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ON SERIES INVOLVING ZEROS OF TRANSCENDENTAL
FUNCTIONS ARISING FROM VOLTERRA INTEGRAL
EQUATIONS

PIETRO CERONE

Series arising from Volterra integral equations of the second kind are
summed. The series involve inverse powers of roots of the characteristic
equation. It is'shown how previous similar series obtained from differential-
difference equations are particular cases of the present development. A
number of novel and interesting results are obtained. The techniques are
demonstrated through illustrative examples.

1. Introduction.

Silberstein [13] found the sums of two series arising from the differential-
difference equation
w'(x) = ulx —n).

Cerone and Keane [2] generalized the results to obtain the sum of the series
Z(pj)“" and Y (14np;) % where p; are the roots of p = ¢~"” and summation
is over all p;.

The current paper examines summing series of roots of transcendental
equations arising from integral equations. The development is at first based on
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a Volterra integral equation of the second kind describing the births of a single-
sex population. This was the initial motivation for the work and it is felt to be
instructive and illuminating. :

In particular, using Laplace transform and residue techniques on integral
equations, sums of series of the form

|
Z ——————, & # p;,n apositive integer
(pj — a)"u;

are obtained where, the summation is over all the roots p; of the characteristic
equation ¢*(p) = 1 and nj = —[‘—f;ci)*( P)lp=p,- The sum is obtained in closed
form without explicitly determining the roots Dj-

The sum of the above series is given in terms of a recurrence relation which
facilitates the evaluation. The technique is believed by the author to be novel
and does not appear to be in the literature. The approach provides a great and
varied range of new results.

2. Basic Equation and Results.

The renewal integral equation has been studied by many authors (including
Feller [5], Cox [4] and Tijms [15]) and was introduced to the field of population
dynamics by Sharpe and Lotka [12]. The single-sex deterministic model
representing the births B(r) at a time ¢ is given by the Volterra integral equation
of the second kind (see Lotka [10], Keyfitz [7])

2.1) B(t) = F(1) +/ Bt —u)p(u)du
0

where F () is the contribution of those alive at the origin of time, and ¢ (u) is
the net maternity function which is of compact support and bounded.

If ¢ (u) were a probability density and F(u) its distribution function then
(2.1) would be a renewal integral equation with B(z) being the renewal function.
Equation (2.1) is more general since ¢ (1) du is the chance of living to age « and .
giving birth in the next interval of length du and so ¢ (u) is not necessarily a
density.

The integral equation with which we will at first be interested is (2.1) with
(Keyfitz [7])

d(x+1)

(2.2) F@) = i)
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which represents the situation where there is only one ancestor aged x at our
chosen origin. Here in (2.2) , I(x) is the survivor function which gives the
probability of surviving to age x of a newborn.

The solution of (2.1) has been extensively examined in the past and
a rigorous methodology is presented by Feller [5] using Laplace transform
techniques. The asymptotic behaviour has been studied by Lopez [9] in relation
to population modelling and in general by Bellman and Cooke [1]. Chandhry
[3] investigates a related problem, that of the number of renewals.

We will also use Laplace transform techniques here so that from (2.1) and-
(2.2) we obtain after minor manipulation

» 1 y+ioco V(p, x) )
— pt —
@3 B0 = o /y_,-oo T

where

er* [ZePpu)du  v(p,x)
1(x) T I(x)

(2.4) Vip,x) =

and ¢*(p) is the Laplace transform of ¢(x) with y being chosen in such a
manner as to ensure convergence. Assuming that the roots of the denominator
of (2.3) are the only poles of the integrand and are simple then

2.5) B.)=Y Yipj0e |,
Hj
where
(2.6) = —[i¢*( )] = fooe—p’“ud)(u) du
: Kj = dp P)lp=p; = o :

Lopez [9] shows that the real root of ¢*(p) = 1 has the greatest real part and
the rest occur in complex conjugate pairs (Pollard [11]) for ¢ (u) positive. In
realistic population dynamics applications ¢ () is also bounded and of compact
support.

