate in the equality (13),
we derive (11).

The first estimate concerns the upper perturbation bound for the deviation
of the transition operators over t-steps where t ≥ 0.

Theorem 3.2. For all t ≥ 0 and fixed m≥ 1, we have

‖Qtm−Ptm‖ ≤ q(t−1)m ‖∆m‖
1−Λt

m

1−Λm
(14)

and

‖Qt −Pt‖ ≤ qt ‖∆m‖
1−Λ

b t
m c

m

1−Λm
+Λ

b t
m c

m ‖∆t−b t
m cm‖. (15)

Moreover, if we assume Λm < 1 and q < ∞, then the following inequality holds

sup
t≥0
‖Qt −Pt‖ ≤ q

‖∆m‖
1−Λm

+∆m−1. (16)
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Proof. For all t ≥ 1, we have ∆tm = Qm∆(t−1)m +∆mP(t−1)m. Utilizing the in-
duction procedure, we obtain the following identity

∆tm = Q(t−1)m
∆m +Q(t−2)m

∆mPm + . . .+∆mP(t−1)m. (17)

This yields to the following inequality

‖∆tm‖ ≤ ‖Q(t−1)m‖‖∆m‖+‖Q(t−2)m‖‖∆mPm‖+ . . .+‖∆mP(t−1)m‖.

So using lemma 3.1, we obtain

‖∆tm‖ ≤ ‖Q(t−1)m‖‖∆m‖+‖Q(t−2)m‖‖∆m‖Λm + . . .+‖∆m‖Λ
t−1
m

≤ ‖∆m‖ sup
0≤s≤(t−1)m

‖Qs‖
(
1+Λm + . . .+Λ

t−1
m
)
= q(t−1)m ‖∆m‖

1−Λt
m

1−Λm
·

So, the estimate (14) is established.
Set t = km+ s where s = 0,m−1 and k ≥ 1, then we have the following

recursive equation ∆t = Qs∆km +∆sPkm. Therefore, using (17), we get

Qt −Pt = Qs
(

Qkm−Pkm
)
+(Qs−Ps) Pkm = Qs

k−1

∑
i=0

Qim
∆mP(k−1−i)m +∆s Pkm

=
k−1

∑
i=0

Qim+s
∆mP(k−1−i)m +(Qs−Ps) Pkm.

According to lemma 3.1, we obtain

‖∆t‖ ≤ qt ‖∆m‖
k−1

∑
i=0

Λ
k−1−i
m +Λ

b t
m c

m ‖Qt−b t
m cm−Pt−b t

m cm‖

≤ qt ‖∆m‖
1−Λ

b t
m c

m

1−Λm
+Λ

b t
m c

m ‖∆t−b t
m cm‖.

Then inequality (15) is obtained. Moreover, the inequality (16) follows from the
condition Λm < 1.

Remark 3.3. It is easy to derive corresponding estimates directly in term of the
deviation ‖∆‖. Indeed, we have the relation ∆m = ∑

m−1
k=0 Qk∆Pm−k−1. Then, we

obtain
‖∆m‖ ≤ mqm−1 Λm−1 ‖∆‖ ≤ mqm−1 pm−1‖∆‖.

The need to consider a wide class of norms is explained in the introduction
of this paper and is related to the fact that several processes are not necessar-
ily uniformly ergodic for the usual total variation norm and consequently have
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Λm = τm = 1 for all m. Hence the bounds [38, Bounds (3.11) and (3.15)] are
not applicable. A simple example is given by the Bernoulli random walk on
E = Z+ = {0,1, . . .} with absorption at zero which will be investigated in ex-
ample 5.3 of section 7. For this aim, theorems 3.4 and 4.7 extend, for various
norms, [38, Bounds (3.11) and (3.15)].

Theorem 3.4. Let us assume Λm < 1 for some m≥ 1 and q < ∞. Then, for all
t ≥ 0, the following estimates are fulfilled

‖∆(t)‖ ≤Θm Λ
b t

m c
m +qt ‖ν(0)‖ 1−Λ

b t
m c

m

1−Λm
‖∆m‖ (18)

and

sup
t≥0
‖∆(t)‖ ≤ ‖∆(0)‖pm−1 +‖ν(0)‖∆m−1 +

‖ν(0)‖q
1−Λm

‖∆m‖, (19)

where Θm = ‖∆(0)‖Λm−1 +‖ν(0)‖∆m−1 ≤ ‖∆(0)‖pm−1 +‖ν(0)‖∆m−1.

Proof. From (17), we have for every integer t = km+ s where k ≥ 1,

ν
(t)−π

(t) = ν
(s)
(

Qkm−Pkm
)
+
(

ν
(s)−π

(s)
)

Pkm

= ν
(s)

k−1

∑
i=0

Qim
∆mP(k−1−i)m +

(
ν
(s)−π

(s)
)

Pkm

= ν
(0)

k−1

∑
i=0

Qim+s
∆mP(k−1−i)m +

(
ν
(s)−π

(s)
)

Pkm.

Therefore, utilizing lemma 3.1 we derive

‖∆(t)‖ ≤ ‖ν(0)‖qt‖∆m‖
b t

m c−1

∑
i=0

Λ
b t

m c−1−i
m +‖∆(t−b t

m cm)‖Λ
b t

m c
m

= ‖ν(0)‖qt
1−Λ

b t
m c

m

1−Λm
‖∆m‖+‖∆(t−b t

m cm)‖Λ
b t

m c
m . (20)

Furthermore, we have for all s = 0,m−1, the identity ∆(s) = ∆(0)Ps + ν(0) ∆s,
which yields the following inequality ‖∆(s)‖ ≤ ‖∆(0)‖Λs(P)+ ‖ν(0)‖‖∆s‖. It
follows the following inequality

sup
0≤s≤m−1

‖∆(s)‖≤‖∆(0)‖Λm−1+‖ν(0)‖∆m−1≤∆
(0)‖pm−1+‖ν(0)‖∆m−1. (21)

The bound (19) derives straightforwardly from (20) and (21).
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Remark 3.5. Observe that for the total variation norm, the inequalities (18) and
(19) become

‖∆(t)‖1 ≤
(
‖∆(0)‖1 +∆m−1

)
Λ
b t

m c
m +

1−Λ
b t

m c
m

1−Λm
‖∆m‖1 (22)

and

sup
t≥0
‖∆(t)‖1 ≤ ‖∆(0)‖1 +∆m−1 +

‖∆m‖1

1−Λm
· (23)

It is worth noting that the bound (22) coincides with [38, Bound (3.15)].

Theorem 3.6. Let us assume Λm < 1 for m ≥ 1 and p = sup
t≥0
‖Pt‖ < ∞. Then,

for all t ≥ 0 and Λm +‖∆m‖< 1, the following estimates are fulfilled

‖∆(t)‖ ≤Θm (Λm +‖∆m‖)b
t
m c+‖π(0)‖pt

1− (Λm +‖∆m‖)b
t
m c

1−Λm−‖∆m‖
‖∆m‖ (24)

and

sup
t≥0
‖∆(t)‖ ≤ ‖∆(0)‖pm−1 +‖ν(0)‖∆m−1 +

‖π(0)‖p
1−Λm−‖∆m‖

‖∆m‖. (25)

Where Θm is defined in theorem 3.4.

