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STABILITY OF DEFORMED OSCULATING
HYPERRULED SURFACES

N.H. ABDEL ALL - H.N. ABD-ELLAH

1. Introduction.

The mean curvature vector plays an important role in the investigation
of the crystallographie point of view of the minimal surfaces. Among them
mainly those surfaces which are free of self-intersections seem to be of pratical
significance, e.g. as biological membranes or amphiphilic films. These types of
surfaces are related to crystal structures [6].

Many interestings problems in differential geometry deal with surfaces
characterized by extremal properties. These problems may be formulated in
terms of some variantional problems. The problem of the calculus of variations
will be reduced to the solutions of a certain system of differential equations
which are called the Euler equations of the calculus of variations.

Another important use of the mean curvatures is in the study of the graph
of the equilibrium capillary surfaces. The classical problem of liquid in a
capillary tube concerns with finding the minimum of a certain energy function,
wich leads to surface of a prescribed mean curvature [16, 17]. The variational
problem of the integrals of mean curvature describes equilibrium configurations
in capillarity theory is introduced and studied in [15].
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One of the most interesting and profound aspects of classical differential
geometry is its interplay with the calculus of variations. This phenomenon has
its roots in the very origins of the subject, such as, for instance, in the theory of
minimal surfaces. More recently, the variational principles which give rise to the
field equations of the general theory of relativity have suggested the systematic
investigation of a seemingly new type of variational problem. In the case of the
carlier applications one is, at least implicitly, concerned with a multiple integral
in the calculus of variations whose Lagrangian depends on the projection factors
of some subspace, these projection factors being obtained by differentiation of
the functions which appears in the parametric equations by means of which
the subspace is represented; the corresponding Euler-Lagrange equations are
supposed to yield appropriate functions of this kind. The variational problems of
the second type referred to above are defined by Lagrangians whose arguments
are the components of the metric tensor of a manifold, together with the first
and second derivatives of these components, and the resulting Euler-Lagrange
equations give rise to the required metric.

As is well known, the most useful method of studying the properties of
a curve in a Euclidean space, from the standpoint of differential geometry, is
making use of the Frenet formulas, in which the curvatures are the essential
quantities for the curve. So, the motivation of the present work is to develop
the variational problem in our work [1] by using auxiliary formulas of Frenet
[2, 7, 8, 13]. Hence, the invariants of the hyperruled surfaces generated by
the osculating space in E"*! (osculating hyperruled surfaces) are interpreted in
terms of the curvatures for the base curve. Furthermore, the variation of these
invariants are calculated. The variation of the curvatures for the base curve and
the Frenet-frame are obtained. The necessary and sufficient condition for the
stability of the osculating hyperruled surfaces in terms of the curvatures for the
base curve are derived. Finally, the solution of the differential equation which
is produced from stability condition, for example in E* and E*, is obtained.

Here, and in the sequel, we assume that the indices {v, u}, {y, A} and
{i, J, k} run over the ranges {2,...,n — 1},{1,...n — 1} and {0,...n — 1}
respectively unless otherwise stated.

Let M be an oriented n-dimensional hyperrruled surface in an Euclidean
(n + 1)-space E™*!, with a base curve 7 :la, b[— E"!r = r(u°) and u°
the arc length. The Frenet-frame is denoted by {e;(u°)},1 <i < n + 1, where
e;(u®) is the unit tangent vector. The (n — 1)-dimensional linear osculating
space of r = r(u®) is denoted by OS,(r(1%) and.generated by {e, W9}
The n-dimensional hyperruled surface in E"*! generated by OS,,(r(uO)) can
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be represented locally by:

() X)) =r@® +u'ey @ + Zu"e,, (u0>, u €la, b, u” €R,

which is called an osculating n-hyperruled surface in E"*!. The tangent space
at a point p of the hyperruled surface is spanned by the generating (n — 1)-
dimensional linear osculating space OS, (r(u®)) through p and X, := % The
unit normal vector field on M at a point p is e, (). Thus, the representation
(1) is a regular parametrization for a regular base curve r = r(u°).