If we now allow ¢ — 0+ then, since the Laplace transform gives the mean
value at a discontinuity (Bellman and Cooke [1], Widder [17]), we obtain from
(2.3 ) and (2.4)

1 1 7HO y(p,x)
@.7) 700 = EE/WOO =™
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where ¢(x+) = limy_,0p(x +¢), & > 0.

Assuming that the roots of ¢*(p) = 1 are the only poles of (2.7) (which has
been shown to be the case by Lopez [9] for population dynamics applications)
then

1 ' v(p;, x)
(2.8) AEDY _/i_

J

and in particular with x — 0+, with v( pj, x) defined in (2.4), gives
¢(0+)
(2.9) So = Z — =

Integration of (2.7) from ¢ to 00 , gives upon interchanging the order of
integration, which is permissible since ¢ is positive and exponentially bounded,

v(0, 1) 1 r+Ho (0, 1) — v(p, 1)
2.10 — dp,t >0,
2.10) 2 T i )y pll—grp] DT

where v(p, ) is as defined in (2.4) .

Theorem L. Let p; be the simple and non-zero roots of p*(p) = 1, ¢*(p) #
0( )

[oe]
Mo= [ 9 du=9*(0) < o0, My # 1
0
and p; is as given in equation (2.6), then

1 1 Mo+1
Djlkj T2 My—1

(2.1D) S| =
where the summation is over all Dj-
Proof. Allowihg t — 0+ in equation (2.10) gives

M | /Hm My — ¢*(p)
2.12 —_— = Y7\
212 yico P = (17

2 2mi
We note that if ¢*(0) = 1 so that My = 1 then we obtain the degenerate result
that was also obtained by Cerone and Keane [2] viz.,

(2.13) lim — ==
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since thére is a contribution of % from integration in an anticlockwise direction
along a semicircular contour to the left of the line integral and a contribution of

1 from the residue.
From (2.12) we have

Mo 1 [frHice My—1 1 [r+i®dp
(2.14) —_= s S | 3 D ey
2 2mi y—ico p[l - ¢*(p)] 2ri y—ico P
We may evaluate the integrals using the theory of residues to give
M My—1 1
(2.15) — =14+ + =
where the terms on the right are contributions from the pole at zero, the simple
poles p; of ¢*(p) = 1 for the first integral and the last term is as given by
(2.13). A simple rearrangement of (2.15) gives the desired result (2.11). J
It is a straightforward matter to deduce from (2.14) upon using (2.13) that
1 [rie dp I

2.16 —_ .
(2.10) 27i Jy—ico P —¢*(p)] 2

and so from (2.10)
1 /”“” v(p, 1)
270 Jy_ico PIL— @*(p)]
where v(p, t) is given by (2.4). ,
We note that putting ¢ = 0 in (2.17) gives
Lo )
2ri J,—ice P — @*(p)] P
which agrees with the results (2.13) and (2.16) since (2.18) is equation (2.13)
minus (2.16) . _
Lemma 1. Let |¢ ()| < Ke™ for K, A > 0, constants.
Further, let In(t) = ¢(t) , Jo(p,t) = v(p,t), as given in (2.4),
and I1,(t) = ftoo L_1(x)dx, J,(p,t) = ftoo Jot(p,x)dx, n =1,2,....
Then

0 _ s\n—1 '
(2.19) L) :/ o= en=1.2,..
' (n—1)

(2.17)

(2.18) 0

and

1 n
0 A= [ S P L (1) + (<1 o, r)}

k=1
forn=1,2,...
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Proof. A straight forward induction argument and a change of order of inte-
gration, permissible from the postulates, produces the desired results (2.19) and
(2.20). O

Theorem 2. Let (p(t)| < Ke™ for K, ) > 0, constants.
Then

1
(2.21) S, = ~
Z D 1j

Jor n > 3, satisfies the recurrence relation

n—1 ;
My =" M,
(2.22 1 — My)S, =Y (—1)"t* Sy + ,
U MS =) )RS, (= 1) (1= M)
) 0
(2.23) where M, = /u"(b(u) du < oo is the n'" moment of
0

¢ (u) and My # 1.