Proof. We have for every integer t = km+ s where k ≥ 1,

ν
(t)−π

(t) = π
(s)
(

Qkm−Pkm
)
+
(

ν
(s)−π

(s)
)

Qkm

= π
(s)

k−1

∑
i=0

Pim
∆mQ(k−1−i)m +

(
ν
(s)−π

(s)
)

Qkm

= π
(0)

k−1

∑
i=0

Pim+s
∆mQ(k−1−i)m +

(
ν
(s)−π

(s)
)

Qkm.

According to lemma 3.1 we get:

‖∆(t)‖ ≤ ‖π(0)‖pt‖∆m‖
k−1

∑
i=0

(Λm +‖∆m‖)k−1−i +‖∆(s)‖ (Λm +‖∆m‖)k

= ‖π(0)‖pt
1− (Λm +‖∆m‖)k

1−Λm−‖∆m‖
‖∆m‖+‖∆(s)‖ (Λm +‖∆m‖)k .

The assertion follows from the latter and (21) which complete the proof.

Remark 3.7. If we consider the usual total variation norm, we must point
out that those bounds are useless if are greater than 2 since sup

t≥0
‖∆t‖ ≤ 2 and

sup
t≥0
‖∆(t)‖ ≤ 2.
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3.2. Estimates of the parameters q and p

The previous bounds are expressed in terms of the parameters q and p. In gen-
eral situations, the structure of the transition kernel P of the unperturbed Markov
chain is generally simpler than that of the perturbed chain Y . Consequently, the
spectral decomposition of P allows us to estimate p more easier than q. Espe-
cially, the index q is finite if, in particular, the Markov chain X is uniformly
ergodic and aperiodic for all sufficiently small ‖∆‖. In the case of the total vari-
ation norm, we have p = q = 1 and the previous bounds are sufficiently explicit.

For this purpose, we establish in this subsection some estimates of these
parameters under some conditions. First we consider the following mixing con-
dition for the unperturbed Markov chain X .

D1(n,T,h,α):

I) ‖P‖< ∞.

II) There exist a natural integer n, nonnegative measurable function h ∈N+,
measure α ∈M+ such that: αh > 0, πh > 0, α1I = 1 and the operator
T = Pn−h⊗α is nonnegative.

III) ‖T‖< 1 (T is called proper or quasi-compact for the norm ‖ · ‖).

Remark 3.8. Condition (II) is fulfilled for all Harris Markov chains. Further-
more, conditions (II) and (III) for the usual total variation norm ‖µ‖ = |µ|(E)
are equivalent to the well known Doeblin condition for the kernel P to be quasi
compact. For more details we may consult [44, Chapitre 6.3]. Observe that
calculating ‖T‖ is not easy to do. For this, we use the following equivalent
condition for (III):

IV) There exists ρ ∈ [0,1[ such that ‖T‖ ≤ ρ .

For the weighted variation norm, condition (III) or (IV) is equivalent to the
following condition: there exists ρ ∈ [0,1[ such that

∀x ∈ E : T v(x)≤ ρ v(x). (26)

We point out that the kernel T is called the residual kernel (see [39]). In some
situations it represents a degenerate kernel that avoids entering some specific set
state A (Markov kernel conditioned on the even that the chain does not reach A).
In this case, T is called a taboo kernel and denoted by AP (see [37] for details
and the references therein).

It is worth noting that finding the appropriate substochastic kernel T which
verifying condition (II) may be done by using the first input and last exit formula
(eg. see [37]). This technique have been used in an elegant and flexible way in
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[24]. The form of the kernel T is not unique. Unfortunately, condition (III)
is more difficult to be satisfied and consequently choosing appropriate kernel T
verifying conditions (II)-(III) is more hard to do. Note that the choice of a kernel
T is equivalent to determining a function h and a measure α . Unfortunately, the
optimal choice of the kernel T , and consequently the choice of the function h
and the measure α , remains an open problem.

The two following results establish the estimate of p and q under the mixing
condition D1(n,T,h,α).

Proposition 3.9. Assume that condition D1(n,T,h,α) holds. Then, the fol-
lowing estimates are fulfilled for all perturbed transition kernel Q such that
‖∆n‖< 1−‖T‖:

sup
i≥0
‖Qin‖= q(n) ≤

‖h‖‖α‖
(1−‖T‖−‖∆n‖)2 (27)

and

sup
i≥0
‖Qi‖= q≤

‖h‖‖α‖
(
∆n−1 +pn−1

)
(1−‖T‖−‖∆n‖)2 · (28)

Proof. Since T , h and α are nonnegative, so from the sub-condition (II) of the
condition D1D1D1(n,h,α,T ), we get for all x ∈ E: 1 = Pn(x,E) ≥ h(x)α(E). This
yields, for all x ∈ E and A ∈ E , h(x)α(A)≤ 1. Hence, for all i≥ 0, we obtain

|αQinh|= |
∫

E

∫
E

α(dx)Qin(x,dy)h(y)| ≤ 1. (29)

Moreover, we have for all i≥ 1

Qin = Qin−Q(i−1)nPn +Q(i−1)nT +Q(i−1)nh⊗α

= Q(i−1)n(∆n +T )+Q(i−1)nh⊗α.

Therefore, we get

‖αQin‖= ‖α
(

Q(i−1)n(∆n +T )
)
+(αQ(i−1)nh)α‖

≤ ‖αQ(i−1)n‖‖∆n +T‖+ |αQ(i−1)nh|‖α‖.

This implies the following inequality

sup
i≥1
‖αQin‖ ≤ ‖α‖

1−‖∆n +T‖
|αQ(i−1)nh|.

Since ‖∆n +T‖ ≤ ‖∆n‖+‖T‖< 1 and from (29), we obtain

sup
i≥1
‖αQin‖ ≤ ‖α‖

1−‖T‖−‖∆n‖
· (30)
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Note that for i = 0, the last inequality (30) holds also true. Furthermore, from
the trivial recursive relation Qin = (∆n +T )Q(i−1)n +h⊗αQ(i−1)n, we obtain

‖Qin‖ ≤ ‖Q(i−1)n‖‖∆n +T‖+‖αQ(i−1)‖‖h‖.

This yields the following

sup
i≥0
‖Qin‖ ≤ 1

1−‖∆n +T‖
‖h‖sup

t≥0
‖αQtn‖. (31)

By using the latter inequality and (30), we derive (27). Moreover, for t = kn+ s
where 0≤ s≤ n−1, we have

‖Qt‖ ≤ ‖Qkn‖‖Qs‖ ≤ q(n) qn−1 ≤ q(n)
(
∆n−1 +pn−1

)
. (32)

Therefore, by using (27) and (32), the inequality (28) is derived.