Throughout the rest of this section we would like to mention the following
definition which are very important in the sequel [2, 7, 8, 13]:

Definition 1.1. If 7(u° is a curve E™*!, parametrized by arc length #° and unit
tangent vector e (u®), we say that r is a Frenet curve of osculating order n + 1
when there exist orthonormal vector fields {e; (uo)} along r such that:

) r@®) = e; (), Ve, o1 = kiez, Vo2 = ~kiey + kaes, . ..
velen = _kn—len~1 + knen+l, VelenJrl - _knem

where ki, ...k, are positive C* functions of 0 and k., # 0 is C* functions
of u° and V the Riemannian connection. The Egs. (2) are the Frenet formulas
in E"t1,

2. The fundamental quantities.

In the following, the fundamental quantities g;;, g¥, h;; and k] of M are
derived in terms of the curvatures k;, 1 < i < n, for the base curve r(u").

Where
0X

gij = (X, X;), X; = 37

Jhijf = (eny1, XiJ'),h,j = Zgjkhik,
P

and (g") denote the inverse matrix of (g;;).
From (1) and (2) we have:
) Ve X =Xo =35 =e +u'kies+ X u'[—ko_rep_y + kverii],

X, = e, (",
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(V. Xo = —'kPYe; + (ky + u'ki)es + (u'kiky)es
+ > uVl(ky_1ky_2)ev—2 — (ky_1)ey—1

@ — (B K)ew + (aevs + ks ensa
Vele = _ku—lev—l + kveu-Hs
VeIXI = k1€2, ny :X),A :O,V)/,)x,

dX; a
whereV, X; = —, .-
oud ud
From (3) we have:

(5) 800 = (Ve X, Ve, X) = 1 — 2u?ky + u'ky (u‘kl — 2u3k2)

+3 W’ (1\:3_1 +k3),

(6) go1 = (Ve X, X1) = 1 — u’ky,
7 gov = (Ve X, X)) = u" kg — u*ky,
(8) gy =1, guv=8,=0, Yy, u

Thus, using induction we can see that:

©) g = det(gi)) = goo — Y _ &0,
14

From (5), (6) and (7) we have:
10 &= [(ul)z B (”2)2}‘12 — 2u'i’kiky + Z[(u”)z(kf_l + kg)

1 1, \?
= (M — k,,) 1.
After some calculations we can see that the inverse (n x n) matrix (g”/) of
(n x n) matrix (g;;) is given by:

—80y v gov 80u

1
(1) %=, g% =g = et g =1-g%g,,

o
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where g;; and g are given by (5), (6), (7), (8) and (10) respectively.
From (4), we have:
(12)  ho = u" kpkn_1, hiy = hy,y =0,Vi,y, A, det(h;;) =0, ifn > 2,

Thus, the 1st and 2nd fundamental forms of M are given by:

(13) I = goo(du®)* +2 " goydudu? + ) guy(du”)?,
y v

and

(14) 11 = hoo(du®),

respectively, where g;; and hqg are given by (5), (6), (7), (8) and (12).
From Weingarten equations [1, 11], using (6), (7), (11) and (12) we have
hY = g%hoo = g% knky—1),
hy = g"hoo = —g%(1 — w?ky) (" knkn—1),
hy = g%hoo = —g% @’ — u" k) W k1),
K, =hy =h} =0,Yi,y,A.

(15)

From (11) and (12) we have the following:

Corollary 2.1. the mean curvature function H of M is given by:
1

1

(16) H= _gOOhOO = '—goo(unwlknkn—l)’ n>2.

n n
Corollary 2.2. The Gaussian curvature G of M is given by:
17 G=0, n=>2.

Using (12) and (16), we can see that:
Corollary 2.3. The norm of the 2nd fundamental form of M is given by:
0y2 2

(18) §*=(,)" = (%) =n*H?

(19) = (£%) (" kyko_s ).

It is important to remark that the foregoing results are considered as a
generalization of the well-known results for the 2-dimensional ruled surfaces
in E3 which confirm that the envelope of the osculating plane of a space curve
is the tangential developable [9], [10], [14], [21].
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3. The variation of the fundamental quantities.

In this section, the variation of the volume element,mean curvature and the

norm of the second fundamental form are obtained in terms of the curvatures k;
for the base curve r(u°). For this purpose we give the following definition [1,
3,12]:
Definition 3.1. Let M be a compact hyperrruled surface with piecewise smooth
boundary 9 M, let ¢ € A% (M) be a continuous function vanishing identically on
the boundary d M and satisfies the condition Sy eWHWdul Adu' A. .. dur—! =
0. We consider a smooth map F : J x M — E"t guch that forr € J — [0,1]
»the map F, : M — E"*!, where f,(p) = F(t, p) for p € M, is an immersion
such that Fy = M with local representation (1) and F, = F;, on the boundary
dM. The image F(p) is representented by the parametrization:

20) X'(u", t) = X(u‘) + tgp(ui)en+1(u0).