Moreover, we have

1 M,
(2.24 S, = = .
) =2 P (1= Mp)?

Proof. From equation (2.17) we have

y-+ico ¢
(2.25) L It D) om0

278 Jy—ico PIL = ¢*(p)]

where from equation (2.20)

(2.26)  Ju-1(p,

n—2
— [ D =Y p I @)+ (= 1) (p, r)}
j=0

with 7, (r) being given by (2.19) and v(p,t) by (2.4).
Thus from (2.25) and (2.26) we have

n—j—2 n—1
Q21 / Z—o( 1/ pr=i=y, 11(t)+(‘ D* v(p, 1) dp =0

Pl —¢*(p)]

yzoo
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n=273....
Now, there is a simple pole at p = 0 in (2.27) since

x

(2.28) v(p, 1) =Y (=1 p L1 (2)

r=0

and ¢*(0) # 1. The expansion (2.28) is allowed since 1,(¢) can be easily
demonstrated to be exponentially bounded given that ¢ is.

The fact that there is a simple pole at p = 0 may be more easily seen from
(2.27) and (2.28) from which,

n—-2
(=D p" I, (1) + (=D u(p, 1)
=0

n—2 00

= Y (=D R L) + (= 1) ;)(—nfp%ﬂ(z)

k=0
n—2 00

= 3 [ (=) (=D P L O+ (=D Y (1) p L ().
k=0

r=n-—1

Now, using the fact that
G D G D R G DU C ) el F IR G R )

then

n—2
(2.29) DN P I @ + (=1 u(p )
Jj=0

= (=D Vp L) + (1) (=D p L ().

r=n

The contribution from the pole at p = 0 isvthus, from (2.27) and using (2.29)

Iy (1)

(2.30) T 0)

Further, the contribution from the roots of ¢*(p) = 1 gives for n > 3

n—3
@31 (1 Sl (0 + (~ DS () + (—1y 3 YD,

J=0 PjHj
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Hence, combining (2.30) and (2.31) results in

n—3
§ | I
@3 Y ”;i;fujt) — 8,0, (t) = Z;(—l)”““f I (OS)sat(=D' —os (;?(m-
j:

Evaluation of (2.32) at ¢t = 0 and using the facts from (2.19) , (2.4) and (2.23),
that

Mn *
1,11(0) = P v(p;,0) =1 and My = ¢*(0) # 1

then
n—3
. M,_i_» (=D"M,_,
_ _ __1\n+j J A "
(39 =M= ) D S St i = gy

The substitution k = j 4 2 in (2.33) gives the desired result (2.22) .
Now, from (2.27) we have for n = 2

(2.34) =0

L/V+iw L®) —v(p,1)
27i Jy—ico P — ¢*(p)]

so that the contribution from the simple pole at p = 0 is

(1)

2.35 ——le
(2.35) 1= ¢°(0)

since from (2.28),

v(p, 1) = L) — pL®) + Y (=1 P L41(0).
r=2

The contribution from the roots of ¢*(p) = 1 gives from (2.34)

(2.36) WACESY ”;’;ﬁ;”.
]

Combining (2.35) and (2.36) then gives

v | Lo
WACEDY i T Top® ="
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and evaluation at ¢t = 0 produces the stated result (2.24).
The theorem is now completely proven. ' [J

Evaluation of (2.27) at ¢t = 0 gives on using the facts that 7,(0) = ———(zﬁ'-l’)! ,

and v(p, 0) = ¢*(p) .