Proposition 3.10. Assume that condition D1(n,T,h,α) holds. Then, we get

sup
k≥1
‖Pkn‖= ppp(n) ≤ ‖T‖+

‖h‖‖α‖
(1−‖T‖)2 (33)

and

ppp = sup
i≥1
‖Pi‖ ≤

(
‖T‖+ ‖h‖‖α‖

(1−‖T‖)2

)
pppn−1. (34)

Proof. We consider the probability distribution (pn;n = 1,2, . . .) defined for all
n ≥ 1 by pn = αT n−1h. We denote by d the positive integer called the period
of the Markov chain defined by d = gcd{n ≥ 1 : pn > 0} ≥ 1. Under the con-
dition D1(n,T,h,α), we have d = 1 since p1 = αh > 0. In this case P is called
aperiodic transition kernel. It is well known that (pn;n = 1,2, . . .) verifies the
following renewal equation

λ (t) = ∑
t−1
k=1 λ (k)pt−k, t ≥ 2;

λ (t) = 0, t ≤ 0;
λ (1) = 1.

(35)

According to [41, Relation (1)], we have Pt = T t + ∑
i≥0

∑
j≥0

λ t
i jT

ih⊗αT j, where

λ t
i j = λ (t− i− j). From the latter equation, it follows that for t ≥ 1:

‖Pt‖ ≤ ‖T t‖+ sup
s≥0

λ (s)‖h‖‖α‖∑
i≥0

∑
j≥0
‖T‖i+ j ≤ ‖T‖+ ‖h‖‖α‖

(1−‖T‖)2 ·

The inequality (34) derives straightforwardly from (33) and the obvious inequal-
ity ppp≤ ppp(n) pppn−1.
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Remark 3.11. It is worth noting that under the mixing condition D1(n,T,h,α),

we can easily establish (πh) α ≤ π = (πh) α (I−T )−1 and ‖π‖ ≤ (πh) ‖α‖
1−‖T‖

·

In the sequel of this section, we derive explicit bounds, with respect to the
weighted variation norm, under the following drift condition.

D2(v,C,λ ,b): There exists a finite function v bounded away from zero, a
measurable set C and positive constants λ < 1, b < ∞ such that:

Pv≤ λv+b1IC. (36)

It is well known that if X is an aperiodic Markov chain with transition kernel
P, then X is geometrically ergodic if and only if P satisfies the drift condition
D2(v,C,λ ,b) for an unbounded test function v≥ 1 (see [37]).

Proposition 3.12. Under the condition D2(v,C,λ ,b), we have the following
estimate

sup
t≥1
‖Pt‖v = ppp≤ λ +

b
} (1−λ )

· (37)

Where }= inf
x∈E

v(x)> 0.

Proof. Using the induction procedure from the inequality (36), we obtain:

Ptv = λv+b
t

∑
k=0

λ
k = λv+b

1−λ t+1

1−λ
≤ λv+

b
1−λ

·

According to the latter and the definition of the v-norm (see relation (8)), we
get:

‖Pt‖v = sup
x∈E

(
Ptv(x)
v(x)

)
≤ sup

x∈E

(
λ +

1
v(x)

b
1−λ

)
≤ λ +

b(
inf
x∈E

v(x)
)
(1−λ )

·

This yields the desired result.

Remark 3.13. By integrating both sides of the inequality (36) with respect to
the invariant probability measure π , we get πPv≤ λ πv+bπ(C) and using the
invariance of π with respect to P, we obtain the following estimate

π v = ‖π‖v ≤
bπ (C)

1−λ
· (38)
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4. Perturbation bounds for stationary distributions

In order to preserve the irreducibility of the unperturbed chain, we have to con-
sider the problem of the stability effects. For this, we consider the perturbed
kernel Q with an invariant probability measure ν . Since ν is an invariant mea-
sure of Q (ν = νQ) and ν1I = 1, we get easily

ν(I−P+Π) = ν(Q−P)+νΠ = ν(Q−P)+π.

Moreover, R = (I−P+Π)−1 is well defined according to the basic theory of
the linear operators (see [21]) and πR = π . Hence, we have

ν = ν(Q−P)R+πR = ν(Q−P)R+π.

However, ∆Π = ∆(1I⊗π) = 0. Hence, ν = ν∆(R−Π)+π , and consequently
ν − π = ν ∆R = ν − π = ν ∆(R−Π). This yields ν (I−∆(R−Π)) = π . If
‖∆(R−Π)‖< 1, then the operator (I−∆(R−Π))−1 exists and norm bounded
and its Neumann series converges. So we have straightforwardly the following
relation ν = π (I−∆(R−Π))−1 = π ∑

k≥0
[∆(R−Π)]k. Or, explicitly,

ν−π = π ∑
k≥1

[∆(R−Π)]k = π ∑
k≥1

[∆(R−Π)]k . (39)

In the sequel, we consider norms satisfying (4) and we assume that ‖R‖ < ∞

and ‖Π‖ < ∞ which implies that the deviation operator D = R−Π has a finite
norm (‖D‖ = ‖R−Π‖ < ∞). Indeed, if the considered norm satisfies also the
assertions (5)-(6) as the weighted and total variation norms, it follows from
[21], then the chain is uniformly ergodic (see definition 2.1) with respect to
this given norm if and only if the operator I−P+Π is invertible and ‖R‖ < ∞

where R = (I−P+Π)−1. Further, ‖Π‖ < ∞. Consequently, this implies that
‖D‖= ‖R−Π‖< ∞ (see more details in [21]).

Now we state a result that establishes a sufficient condition in order that a
perturbed chain admits an invariant probability measure. The sketch of proof
is similar to the one used in [1, Theorem 1], for the discrete state, but with
differences from the subtle issues arising from dealing with general state space.

Theorem 4.1. Let X a Markov chain with regular transition kernel P with a
unique stationary distribution π and Q is the transition kernel of the perturbed
chain. Assume that the Neumann series π ∑

k≥0
[∆(R−Π)]k converges to some

finite nonnegative measure ν = π (I−∆(R−Π))−1 = π (I−∆R)−1.

1. The limit ν is an invariant probability measure of the kernel Q.
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2. If we assume, additionally, that the perturbed chain is ergodic, then ν is
the unique stationary probability measure of the transition kernel Q.

Proof. It is well known for the potential R, we have (I−P)R = I−Π. Multi-
plying this equation from the left by ν , that is taking integral with respect to the
measure ν , we get

ν−π = ν (I−P)R. (40)

Further, we have

ν = π

+∞

∑
k=0

(∆R)k = π +π

+∞

∑
k=1

(∆R)k = π +π

(
+∞

∑
k=0

(∆R)k

)
∆R = π +ν∆R. (41)

By subtracting (41) from (40), we obtain : ν (I−P−∆) R = ν (I−Q) R = 0.
Since R exists, so its inverse also exists (see this result in [21] and the remarks
above). Multiplying this latter equation from the right by the regular kernel
I−P+Π = R−1, we obtain ν (I−Q) = 0, which yields νQ = ν . This proves
that ν is an invariant measure of Q. Moreover, by multiplying the relation (40)
from the left by the function 1I and using the fact that R1I = P1I = I 1I = 1I and
π 1I = 1, we obtain: ν 1I− π 1I = ν (I−P)R1I = 0⇔ ν1I = 1. Hence ν is an
invariant probability measure of Q. Consequently, the first assertion is proved.