This representation defines a normal variation of M in E"+! associated
with ¢ and the family of hyperruled surfaces representented by X = X (u!, r)
is called a deformable hyperruled surfaces resulting from X = X(u') by the
normal variation such that the variation vector field X = ¢ (u! Yens1(u®) and
the operator § is defined as (9 /98) |i=0.

From (13), the 15z fundamental form of the variation X (deformed family

of surfaces) is / = Zij gijduiduj, where g;; = <)—(,-, )_(J->, using (2), (3) and
(20) we have:

B0 = g0 = 209" ks + 12 (Vi) + K2,
gOy = &oy +12(§0yVe1§0),
8y = 1+1°¢7,
gyl = t2§0y§0/\,v)’ # A
Thus, it is easy to see that the 1s¢ and nd variation of g;; are:

(21) 8800 = —20u" kpky_1,
(22) 88iy = 0,Vi, A,

and

(23) 8800 = 2[(Verp)® + k2¢%] > 0,
(24) 88y = 2019, Vi, y.

Thus, we have:
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Lemma 3.1. The 1st and 2nd varition of the metric tensor g;; are given by
(21), (22), (23) and (24).

From (9), (21) and (22), we have:
Corollary 3.1.
(25) 8g = 8goo = —20u" kyk, .

Using (6), (7), (8), (11), (22) and (25) we have the following:
( 5g00 — 2¢(g00)2(un_lknkn—l)7

6g01 = —2(p(g00)2(1 — Mzkl)(unilknkn——l)»

88“ = 2@(g00)2(1 — lekl)z(un_lknkn—l)»

(26) 88" = —20(g")2 (" kyoy — u* i) (W k1),
88" = 20(g") 2 (¥ Tkt — ¥ k)t ek g — k)
(un—lknkn—l)

88" = 20(8%)2 (" kyet — w1 )XW k1),
From the foregoing results, we have:
Lemma 3.2. The 1st variations of the metric tensors g are given by (26).
The volume element d A of the variation X = X (u', t) is:
- - dA - .
dA=WSo W= a W =zamdg = Dez(gij).
Thus and using (25) we have:

Corollary 3.2. The variation of the volume element d A is given by:
@27 5(dA) = —(gogoou""lknknq)dA

From [1], the variations of the 2nd fundamental quantities h;; are given
by: '

(28) Shij = ViVip — ¢ > _ hihy;.
k

Thus, using (12) and (15), we have in more explicitly:

i 00(, -1 2 g 1,i=0
(29) (Shlj = V,ngo - 80§0g (M knkn—l) : 30 = {O,l # 0"
From [1], using (11) and (16) we have:
(30) nsh = A + (%) (" knkn-1)*.

Thus, we have:
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Theorem 3.1. The variation of the mean curvature function H is given by (30).

Using (16), (22), (25), (26) and (30) one can easily obtain §2g, 829
§2g%, 62g1, 62g% §2gv and §2g"" in terms of the Laplace operator of ¢ and
the curvatures for the base curve r(u?), as follows:

8%g = Fog(dAp - £),
828 = 20g%¢,
82% = ~20g%(1 — uky ),
€2y 82! = —20g%(1 — u2k))2,
82g0u — _z(ngO(uv~lkv_l . uu—!—lk‘))%-’
52gvu = “2§0g00(uv—1kv—-l - Mv+1ku)(uu—lkv—l - uv-Hkv)S,
é\gvv — _zgogOO(uv—lkv_l _ uu—l—lkl})Zg,
where, £ = Ag + 3p(8%)2(u" Lk, k,_;)2.
From the foregoing results, we have:

Corollary 3.3. The 2nd variations of the determinant g and the metric tensor
g" are given by (31).

The variation of the norm S of the 2nd fundamental form (18) is given by
using (16) and (30) as:

Corollary 3.4.
(D88 =26 k) | Ap +0(e) (k)]

4. The variation of the curvatures for the base curve and the Frenet-frame.

Here, the 1st and 2nd variations of the curvatures k; for the base curve are
derived. The variations of the Frenet-frame for the base curve are obtained.

From (7) and (22), we have:

(33) Sk = 0.