- Mn—k
(2.37) (—DF Ac+(=D"'B, =0, n=2,3,...
k_Z:; (n—k)!
where
1 [rfice dp
(2.38) A, = ——/ ————e
27 Jymieo P = ¢*(P)]
and
1 y+ioco *
2mi Jy-ico P —@*(P)]
Now,
1 y+ioo dp
(2.40) Bo=t-ge [ L=a
i 2mi y—ioo p"
since the integral shown is zero for n > 1.
Taking n = 2 in (2.37) gives
. M()Az - Bz =O

and so (My — 1)A, = 0 since B, = A, from (2.40). Hence, since My # 1,
Ay, = 0.
Now from (2.37) we have, on using (2.40),

n

Mn“k —1
(2.41) (—DF—"— A+ (=D 1A, = 0; forn > 3.
; (n —k)!

An inductive argument on (2.41) gives since My # 1, A, = 0 for n > 2 and
hence from (2.40), B, = 0 for n > 2. Thus, from (2.38) and (2.39)

1 y+ioo d
(2.42) ——,f I S S
2ni Jy—ico P11 — @*(p)]
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and

+ioco *
(2.43) —Lfy J—(f)—-dp=o,n=2,3,....
2mi y—ico P"U - Cb*(p)]

It follows from ((2.42) that,

1
(2.44) S, = — = _Res”
Z Piu; p=0
whére
1 n—l 1
(2.45) Res™, = [ d ( )] ,
P=0 " (n — DI Ldpr=1"1 = ¢*(p) " dp=0

is the contribution from a pole of order n at p = 0.

Theorem 3. Equations (2.44) and (2.45) give a different, although equivalent,
representation for S, than that given by equations (2.22) and (2.24). These
expressions hold for n > 1.

Proof. Firstly, the sum Sy and S are given by (2.9) and (2.11) respectively. To
prove the theorem it is sufficient to show that, forn = 3,4, ...,

R 1
(249 (1-¢ (p))dpn—l (1 - d)*(P))
S n—1 dn*k * dk_l 1 1 d"—'l *
= s (k _ 1)dpﬂ_k¢ (p)dpk—‘l(l _ d)*(p)) + (1 _ ¢*(p))dp"_1¢ (p),

since M, = (=1)"[75¢*(0)] -
In addition, for n = 2, obviously,

1 1 d .,
—) = ¢ ().
1 —¢*(p) 1 —¢*(p)dp
Evaluation of (2.46) and (2.47) at p = 0 would give the required result.
Now, | |
dr- 1 ar- *
_ ( ) -4 (1 + ¢*(p) )
dp"='\1—¢*(p)/  dp*! 1 —¢*(p)
_ar! ( $*(p) )
dp"~t\1—¢*(p)

d
ean A= (
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(" )i 0 (—5)
k:, <Z ;) dd" k"s*(”)dfk——ll (5 _;*@))
21 (n )d =0 (p)ddkk_ll (= q1>*<p>>
* (n 0 1)(1 = qls*(p))df:l v
(o100 s ()

A simple rearrangement produces result (2.46) and hence the theorem is
proved. (]

—

n—

x~
Il
=

It is important to note that although Theorem 3 shows the sum of the series
(2.21) to be equivalently given by (2.22) and (2.44) - (2.45) , the recurrence
relation representation (2.22) is much easier to apply in practice.

Theorem 3 effectively shows that the recurrence relation (2.22) could be
obtained from taking (2.43) instead of (2.42) leading to

1 -1 "t 9*(p)
Sn = fd
Z pinj - (n—1! [dp”" (1 - ¢>*(p))}p=o

It is further of interest to note that series of the general form

1
(2.48) a@) =) G —
J J

can be summed by the above arguments where ¢*(«) # 1. This may be accom-
plished by multiplying equation (2.7) by e™**x"~!, n > 1 before integration.
The o, () of equatlon (2 48) then satisfy expressions similar to those obtained
for S, if M,, and Res 0 are replaced by

(2.49) L,(a) = /‘00 e x"p(x)dx
0
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and

| 1 dn~1 1
ny __
(250) Respza - (n _ 1), l:dpn——l (1 _ ¢*(p) )i!p= s

respectively. Contrarily allowing o — 0 gives the previous results since
Sn = 0,(0) . The technique will be used subsequently of working with o, («)
to obtain results even when moments are not finite.