Since the transition kernel Q is ergodic, then lim
t→+∞

Qt = Π̂ where Π̂ is the

stationary projector of Q, that is by definition the stochastic kernel verifying
QΠ̂ = Π̂Q = Π̂2 = Π̂ and µ Π̂ = µ provided that µ Q = µ for µ ∈M. In
this case, Π̂ = 1I⊗ π̂ where π̂ is the stationary distribution of Q. Since ν is an
invariant measure of Q as it is proved above, we have ν = νQt for all t, this
yields ν = lim

t→+∞
νQt = ν Π̂ = ν (1I⊗ π̂) = (ν1I) π̂ = π̂ . This proves that ν is the

unique stationary distribution of the kernel Q.

The following theorem exposes general upper stability bound under the mix-
ing condition D1(n,T,h,α) for n = 1. This bound is better than those obtained
in [24] (see proposition 7.2 in the appendix) and valid in a more large neighbor-
hood of the unperturbed kernel P.

Theorem 4.2. Assume that the condition D1(1,T,h,α) holds.

1. If ‖∆‖ < 1−‖T‖
1+(σ −1) ‖T‖

, then the perturbed kernel Q has an invariant

probability measure ν such that

‖ν−π‖ ≤ ‖π‖ 1+(σ −1) ‖T‖
1−‖T‖− (1+(σ −1) ‖T‖)‖∆‖

‖∆‖ (42)

where σ = ‖I−Π‖.
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Proof. According to the mixing condition D1(1,T,h,α), we get ‖T‖< 1. From
[25], we get the relation R−Π = (I−Π)RT (I−Π), where RT = (I−T )−1.
Hence, by using ∆Π = ∆(1I⊗π) = (∆1I)⊗π = 0, we derive

∆R = ∆(R−Π) = ∆(I−Π)RT (I−Π) = ∆RT (I−Π) .

Moreover, we have ∆RT (I−Π) = ∆(I +T RT )(I−Π) = ∆(I +T RT (I−Π)).
Hence, we get:

‖∆RT (I−Π)‖= ‖∆(I +T RT (I−Π))‖ ≤ ‖∆‖(1+‖T‖‖RT‖‖I−Π‖)

≤ ‖∆‖
(

1+
‖T‖‖I−Π‖

1−‖T‖

)
= ‖∆‖

(
1−‖T‖+‖T‖‖I−Π‖

1−‖T‖

)
≤ ‖∆‖

(
1+(σ −1)‖T‖

1−‖T‖

)
. (43)

The condition σ ≤ 1 + ‖1I‖‖π‖ involves ‖∆R‖ = ‖∆RT (I−Π)‖ < 1. Con-
sequently the Neumann series π ∑

k≥0
[∆(R−Π)]k converges and according to

theorem 4.1, the kernel Q admits an invariant probability measure ν such that
ν = π ∑

k≥0
[∆(R−Π)]k. Substituting the expression of ∆(R−Π) in the equality

(39), we obtain: ν −π = π ∑
k≥1

[∆(R−Π)]k = π ∑
k≥1

[∆RT (I−Π)]k. By taking

the norm both sides of this last equality, we get:

‖ν−π‖ ≤ ‖π‖ ∑
k≥1
‖∆RT (I−Π)‖k =

‖π‖‖∆RT (I−Π)‖
1−‖∆RT (I−Π)‖

· (44)

The bound (42) follows from combining (43) and (44).

Remark 4.3. Observe that the bound (42) is better than those obtained in [24,
Theorem 2] and holds for more large magnitude of perturbation for the unper-
turbed kernel P (see inequality (67) of proposition 7.2 in the appendix), since
σ ≤ 1+‖1I‖‖π‖ implies 1+(σ −1) ‖T‖ ≤ 1+‖1I‖‖π‖‖T‖. Moreover, if we
consider the weighted variation norm ‖ · ‖v, where v is a measurable function
on E such that }= inf

x∈E
v(x) = 1, as assumed in [1], the bound (42) provides the

following estimate :

‖ν−π‖ ≤ ‖π‖ 1+(σ −1) ‖T‖
1−‖T‖− (1+(σ −1) ‖T‖)‖∆‖

‖∆‖

≤ ‖π‖ 1+‖π‖‖T‖
1−‖T‖− (1+ ‖π‖‖T‖)‖∆‖

‖∆‖. (45)
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While the bound [1, Inequality 38] is established for discrete state and for the
specific function v(n) = β n where β > 1 and n ∈ S⊆ N, is given as follows :

‖ν−π‖ ≤ ‖π‖ 1+‖π‖
1−‖T‖− (1+ ‖π‖)‖∆‖

‖∆‖. (46)

It is clear that the bound (45) is better than (46) and valid in a more large neigh-
borhood.

The two following theorems derive explicit bounds, with respect to the
weighted variation norm, under the drift condition D2(v,C,λ ,b).

Theorem 4.4. Let us assume that P verifies the drift condition D2(v,C,λ ,b) and

δ = λ + sup
x∈C

(
b−αv

v(x)

)
< 1 where α(A) = inf

x∈C
P(x,A) is a non trivial measure

and v≥ 1.

1. If ‖∆‖v <
1−ρ

1+ρ‖π‖v
, then the perturbed transition kernel Q has an in-

variant probability measure ν such that:

‖ν−π‖v ≤
‖π‖v (1+ρ‖π‖v) ‖∆‖v

1−ρ− (1+ρ‖π‖v) ‖∆‖v
(47)

where ρ = max(λ ,δ ).

2. Any transition kernel Q such that ‖∆‖v <
(1−ρ)(1−λ )

1−λ +ρ bπ(C)
has an invari-

ant probability measure and we have the following inequality

‖ν−π‖v ≤
bπ(C) (1−λ +ρ bπ(C)) ‖∆‖v

(1−ρ)(1−λ )2− (1−λ )(1−λ +ρ bπ(C)) ‖∆‖v
· (48)

In particular, if ‖∆‖v <
(1−ρ)(1−λ )

1−λ +ρ b
, then Q has an invariant proba-

bility measure ν such that

‖ν−π‖v ≤
b (1−λ +ρ b) ‖∆‖v

(1−ρ)(1−λ )2− (1−λ )(1−λ +ρ b) ‖∆‖v
· (49)

Proof. We consider the residual kernel defined for x ∈ E and A ∈ E by:

T (x,A) = P(x,A)−h(x)α(A) =

{
P(x,A), x /∈C
P(x,A)− inf

x∈C
P(x,A), x ∈C,
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where h(x) = 1IC(x) and α(A) = inf
x∈C

P(x,A). Hence, T (x,A) ≥ 0 for all x ∈ E

and A ∈ E . Therefore,

T v(x) =
{

Pv(x), x /∈C
Pv(x)−αv, x ∈C.