From (7) and (22), we have:

(34) wHsk, = u'"'sk,_,.
Using (33), we have:

(35) 8k, = 0.

From (16), (26), (30), and (35), we can obtain:

: n— 2
= W[A(P - fﬂ(g00)2(u lknkn_l) ]

From the foregoing results, we have:

(36) Sk,



STABILITY OF DEFORMED OSCULATING. .. 57

Corollary 4.1. The 1st variation of the curvatures k; for the base curve are
given by (33), (35) and (36).

From (6) and (24), we have:
-2

(37) 5%k = — popr.

: u
From (7) and (24), we have:

1 .
(38) 8%k = —— [ 8%t — 2000, .
From (37) and (38), we have: -

—2¢
2 . 1 L2
(39) 8%ky = —3 [1' o) +u?e)].
From (38) and (39), we have:
-2
(40) 8 = = ul gy + uPpn + 3],
From (38) and (40), we have:
-2 ’
(a1) Sy = — 2 [ o1 + P + o],
-2
42) 6%k = — 2[4y + ulgs + ...+ W, ).
uru

From the foregoing results, we have:

Corollary 4.2. The 2nd variation of the curvatures k; for the base curve are
given by: '

n

—2¢9 ; dp
43 8y = —= ‘o, @i = —.
( ) uluH—l ;u % ® oul

From (3) and (20), we have:
(44) | Sey = Gyent1.
From (2), (4), (20), (35) and (44), we can see that:

1 .
(45) deyty = 'I'C"'[(§00v + (Pv—lkv—l)en+l — pvkype,].

From the foregoing results, we have:

Corollary 4.3. The variation of the Frenet-frame for the base curve is given by
(44) and (45).
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S. Stability condition.

Here, the necessary and sufficient condition for the stability of an im-
mersion X in terms of the curvatures for the base curve, with respect to
I = f m HdA,c > 0, are derived. The solution of the differential equation
which is produced from the stability condition, for example in E* and E* is ob-
tained. For this purpose we give the following definition [1, 3, 4, 5, 12, 18, 19,
20]:

Definition 5.1. A closed hyperruled surface M" in E"*! is called an S-
hyperruled surface if it is stable with respect to the integral I (M") = / w H"dA,
i.e., for any normal variation of M" in E"*!, we have SUI(M)) = 0.

Thus and using (16), we have:
1 60 i ¢
(46) (M) = (;g u knk,,_l) dA, c¢>0.
M
From (27), we have:
S101) = [ 15 oy ) (6 + 88,
M ne

@

b kokn_188%)1dA — f £ (¢ k)",
M

Using (26), (35) and (36), we have:

c —
S10) = [ 6™k 0" (A + (a0 k1)) 1A
M

_/ g(goou"“lk,,kn_l)cHdA.
M ne

Suppose that M is closed; then, by Green§ theorem, we have:
47) §I(M) = % / [e AU Ykyky_ )™t +
M

+ (¢ — D(g"u" k,k, 1) 1dA.

From (47), we see that M is stable with respect to the integral (46), if and only
if the right-hand side of (47) is identically zero for all differentiable functions ¢
on M, that is:

(48) S+ e AE™ U k)™t + (¢ — D% ey ) = 0.

Thus, we obtain the proof of the main theorem:
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Theorem S5.1. The oriented closed osculating hyperruled surface X : M —
E™ is stable with respect to the integral (46) if and only if the condition (S.,)
is valid for the curvatures k; of the base curve.

Now we shall try to find a solution of the differential equation (48) in case
when n=2 and n=3.

(1) We put c=a > 2, n=2 in (48), using (10) and (11), we have:

0 a—1 0 a—1
49) S, :aA[ ko) } +(a—1)l: AC) ] +@—1)=0, k #0.

ulky (u®) ulk; (u0)
Let us denote:
0 1\ _ k2(u0)
(50) F(u') = [———ulkl(uo) :

Using the definition of Laplace operator of any differentiable function on M [1]
we have:

-1 aZFa—l aZFa—I a(\/ggOO)
51 art = —{(/gg®
(D 7z (Ves )8(u°)2 0 a0 T
azFa—l aZFa—l a(\/ggll) 82Fa—l

11 01
+(Vas )8(u1)2 e aar T 2(VEE ) g +
oF* 1 3(/g")  9F! 8(J§g°1)]

a(u! oul oul dul
where, from (6), (10), (11) and (50), we have:
[ aFa—l Lll
= —(a—1 (—)kk — kik) F9,
370 (a )k%(2l 1k2)
aFa—l