Before proceeding to some simple derivations of the results which will be
followed by examples, modifications to the above procedures will be discussed
when My = ¢*(0) = 1. A similar argument would follow for Lo(«) = ¢* () =
1.

Theorem 4. For the conditions as in Theorem 2 with ¢*(0) = My = 1 then

- 1
(2.51) Sie=> =
p70 Pt

Jor n > 3 satisfies the recurrence relation

a - Mn—k+2 o
2.52 MS, =) (=1rth—2E 5
(2.52) 1Sy = (=1) T Dk
k=3
(——1)” M2 Mn
-+ M12 (Ml'Mn+l(ﬂ+1)!—7';‘!—).~
Furthermore,
- 1My 1 M,
2.53 MS) = —— — —(—=
(2.53) 152 = 339 4(M1)
and
- 1 M,
2.54 S = — =
(2.54) T2

Proof. From (2.16) with ¢*(0) = 1 there is a double pole at p = 0 giving a
contribution 2M 12 The contribution from the non-zero roots of the characteristic
equation give ;. A rearrangement produces (2.54) .
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Forn = 2,3, ... it may be noticed from (2.27) , (2.28) and (2.29) that

i / e (=12 DL (1) + (=12 p L ()
71 oo P — ¢*(p)]

(2.55)

- ,
(=D 3 (=1 p (D)
r=n-+1
Pl —¢*(p)]
Thus, from the coefficient of 1,.(¢) there is a simple pole at p = 0 since
¢*(0) = 1 and a double pole from the coefficient of I,(r) . The contribution
from the pole at p = 0 from (2.55) is

dp = 0.

—L41(t) M,
2.56 nt1 and
(2.56) M, 2

I,(1).

There is no further contribution for zero from the remainder of the terms in
(2.55) since there is no pole at zero. Evaluation of the residues from the poles
p;j # 0 from ¢*(p) = 1 from (2.27) gives for n > 3

n-3
257 D (=D Sl (@) + (=1 [ > -”(ﬂ—’—) - I <r>SHJ.

Jj=0 pi#0 I

Combining (2.56) and (2.57) and evaluation at t = 0 gives

n—1
_ M,_r -
= (1 — MyS, = B U il
0=( 0) k§=2( ) (n_k)!Sk+

(—1)"_1[M1'Mn M, Mn~l:|
M} n! 2 (n—1)!

and hence, since My =1

n—1
) Myisi o UMMy My M
M,S, = —]yrtktl S [ - "].
! ;( et e e T2

Adjusting the summation index by 1 produces (2.52) .
Now for §,. Evaluation of (2.56) and (2.57) gives the contribution from
the pole at p = 0 and, for p; # 0 where ¢*(p;) = 1 as
ILi(t) M

(2.58 —— + —13(t
(2.58) oM + 20 3(1)
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and

v(pj, 1)
3

(2.59) Soly(t) + Z —L,)S;

pi#0 LM

respectively. Thus, combining (2.58) and (2.59) and equating to zero since these
were derived from (2.27) , gives

v(pi, 1) | L) M
P]?U/j M, 2M12

(2.60) LS =L1NS5— ) I;(0).

pi#0

Evaluation of (2.60) at ¢+ = 0 and using the facts that
Mn
I 1 (0) = T and v(p;,0) =1

produces the result (2.53) as stated. ]

An alternative representation for S‘n may be obtained from (2.42) as

(2.61) S, =-Res' PV n=2.3, ...

p=0 >

where

Resyls = o[ (=5, o

is the contribution from a pole of order n + 1 at p = 0.
A similar argument to the one followed in the proof of Theorem 3 shows
that (2.52) - (2.53) and (2.61) are equivalent representations of S,,.