Utilizing the drift condition, we obtain:

T v(x)≤
{

λv(x), x /∈C
λv(x)+b−αv, x ∈C

=⇒ T v(x)
v(x)

≤

{
λ , x /∈C
λ + b−αv

v(x) , x ∈C,

which implies that ‖T‖v ≤ ρ < 1. Further, we have ‖P‖v ≤ λ +
b

inf
x∈C

v(x)
< ∞.

Therefore, the unperturbed chain verifies the condition D1(m,T,h,α). There-
fore, according to the inequality (38), we derive

πv = ‖π‖v ≤
bπ(C)

1−λ
≤ b

1−λ
·

Since σ ≤ 1+‖π‖v, then we have

1+(σ −1) ‖T‖v ≤ 1+‖π‖v ‖T‖v ≤ 1+ρ ‖π‖v

Therefore, each of the conditions ‖∆‖ < 1−ρ

1+ρ ‖π‖v
, ‖∆‖v <

(1−ρ)(1−λ )

1−λ +ρ bπ(C)

or ‖∆‖v <
(1−ρ)(1−λ )

1−λ +ρ b
involves that the hypothesis of theorem 4.2 is satis-

fied, which therefore implies the existence of an invariant probability measure
for the perturbed kernel Q. The first claim (47) follows directly from (42). The
bounds (48) and (49) derive immediately by replacing ‖π‖v, in the condition

‖∆‖ < 1−ρ

1+ρ‖π‖v
and in (47), with their upper bounds

bπ(C)

1−λ
and

b
1−λ

re-

spectively.

In the next theorem we consider the test set C = {x0}, where x0 ∈ E and
we denote πx0 = π ({x0}). So we can obtain similar results like (47)-(49) un-
der weaker conditions. The proof is quite similar to those of theorem 4.4, and
consequently we omit some details.

Theorem 4.5. Let x0 any fixed state in E and assume that the drift condition
D2(v,C,λ ,b) is verified where C = {x0} and v≥ 1.



PERTURBATION BOUNDS FOR GENERAL STATE MARKOV CHAINS 263

1. If ‖∆‖v <
1−λ

1+λ ‖π‖v
, then any Markov chain with a transition kernel Q

has a unique stationary distribution ν such that

‖ν−π‖v ≤
‖π‖v (}+λ ‖π‖v)‖∆‖v

1−λ − (1+λ ‖π‖v)‖∆‖v
· (50)

2. Any transition kernel Q such that ‖∆‖v <
(1−λ )2

1−λ +λ bπx0

has a unique

stationary distribution ν such that

‖ν−π‖v ≤
bπx0 (1−λ +λ bπx0)‖∆‖v

(1−λ )3− (1−λ )(1−λ +λ bπx0)‖∆‖v
· (51)

In particular, if ‖∆‖v <
(1−λ )2

1+λ (b−1)
, then Q has a unique stationary

distribution ν with

‖ν−π‖v ≤
b (1+λ (b−1))‖∆‖v

(1−λ )3− (1−λ )(1+λ (b−1))‖∆‖v
· (52)

Proof. The existence of an invariant probability measure for the perturbed tran-

sition kernel Q under the condition ‖∆‖v <
} (1−λ )

}+λ ‖π‖v
, ‖∆‖v <

} (1−λ )2

}+λ (b−})
or

‖∆‖v <
} (1−λ )2

}(1−λ )+λ bπx0

follows from theorem 4.2. Let consider the residual

kernel defined for x ∈ E and A ∈ E by:

T (x,A) = P(x,A)−h(x)α(A) =
{

P(x,A), x 6= x0
0, x = x0,

where h(x) = 1IC(x) and α(A) = P(x0,A). Hence, T (x,A)≥ 0 for all x ∈ E and

A ∈ E . Therefore, T v(x) =
{

Pv(x), x 6= x0
0, x = x0.

Using the drift condition, we derive

T v(x)≤
{

λv(x), x 6= x0
0, x = x0

=⇒ T v(x)
v(x)

≤
{

λ , x 6= x0
0, x = x0,

which yields ‖T‖v ≤ λ . Moreover, it is easy to get ‖P‖v ≤ λ +
b

v(x0)
< ∞.

Hence, the unperturbed chain verifies the condition D1(1,T,h,α). Taking into
account that π (C) = πx0 and the estimate

πv = ‖π‖v ≤
bπx0

1−λ
≤ b

1−λ
, (53)
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we derive simply (50)-(52) by following similar sketch of proof than those of
theorem 4.4.

Remark 4.6. The bounds (50) and (52) extend to general state space and im-
prove [32, Bounds (3.3)-(3.4)] (see the bounds (68)-(69) of proposition 7.3 in
the appendix). Moreover, they are valid for more large magnitude of perturba-
tion. Note that the bounds (50) and (52) improve (68)-(69) in both numerator
and denominator. Let us point out that the estimate of ‖π‖v = π v in theorem
4.5 may be improved from (53) and by taking into account that πh = πx0 . We
obtain the following estimate:

πv = ‖π‖v ≤
min(b,αv)πx0

1−λ
·

The stability bounds obtained in theorem 4.5 and 4.4 are given in terms of the
parameters λ and b of the drift condition D2(v,C,λ ,b). Since the geometric
ergodicity is often established for many complex processes, which are not nec-
essarily random walks, by using the drift condition D2(v,C,λ ,b) (see e.g. [37]
and the references therein), it follows that the obtained perturbation bounds may
be applied for more complex processes other than random walks. We point out
that recently in [42], it is proved that the waiting process in queuing systems
with impatient units (a process which is not random walk in the classical mean-
ing) is strongly stable and some stability estimates were obtained.

The next theorem gives the upper bound perturbation for the stationary dis-
tribution in term of the norm ergodicity coefficient.

Theorem 4.7. Let assume Λm < 1 for m ≥ 1. Then, for all transition kernel Q
such that ‖∆m‖ < 1−Λm has an invariant probability measure ν . Further, the
following estimate

‖ν−π‖ ≤
q(m) ‖π‖
1−Λm

‖∆m‖ (54)

is fulfilled provided that q(m) = sup
t≥0
‖Qtm‖< ∞.

Proof. For the skeleton Xm of the chain X , its potential Rm is given by the rela-
tion

Rm = (I−Pm +Π)−1 = ∑
k≥0

(Pm−Π)k .

It follows that Rm−Π = ∑k≥0
(
Pkm−Π

)
. By using lemma 3.1, we get

‖∆m (Rm−Π)‖ ≤ ‖∆m‖Λ(Rm−Π) = ‖∆m‖Λ(Rm)

≤ ‖∆m‖ ∑
k≥0

Λ

(
Pkm
)
≤ ‖∆m‖ ∑

k≥0
Λ

k
m =

‖∆m‖
1−Λm

·
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Therefore, the condition ‖∆m‖ < 1−Λm involves ‖∆m (Rm−Π)‖ < 1, and
consequently the series π ∑k≥0 [∆m (Rm−Π)]k converges. Hence, from theorem
4.1 the transition kernel Qm has an invariant probability measure ν such that
ν = π ∑k≥0 [∆m (Rm−Π)]k. Furthermore, for t ≥ 0, we have

π
(tm)−ν

(tm) = π
(0)(Ptm−Qtm)+

(
π
(0)−ν

(0)
)

Qtm.