' 1
- —(a— D(J Pl

oul
g2 a1 _ (a_1)<£)2[(a — 2k12k§ + ak%kf — kgklkl]Fa-H
3 (u0)?2 K2/ L+2 = 2a)kikokiky + kkaks ’
aZFa—l 172 B
(52) 1 W =a(a—1)<;) F* l,
92 Fe-1 1\2
o _ _12(~) Kok — kyky]F@,
37991 (a—1) P [k2k) 1k2]

(/28"  0(/2")  —k
oud oud - u‘kl2 ’
a(/ge')  w)ki-1 8( /g™ 1
du' D% T dul T (2%,
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Using (50) and (51), the condition (S,) takes the form:

ok L Ok
(@ + a®)kE + u'[(2a* — a)kszgf(; - 2a2k1k§ﬁ] + W) [(@® - a)kiK?

dk dk; dk 3k
214 2422 1\2 2 1 0K2 2 2 242
~kik; + (@ +a )kz(gu—o) + (@ =20k ko5 5 + (a® — 20)k] (W)
3%k 3%k,
— ak;k? ki ke 0.
ary 28(140)2 + aky 28(1/[0)2]
Thus, Yu' € R, we have:
(53) (a +a*)kik3 =0,
3k, dk,
(54) (24* - a)klzksz—ta - 2a2k1k§a—u~o =0,
3k \2 3k, dky
(55) (a4 a)kikd — K*kS + (a + az)kg(m) + (a — 2az)k1k25;6m
+ (@ - a)kz(?ﬁ)2 a2k Fartt, 2 _ 0
w0 P20y TR ey T

From (53), we have a # 0(a > 2), k; # 0, thus:
(56) k, = 0.
Thus, we see that (54) and (55) vanish automatically. So, we have the proof of

the following theorem:

Theorem 5.2. The condition of stability (S,) is valid Jor the closed osculating
ruled surface, for which the base curve is a plane curve with respect to the
integral (46) in E*(c = a > 2).

(1I) We put c=a > 2, n=3 in (48), using (10) and (1 1), we have:

k (uo) a—1 k (uo) a+1 |
57) S, :aA,:;—J +(a — 1)[3——} =0, k #0.

Uk, (u0) u?k, ()



STABILITY OF DEFORMED OSCULATING. .. 61

After a long straight-forward computation similar to (49), we can see that the
condition (57) s splits into four conditions:

akik3k? =0,
. [ (a +a) kGRS = 0,
3k ok, 0k

(59) akilshi+ (@’ ~a)kyks —kski+(a+a’) ki (5.5) "+ (=20 hoka oot =

2 k2 8k3 kk aZk k2k 62k

—}—(a-— ) (3 0) a23a(0)2+ 33(0)2:0'

ok ok ok

(60) Ak’ =5 — 2’k ks o + (a + 242 Jka s = 0.

Since a# 0(a > 2), k; # 0, ky # 0 and from (58) we have:
(61) ks = 0.
Thus, also (59) and (60) are satisfied. So, we have the proof of the following

theorem:

Theorem 5.3. The closed osculating hyperruled surface in E*, for which the
base curve is a hyperplanar curve, is stable with ¢ = a > 2.

Using (10) and (11), the condition (S,) takes the form:

0 c—1 0 c+1
SC;CAI:_M_Z_} +(C_1)|i_k”.£u_.)_] =0, k,_ # 0,

u”“‘k,,_l(uo) un—lkn—l(uo)

where ¢ >0,n > 2.
Thus, in the case when c=0, the condition (S,) is degenerate to k, = 0.
So, we have:

Corollary 5.1. The differential equation of stability (Sy) (¢ = 0) has a solution
within an osculating hyperruled surface in E"*\, for which the base curve is a
hyperplanar curve.

In the case when c=1, we have:

Corollary 5.2. The condition (S)) (¢ = 1) is valid for an osculating hyper-
rruled surface in E™*', for which the base curve is not a hyperplanar curve.
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It is important to remark that the foregoing results are a confirmation of

our preceding examples in [1], whereas well-known for any plane curve in
E3 ky = 0,k; % 0 and for any hyperplanar curve in E*, (k;k;) # (0, 0) and
ky = 0.
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