3. Some Simple Derivations of the Results of Section 2.

Consider the Volterra integral equation

3.1 B(t) = F(1) +/ B(t —x)p(x)dx.
0

With F(t) = ¢*' then we may readily obtain, using Laplace Transform Tech-
niques, that

1 y+ico ptd
(3.2) B(f) = — / ¢ ap
14

270 ), ioe (p— )1 — @*(P)]’
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where y is chosen to the right of « and the roots of ¢*(p) = 1.
That is, evaluating (3.2) using the theory of residues gives

( eat Z e[)j[
3.3) Bi)= ——+ Y —
1 —¢*(a) (pj —a)u
where we are assuming that the roots of ¢*(p) = 1 are simple and that

¢*(a) # 1. '
Since the Laplace transform gives the mean value at a discontinuity (Wid-
der [17]), evaluation of (3.2) and (3.3) at = O produces,

+ico
5.4) 1 Y dp : _ F(O+) _ 1
2ri Jy—ico (P —a)[1 —¢*(p)] 2 2
and
(3.5) (@) = LA -
' = T T T )

Equation (3.5) agrees with (2.11) on putting o = 0 and noting o, (0) = S;.
Differentiation of (3.4) with respect to « produces

1 y+ioo d
(3.6) — P —0n=23, ...
w0 Sy i (p— )1 = ¢*(p)]
from which the result
‘ 1
(3.7) on(@) = )  ————— = —Res\?,

(pj — )"

is obtained on using (2.48) , (2.50) and (2.44) , (2.45) . The differentiation of
(3.4) is permissible since if (3.4) exists then so does (3.6) .

Equation (3.7) could have been obtained directly from (3.5) by differentia-
tion with respect to « and using the result

1
(3.8) o, () = o, _(a),n=2,3,....
n—1
We note that |0, (at)| < |o1{e)| and so differentiation is justified. As discussed
previously, the o, () also satisfy (2.22) with M, being replaced by L, (x) as
given by (2.49) .
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Further, equations (3.6) and (3.7) can be obtained from (3.1) by taking

F(l.) — ealtn—l
and noting that
0, n>1
F(O+)—{1, "L

An alternate way to derive the sums of the series would be to take F in equation
(3.1) as
e fx +1).

Thus, with the integral equation

b(t) =e* f(x +1) +/ b(t — x)¢p(x)dx
0

and assuming f to have a Taylor series expansion about t = 0 we would obtain

1 y+ioo X f(m)(x)

1
3.9 = =5
GO ®=a5] . LG o e

Hence using residues we get from equation (3.9)

1 i 1
- — (m) s (m+1)
(3.10) 2f(x)—m§=0jf (x)[E = + Res,Z, }

where Res(fD is the residue dt p = « from a pole of order m + 1 of the
integrand in (3.9) .

Since f(x) is an arbitrary function then, equating coefficients of f (x)
we obtain from equation (3.10) , 0, () as given by equation (3.5) and (3.7) with
n=m+ 1.

It is important to emphasize that although the results could have been
obtained directly through the techniques outlined in the present section, the
insights gained from Section 2 that led to the recurrence relations (2.22), (2.52)
(and their generalizations for o, («)) would not have been possible. The current
section’s results may indicate a relaxation of some of the postulates of Section
2.

A number of examples will now be presented to highlight and elucidate the
results obtained.
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4. Particular Results.