According to lemma 3.1, since ∆m1I = 0, and from

Λ(Qm) = Λ(∆m +Pm)≤ Λ(∆m)+Λ(Pm)≤ ‖∆m‖+Λ(Pm)< 1,

we obtain

‖∆(tm)‖ ≤ ‖π(0)‖‖∆tm‖+‖π(0)−ν
(0)‖ (Λ(Qm))t

≤ ‖π(0)‖‖∆tm‖+‖π(0)−ν
(0)‖ (‖∆m‖+Λm)

t .

Utilizing (14), we get

‖∆(tm)‖ ≤ q(t−1)m ‖π(0)‖‖∆m‖
1−Λt

m

1−Λm
+‖π(0)−ν

(0)‖ (‖∆m‖+Λm)
t

≤ ‖∆m‖
q(m) ‖π(0)‖

1−Λm
‖+‖π(0)−ν

(0)‖ (‖∆m‖+Λm)
t .

Finally, substituting π(0) = π and ν(0) = ν in the latter inequality, and taking the
limit as t −→+∞, we obtain the bound (54).

Remark 4.8. Observe that if we substitute π(0) = π and ν(0) = ν in the inequal-
ity (18), and taking the limit as t −→ 0, we derive straightly the estimate of the
the deviation ‖ν−π‖ as follows

‖ν−π‖ ≤ q‖ν‖
1−Λm

‖∆m‖.

Unfortunately, this upper perturbation bound depends on the unknown distribu-
tion ν which we want to estimate. This is why we have considered an other
way to obtain an upper bound of ‖ν−π‖ in theorem 4.7. For the total variation
norm, the bound (54) becomes

‖ν−π‖ ≤ ‖∆m‖
1− τm

(55)

which coincides with [38, Theorem 3.2, Inequality (3.11)]. Furthermore, we
don’t need the condition ‖∆m‖ < 1−Λm but in return we must assume that the
perturbed kernel has a unique stationary distribution and further the proof must
be modified. Indeed for the total variation norm, we have qt−m = ‖ν(0)‖ = 1.
Therefore, by substituting π(0) = π and ν(0) = ν in the inequality (18), and
taking the limit as t −→+∞, we obtain (55), without assuming ‖∆m‖< 1−Λm.
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5. Examples

In this section, we will study two examples with continuous space and one for
the denumerable case, with respect to the total and weighted variation norms. In
order to show the quality of the estimates established in this paper, comparison
with other existing results in the literature is carried out.

Example 5.1. We borrow this random walk example from [25, Example 3.1]
and [22, Example 3]. Let (ξt , t ≥ 1) a sequence of independent identically dis-
tributed random variables with values in E = [0,1) and with a common distri-
bution F , defined for all B ∈ B = B[0,1) by F(B) = P(ξ1 ∈ B). Moreover, we
assume that F has an absolutely continuous component and its density is not less
than θ on the measurable set C ∈ B[0,1). On (E,B), we consider the Markov
chain X = (Xt , t ≥ 0) defined by Xt+1 = Xt +ξt+1(mod1). It has transition ker-
nel P(x,B) = F(B− x) and with the stationary projector Π(x,B) = L(B) for all
(x,B) ∈ [0,1]×B[0,1), where L = µ leb is the Lebesgue measure on E = [0,1)
and B− x = {(b− x)(mod1),b ∈ B}, i.e the Markov chain X has a unique in-

variant measure π = L. Suppose that c = L(C) >
1
2

and consider the spaceM
of finite measures with the total variation norm ‖µ‖ = |µ|(E) (uniform norm).
Therefore, from [25, Example 3.1] it is shown that τ1 ≤ ρ = 1−θ(2c−1)< 1.
Let us set ε = ‖∆‖1. Hence, from (18) we derive for all transition kernel Q on
([0,1),B[0,1)) and t ≥ 1, the following uniform estimate with respect to x ∈ E,
B ∈ B[0,1),

|Px(Xt ∈ A)−Px(Yt ∈ A)| ≤ 1−ρ t

θ(2c−1)
ε. (56)

Further, we get

sup
t≥0

sup
x∈E,A∈B

|Px(Xt ∈ A)−Px(Yt ∈ A)| ≤ ε

θ(2c−1)
· (57)

It follows from (55) that for all transition kernel Q admitting a unique invariant
measure ν , we have for all A the following inequality

sup
A∈B
|π(A)−ν(A)| ≤ ε

θ(2c−1)
· (58)

Observe that the estimates [25, Example 3.1; Inequality (3.22)] and [22, Exam-
ple 3; Inequality (20)] are given respectively as follows

|Px(Xt ∈ A)−Px(Yt ∈ A)| ≤ ε

θ(2c−1)−2ε
(59)

and
sup
A∈B
|π(A)−ν(A)| ≤ ε

θ(2c−1)−2ε
, (60)
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for all transition kernel Q belonging to a neighborhood

ε = sup
x∈E,A∈B

|Q(x,x+A)−F(A)|< θ(c− 1
2
). (61)

Consequently, it is obviously seen that the bounds (56) and (58) are strictly
sharper than (59)-(60) respectively. Moreover, the inequalities (56)-(57) are
valid for every transition kernel Q and (58) is also valid for all transition kernel
provided it has an invariant measure ν , while (59)-(58) hold only for all transi-
tion kernel Q verifying the inequality (61). Observe that in this case and from
[25, Theorem 3.5], the perturbed chain has a unique invariant measure and it is
aperiodic and uniformly ergodic.

Example 5.2 (Random walk on half line). Let us consider the Markov chain
X = {Xt ; t ∈ Z+} defined by the recursive equation

Xt+1 = (Xt +ξt+1)
+ = max(0, Xt +ξt+1)

for t ≥ 0, and taking values in R+. Here (ξt)t≥0 is a sequence of independent
random variables taking values in R and identically distributed with a common
distribution function F. The perturbation and stability inequalities have been
considered recently in [39, 41] and the strong stability of this process have been
investigated more earlier in [25]. Assume that E[ξ1] < ∞. Consequently, from
[33], the Markov chain is ergodic if and only if E[ξ1] < 0, i.e., X has a unique
probability distribution if and only if E[ξ1]< 0 with E[ξ1]< ∞. Let us consider
the weighted function v(x) = eγx where γ is reel parameter such that γ > 1.
The v-norm on M have the form ‖µ‖γ = ‖µ‖v =