A. Examples Involving Heaviside Functions
Consider

(4.1) ¢(x) = H(y —x),

where H(x) = 1 for x > 1 and zero otherwise, giving

N 1—e??
¢*(p) = —
and so 1
o _ypitloy
n n + 1 3 ] pj .
Now, from (2.21) , for y # 1,
1

(4.2) S, = Z

with p; the roots of p = 1—e777, satisfies (2.11) and (2.22) giving, for example

Pyt vp+1-v)

5=Y 1 iyl
Tyl 2y -1

and

i 1, v \2
$= - - )
2 pi(ypj +1—7) 2<1—y

Further, breaking (4.2) into partial fractions would produce sums of series of the

form
>
P
In particular from the above expressions for S; and S5,
1 4
2 P 2y -1

Taking ¢ (x) to be represented by a histogram would give a generalization of the
results obtained from ¢ (x) given by equation (4.1) .
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Thus if

R-1

(4.3) $00) = oy H(x = b)) H(br1 —x)

r=0
then series of the form
1

Sn = n—1 1 R —pib
pj + Zr=0 Vrbre o

would satisfy (2.11) and (2.22) for My = ¢*(0) # 1 where

o, r=20
yr:[ar——a,_l, O<r<R.
—0y_1, r=R
Taking R = 1, by = 0, b; = y in (4.3) would reproduce the results obtained

for ¢(x) as given by (4.1) .
Another special case of (4.3) would be if

(4.4) ¢x) =H(x—n)

in which instance we note that the moments are not finite.

As envisaged in the previous section we need to work with o,(«) and
Ly(a) < co. Allowing o — 0 will produce the required results.

From (2.11) (on substitution of oy («) for S; and Lo(a) for My ) or from
(3.5) we have

) B _1L@+

where
e 9

Lo(a) =

On taking @ — 0 in (4.5) reproduces the result of Silberstein [13] and Cerone
and Keane [2] namely

1 1
(4.6) S‘=Z1+npj =3

where the summation is over all the roots p; of pe” = 1.
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From a modified form of (2.24)

. Dj . Li(a)
4. =1 = lim —2%
@D =) TR T i) e (= Lo(@)?

where from (2.49) and (4.4)

e

Li(a) =

— (1 +an).

Thus, from (4.7)

1

(4.8) Sz.:Z________zl

pi(1 +npj)

Further generalisations to both (4.6) and (4.8) were obtained by Cerone and
Keane [2].

B. Exponential ¢
The case provides both a simple and an instructive example.

Consider

(4.9) ox) =re ™ A, u>0

and 50 ¢*(p) = %= giving from (2.6) and (2.23)

(4.10) i = > 1!
(pj +w?* A

and

(4.11) M, = A/;il,

respectively.

It should be noted that this example gives only one root of the characteristic
equation ¢*(p) = 1, namely, p; = A — i .
Further, from (2.21) and (4.11),

1 A
(4.12) S, = = .
Z pinj  (A—pwp)"
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A straight forward induction argument shows that (4.12) satisfies the recurrence
relation (2.22) where the M, are as given by (4.11) . The degenerate case of
n = 1 requires special mention. It may be seen from (2.18) that the contribution
from p = 0 and P; = A — i cancel to give a degenerate case. Also from (2.12)
the singularity at p = 0 can be seen to be removable and so a relationship
between the residue at p = 0 and that at p = pj 1s not possible.

C. Polynomial ¢

Let ¢(x) = f‘n—, then ¢*(p) = p~ "+ and the moments M, are not finite.
However, from (2.49) L, («) < oo for ¢ > 0 and so on(ar) will satisfy (2.22)
with M, replaced by L, («) where

m

1 Dj
(4.13) on(0r) = /
m+ 1 g (pj —a)"
and
(4.14) pj=eml, j=01,2... m.

Further from (2.50) , (3.7) , (4.13) and 4.14)

= : m+ 1) d! 1
(4.15) Y b = d [ —(—— )] .
i = Dildp U pet) — 1) Jpa
Form =0, py = 1, and so on using (4.13) and (4.15) , 0,(a) = ("1—17)"

D. Dirac Delta ¢
Consider the example where ¢(x) is a Dirac delta (see for example
Kreyszig [8]), namely

(4.16) b (x) = ad(x — b),

defined as zero everywhere except at x = b.