∫ +∞

0 eγx|µ|(dx). The norms
in the space N and B are defined, respectively, by ‖ f‖γ = sup

x≥0
e−γx| f (x)| and

‖K‖γ = supx≥0 e−γx ∫ +∞

0 |Q|(x,dy)eγy. Recall that, for all (x,dy)∈ (R+,B (R+))
and t ≥ 0, we have Pt(x,dy) = P(Xt ∈ dy|X0 = x). Observe that the transition
kernel can be decomposed as follows

P(x,A) = P(0 < x+ξ1 ∈ A)+P(x+ξ1 ≤ 0) ·δ0(A) (62)

where δ0 is the degenerate measure concentrated on {0}. Let denote the sub-
stochastic kernel T (x,A) = P(0 < x+ ξ1 ∈ A) for (x,A) ∈ (R+,B (R+)), the
measurable function h(x) = P(ξ1 + x ≤ 0) for x ∈ R+ and the measure α on
B (R+) defined for A ∈ BR+ by α(dy) = δ0(dy). It follows from (62), the
following equation P(x,A) = T (x,A) + h(x) ·α(A). Notice that α1I = 1 and
αh = h(0) = P(ξ1 ≤ 0)> 0, πh = π({0})> 0. Further, we get

T v(x) =
∫
R+

P(0 < x+ξ1 ∈ dy)eγy = E
[
eγ(x+ξ1),x+ξ1 > 0

]
≤ E

[
eγ(x+ξ1)

]
= ρ(γ)v(x)
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where ρ = ρ(γ) =E
[
eγξ1

]
. Since E[ξ1]< 0 and ρ(0) = 1, the convexity of ρ(γ)

involves the existence of γ0 > 0 such that for all γ ∈ ]0, γ0[, we have ρ(γ) < 1.
This proves that ‖T‖γ ≤ ρ(γ) = E

[
eγξ1

]
< 1 and

‖P‖γ = ‖T +h⊗α‖γ ≤ ‖T‖γ +‖h‖γ‖α‖γ < ρ(γ)+1 < 2 < ∞

for all γ ∈ ]0, γ0[. Hence the chain verifies the condition D1(1,T,h,α). Since

‖α‖γ = 1, we derive ‖π‖γ ≤
(πh) (αv)
1−‖T‖γ

=
π({0})

1−‖T‖γ

·

Assume that a control sequence (ξi)i≥0 is perturbed to yield another se-
quence (ζn)n≥0 of independent random variables taking values in R and iden-
tically distributed with a common distribution function G 6= F. This involves
that the Markov process Y which taking values in R+ and generated by the re-
cursive equation Yt+1 = (Yt +ζt+1)

+, for t ≥ 0, is the corresponding perturbed
chain. Let denote Q, ν the transition kernel and the stationary distribution of the
Markov chain Y , respectively. From the definition of the v-norm, we have

ε = ‖Q−P‖γ = sup
x≥0

e−γx
∫ +∞

0
|Q(x,dy)−P(x,dy)|eγy.

Let us extend the measures µ ∈ B(R+) to B(R) such that µ(A) = 0 for all

A ∈ B(R−). Since ‖T‖γ ≤ ρ , it follows that ‖π‖γ ≤
π({0})
1−ρ

·

Therefore, from (42), for ε <
(1−ρ)2

(1−ρ (1−π({0})))
, we have

‖ν−π‖γ ≤
π({0})
1−ρ

(1−ρ (1−π({0}))) ε

(1−ρ)2− (1−ρ (1−π({0}))) ε
=C1.

According to [24], it is proved that for all γ such that ρ = ρ(γ) = E[eγξ1 ] < 1
and 0 ≤ ε(F,G) ≤ (1−ρ)2

2 , we have the following strong stability bound (see
definition 7.1 in the appendix)

‖π−ν‖γ ≤
2ε(F,G)

1−ρ

1
(1−ρ)2−2ε(F,G)

=C2

with ε(F,G) = supx≥0
(
e−γx|F(−x)+G(−x)+

∫ +∞

−x eγy|F−G|(dy)
)
.

It is obvious that ‖Q−P‖γ = ε ≤ ε(F,G). Consequently, it is clear that
C1 < C2. In fact, the improvement is made both in the numerator and in the
denominator. Further, the upper bound C1 for the deviation of stationary distri-
butions is not only better but is also valid on an optimal stability domain

ε <
(1−ρ)2

(1−ρ (1−π({0})))
> (1−ρ)2 >

(1−ρ)2

2
·
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Example 5.3. (denumerable state and bounds with respect to weighted norm)
Let the Bernoulli random walk chain X on Z+ considered in [40, Example 1] and
defined by its transition matrix P = (pi, j)i, j∈Z+

where p0,0 = 1, pi,i−1 = q > p,
pi,i+1 = p = 1−q for i≥ 1 and pi, j = 0 else. It is well known that this process
is note uniformly ergodic with respect to the total variation norm (see eg. [40]).
Let us introduce the test function v(n) = β n for n ∈ Z+ and we consider the
measure weighted v-norm ‖µ‖v = ‖µ‖β :

‖µ‖v = |µ|v = ∑
k≥0

v(k)|µ|({k}) = ∑
k≥0

β
k|µk|

where µ = (µk)k∈Z+
. This induces a norm on the vector function and matrix

spaces defined respectively as follows: ‖ f‖β = supk≥0 β−k| f (k)| and

‖K‖β = sup
k≥0

β
−k|K|v(k) = sup

k≥0
β
−k

∑
j≥0

v( j)|K (k,{ j}) |= sup
k≥0

β
−k

∑
j≥0

β
j|Kk j|.

For 1 < β <
q
p

, we get easily that qβ−1 + pβ < 1 and it follows

‖P‖β = sup
k≥0

β
−k

∑
j≥0

β
j pk j = max

(
1,sup

k≥1
β
−kPv(k)

)
= max

(
1,qβ

−1 + pβ
)
= 1.

Observe that the spectrum σβ (P) of P is σβ (P) = {pz+qz−1, |z| ≥ β}∪{1} for

each 1 < β <
q
p

(the necessary and sufficient condition for the uniform ergod-

icity of the chain) which is easy to derive (see for example [23]). At the same
time, if we consider the boundary of the spectrum, i.e., the points θβ = pβ +qβ ,
then we can easily prove that the smallest value of θβ is θ = 2

√
pq and reached

for β =

√
q
p

. That means that θ = θβ . In the sequel of this example we consider

β =

√
q
p

, the measure α = (p0, j) for all j ∈ Z+ and the measurable indicator

function h = 1I{i=0}. Therefore, it is obvious that the residual kernel T = (Ti j)

defined for all (i, j) ∈ Z2
+ by: T (i,{ j}) = Ti j = pi j−hiα j =

{
0, i = 0;
pi j, i≥ 1

is non negative. Let us compute the norm ‖T‖v. For this, it is equivalent
from (26) to estimate T v(k) for all k ∈ Z+.

1. For k = 0, we have T v(0) = 0.

2. For k ≥ 1, we have T v(k) = β k(qβ−1 + pβ ) = 2
√

pqv(k).
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This yields ‖T‖β ≤ θ < 1, where θ = 2
√

pq. Hence, the condition D1(1,T,h,α)
is satisfied. Moreover, π = δ0 is the unique stationary distribution of the ker-
nel P and ‖π‖β = ‖Π‖β = ‖1I‖β = 1. It is worth noting that the condition
D2(v,C,λ ,b) is also verified for the set C = {0}, λ = θ and b = 1. Indeed,
according to the decomposition P = T +h⊗α , we obtain

Pv = T v+(αv)1I{i=0} = T v+1I{i=0} ≤ θv+1I{i=0}.

From (42), (50) or (52), for ‖∆‖β <
1−θ

1+θ
, we have the same following stability

bound
‖ν−π‖β ≤

1+θ

1−θ − (1+θ)‖∆‖β

‖∆‖β . (63)

While the bound expressed in [32, Inequality (3.3)] and [1, Inequality (38)], for

‖∆‖β <
1−θ

2
, yields the following estimate

‖ν−π‖β ≤
2

1−θ −2‖∆‖β

‖∆‖β . (64)

According to (51), we have for ‖∆‖β < (1−θ)2 the following inequality

‖ν−π‖β ≤
‖∆‖β

(1−θ)3− (1−θ)‖∆‖β

· (65)

On the other hand, and from [32, Inequalitiy (3.4)], we get for ‖∆‖β <
(1−θ)2

2−θ
the following estimate

‖ν−π‖β ≤
2−θ

(1−θ)3− (1−θ)(2−θ)‖∆‖β

‖∆‖β . (66)

So it is clearly that the bounds (63) and (65) are better and hold under more in-
tense perturbation (more large neighborhood of the unperturbed kernel P) than
(64) and (66). An alternative bound can be expressed in term of the norm coef-

ficient. Indeed, we have established in [40, Example 1] that Λ1 ≤
2θ

1+θ
·

According to (28), for n = 1, and since ‖α‖β = ‖h‖β = 1, we get for all
transition kernel in the neighborhood {Q ∈B : ‖Q−P‖β = ‖∆‖β < 1−θ}, the

following inequality q≤ 1(
1−θ −‖∆‖β

)2 ·

Therefore, according to (54), we derive

‖ν−π‖β ≤
(1+θ) ‖∆‖β

(1−θ)
(
1−θ −‖∆‖β

)2 ·
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This latter bound is valid under a more large magnitude of perturbation, but less
accurate than (63)-(66).

6. Concluding remarks

Few results are considered in the last two decades for the perturbation bounds
for general state Markov chains. Moreover, most results are established with
respect to the total variation norm. In this paper, we have established new per-
turbation bounds for the transition and stationary characteristics of general state
Markov chains, with respect to a wide class of norms, in terms of the gener-
alized norm ergodicity coefficient or the residual kernel given in the condition
D1(n,T,h,α). In this case, the unperturbed chain is strongly stable with re-
spect to the given norm. Namely, for a small parameter disturbance, then the
perturbed chain inherits some suitable characteristics of the unperturbed chain
(see [22, 25, 39, 41]). Explicit bounds are established under the drift condition
D2(v,C,λ ,b). We have shown by a theoretical comparison and on the basis of
examples the quality of the inequalities obtained in this paper. More precisely,
some estimates improve some specifically bounds in [1, 3, 32], hold true for
general state and various norms, and applicable for a more large magnitude of
the perturbation.

For scale models, that is scale perturbation (linear perturbation), the per-
turbed kernel Q(θ) is given by the convex combination of the two transition
kernels P and R defined explicitly by

Q(θ) = (1−θ)P+θR,θ ∈ [0,1]

where Q(0) = P and Q(1) = R. Here θ is the scale parameter. Let denote
∆(θ) = Q(θ)−P = θ ‖R−P‖. It follows that all results obtained in this paper
remain valid where we substitute ‖Q−P‖ by θ ‖R−P‖, which allows us to
scale the size of the perturbation via the scalar control parameter θ .

It is worth noting that we can improve the stability bounds obtained in [32,
Inequalities (4.10)-(4.11)] for continuous-time Markov chains (CTMCs) with
the discrete state by following a similar process of proof as that of [32] and
based on the improved bounds (50)-(52). Similarly, we can establish bounds
similar to (48)-(49) for (CTMCs) under the drift condition. But that is outside
the scope of this article and will be the subject of another paper.

7. Appendix

We set out some results for which comparisons have been made. First we clar-
ify the definition of the strong stability of Markov chains. We set out some



272 Z. MOUHOUBI

results for which comparisons have been made in this paper. First, we clarify
the definition of the strong stability of Markov chains.

Definition 7.1. Let X a Markov chain with transition kernel P and unique in-
variant probability measure π . The chain X is called strongly stable with respect
to the norm ‖ · ‖ if the following two conditions are fullfilled.

1. ‖P‖< ∞.

2. Any transition kernel Q ∈B in some neighborhood {‖Q−P‖< ε} ad-
mits a unique invariant probability measure ν and ‖ν − π‖ −→ 0 when
‖Q−P‖ −→ 0 uniformly in this neighborhood.

The next proposition is taken straightforwardly from [24, Theorem 1 and 2]
and [24, Corollary 2].

Proposition 7.2. Let v a finite measurable function on E bounded away from
zero. The Markov chain X taking values in a measurable space (E,E) with
transition kernel P and the unique invariant probability measure π is v-strongly
stable (strongly stable with respect to the v-norm ‖ ·‖v) if and only if the follow-
ing condition holds: D1(n,T,h,α)

I) ‖P‖v < ∞.

II) There exist a natural integer n, measurable function h ∈N+ and measure
α ∈M+ such that: αh > 0, πh > 0, α1I = 1 and the residual kernel
T = Pn−h⊗α is nonnegative.

III) There exists a real number ρ ∈ [0,1[ such that T v(x)≤ ρ v(x) for all x∈E.

Furthermore, if Q is a transition kernel of a perturbed Markov chain Y such that

‖∆‖v = ‖Q−P‖v <
1−ρ

1+‖1I‖v ‖π‖v
, then the perturbed Markov chain Y have a

unique probability measure ν and we have:

‖ν−π‖v ≤
‖π‖v (1+‖1I‖v ‖π‖v) ‖∆‖v

1−ρ− (1+‖1I‖v ‖π‖v) ‖∆‖v
· (67)

The following proposition resumes [32, Corollary 3.1].

Proposition 7.3. Let i0 be any fixed state in E. Suppose that the unperturbed
transition kernel P satisfies D2(v,C,λ ,b) for C = {i0}.

(i) Let c = 1+‖1I‖v ‖π‖v. If ‖∆‖v <
1−λ

c
, then X is positive recurrent and

‖ν−π‖v ≤
c‖π‖v ‖∆‖v

1−λ − c‖∆‖v
· (68)
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(ii) If v≥ 1 and ‖∆‖v <
(1−λ )2

b+1−λ
,then X is positive recurrent and

‖ν−π‖v ≤
b (b+1−λ ) ‖∆‖v

(1−λ )3− (1−λ ) (b+1−λ )‖∆‖v
· (69)
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