The results of Section 2 are derived more simply in Section 3 from the
Volterra integral equation (3.1) . For ¢(x) a Dirac delta, then (3.1) would be
equivalent to a difference equation.

Results from difference equations were treated in [2]. Moreover, Theorem
3 shows that the recurrence relation developed under strict conditions is equiva-
lent to (2.44) - (2.45) which holds under the weaker requirement that a Laplace
transform exists. The Laplace transform of a Dirac delta is given by

(4.17) ¢*(p) = ae™® and M, = ab".
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We notice that the roots of the characteristic equation are given explicitly as

i
(4.18) p = —“—‘f—;—fﬂﬂ,]‘ =0,+1,42, ...
and

(4.19) w; =b.

Hence from (2.21) , (4.18) and (4.19)

0 bn—l
Si= D [lna — (27i)j 1"

and so
[31
bn—] . o Z(_l)k(zﬂk)an~2kj2k
k=0
4.20 S, = — +2
@20 5 ) D vy
where
@21) —
' T 27

and [x] represents the integer part of x.
In particular for n = 1 in (4.20) , using (2.11) , (4.17) and (4.21) gives on
rearrangement

o .
1 /4 1
(422) ;az_'—jz = E&-COthT[a—'z—a—z,

agreeing with the result in Whittaker and Watson [16]. .
o0
Allowing o — 0 in (4.22) gives Y j % = —’féi which has been obtained
j=1
‘many times previously, and in particular, using Parseval’s Theorem by Titch-
marsh [14] (and originally by Euler using results from the theory of equations).
0,

See also Kalman [6] who gives a variety of ways of summing ¢(2) = Y j ~2,
j=1
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The Riemann zeta function ¢(s) arises in may areas, in particular, in number

theory. _
Taking n = 2 in (4.20) and using (2.24) , (4.17) gives

2 a?- j? w? 9 1

(423) ; [—0[2——}—72]3 = "Z—COSCCh T — 2—05—2
and on using (4.22)

00 ) .

J 7 \2rcothra 2
4.24 L (—) [ — cosech ]
(4.24) ; o2+ 2P 5 — cosech*mra
Substitution of (4.24) into (4.23) produces
ad 1 7 \?21cothra ) 1

@2 Y = () [T o cosechra - .

j=1
The result in (4.25) could be obtained directly from (4.22) by differentiation
with respect to «. Also taking the limit as @ — 0 in (4.25) gives

o 4
o T
> it ==
‘ 90
Jj=1
A similar procedure with n = 3 would give from (4.20), (2.22) , and (4.17)

2 2 3
o —3 T 1
Z & T —cosech’racothrar — 7o

j=1 [@? + /2P 2« v
leading to
[e o] o) )
Y (T cothma .
j};l m h (4_2) { Ta + (1 = 2w acothrr ar)cosech noz}
and
O
1 n? cothro :
Z [a? + j2]3 (204)4[ o + (3 + 2 acothra)cosech“m o S8

j=1
Further such series may be obtained from (4.20) , (2.22) and (4.17) (together
with a lot of perseverance!).

The above series could have been obtained by the alternate procedure of
differentiating (4.22) with respect to « . This can be done systematically using
a suitable computer algebra package. The recurrence relation represented by
(2.22) gives the series in a straight forward way as demonstrated.
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5. Conclusion.

Series of roots of transcendental equations have been summed using
residue theory. Previous results have been shown to be special cases of the
current development.- The insights and analysis that led to the recurrence rela-
tion (2.22) for summing the series would not, it is believed, have been possible
if the approach of Section 3 had been followed. Examples have been provided
to elaborate and elucidate the techniques developed.
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