## (R,P)-ABSOLUTELY SUMMING DUAL OPERATORS ON THE PROJECTIVE TENSOR PRODUCTS OF SPACES

## **DUMITRU POPA**

For  $U \in L(X \tilde{\otimes}_{\pi} Y, Z)$  we consider the operator  $U^{\#}: X \to L(Y, Z)$  defined by  $(U^{\#}x)(y) = U(x \otimes y)$ , for  $x \in X, y \in Y$ . We prove that, if  $U \in L(X \tilde{\otimes}_{\pi} Y, Z)$  has the property that  $U^{\#} \in As_{r,p}^{dual}(X, As_{p,q}^{dual}(Y, Z))$ , then the dual operator  $U^{*} \in As_{r,q}(Z^{*}, As_{r,p}^{dual}(X, Y^{*}))$ , from which we deduce that  $As_{r,p}^{dual} \otimes_{\pi} As_{p,q}^{dual} \subset As_{r,q}^{dual}$ , in particular, we obtain a result first proved by B. Carl, A. Defant, M. S. Ramanujan that the normed ideal of the p-absolutely summing dual operators is stable under projective tensor products. Also, if  $L(X, Y^{*}) = As_{p}(X, Y^{*}$ , then for any Banach space Z, if  $U \in As_{p}(X \tilde{\otimes}_{\pi} Y, Z)$ , we have  $U^{\#} \in As_{p}(X, As_{p}(Y, Z))$ .

For X and Y Banach spaces we denote by L(X, Y) the Banach space of all linear and continuous operators from X to Y equipped with the operator norm, by  $X \tilde{\otimes}_{\pi} Y$  the projective tensor product of X and Y i.e. the completion of the algebraic tensor product  $X \otimes Y$  with respect to the projective crossnorm:

$$\pi(u) = \inf \{ \sum_{i=1}^{n} \|x_i\| \|y_i\| \mid u \in X \otimes Y, u = \sum_{i=1}^{n} x_i \otimes y_i \}.$$

Entrato in redazione 16 novembre 2000.

Keywords and Phrases: Tensor products, p-summing.

AMS Subject Classification: Primary 46B28; Secondary 47A80, 47B10.

Also if  $U \in L(X, X_1)$ ,  $V \in L(Y, Y_1)$  we denote by  $U \widetilde{\otimes}_{\pi} V : X \widetilde{\otimes}_{\pi} Y \to X_1 \widetilde{\otimes}_{\pi} Y_1$  the projective tensor product of the operators U and V. For  $1 \le r < \infty$  and  $x_1, \ldots, x_n \in X$  we write

$$l_r(x_i| \le i \le n) = \left(\sum_{i=1}^n ||x_i||^r\right)^{\frac{1}{r}}$$

and

$$w_r(x_i|1 \le i \le n) = \sup \{ (\sum_{i=1}^n |x^*(x_i|^r)^{\frac{1}{r}} |x^* \in X^*, ||x^*|| \le 1 \}.$$

Let us observe that using the  $weak^*$ -denseness of the closed unit ball  $B_X$  of X in  $B_{X^{**}}$  we have

$$w_r(x_i^*|1 \le i \le n) = \sup \{ (\sum_{i=1}^n |x_i^*(x)|^r)^{\frac{1}{r}} |||x|| \le 1 \},$$

for each  $x_1^*, \ldots, x_n^* \in X^*$ .

We will use this observation in the sequel without explicit reference.

Given  $1 \le p \le r < \infty$ ,  $U \in L(X, Y)$  is called (r, p)—absolutely summing if there is some C > 0 such that if  $x_1, \ldots, x_n \in X$  then

$$l_r(Ux_i|1 \le i \le n) \le Cw_p(x_i|1 \le i \le n).$$

The (r, p)-absolutely summing norm of U is  $||U||_{r,p} = \inf C$ .

We denote by  $As_{r,p}(X,Y)$  the Banach space of all (r,p)—absolutely summing operators from X into Y equipped with the (r,p)—absolutely summing norm. As is well known  $(As_{r,p}, \| \|_{r,p})$  is a normed ideal of operators in the sense of A. Pietsch, see [4] or [7]; instead of  $(As_{p,p}, \| \|_{p,p})$  we write simply  $(As_p, \| \|_p)$ . Also  $As_{r,p}^{dual}(X,Y) = \{U \in L(X,Y)|U^* \in As_{r,p}(Y^*,X^*)\}$  and for  $U \in As_{r,p}^{dual}(X,Y)$  we denote  $\|U\|_{r,p,dual} = \|U^*\|_{r,p}$ . Let us observe that  $(As_{r,p}^{dual}, \| \|_{r,p,dual})$  is also a normed ideal of operators in the sense of A. Pietsch, see [4] or [7].

For other notations and notions used and not defined we refer the reader to [3] or [7].

For  $U \in L(X \tilde{\otimes}_{\pi} Y, Z)$  and each  $x \in X$  we consider the operator  $U^{\#}x: Y \to Z$  given by  $(U^{\#}x)(y) = U(x \otimes y)$ , for  $y \in Y$ ; evidently,  $U^{\#}: X \to L(Y, Z)$  is linear and continuous.

A natural problem is the connection between the operators U and  $U^{\#}$  for some normed ideals of operators; see [9] and [11] for the operators on injective tensor products. In the sequel we study this problem for the normed ideal of the (r, p)—absolutely summing dual operators.

**Theorem 1.** Let  $1 \leq q \leq p \leq r < \infty$  and  $U \in L(X \tilde{\otimes}_{\pi} Y, Z)$ . If  $U^{\#}x \in As^{dual}_{p,q}(Y,Z)$  for each  $x \in X$  and  $U^{\#} \in As^{dual}_{r,p}(X,As^{dual}_{p,q}(Y,Z))$ , then  $U^{*}(z^{*}) \in As^{dual}_{r,p}(X,Y^{*})$ , for each  $z^{*} \in Z^{*}$  and  $U^{*} \in As_{r,q}(Z^{*},As^{dual}_{r,p}(X,Y^{*}))$ . In addition:  $\|U^{*}\|_{r,q} \leq \|U^{\#}\|_{r,p,dual}$ . In particular  $U \in As^{dual}_{r,q}(X \tilde{\otimes}_{\pi} Y,Z)$ .

*Proof.* We have that  $U^*: Z^* \to (X \tilde{\otimes}_{\pi} Y)^* = L(X, Y^*)$  satisfies  $U^*(z^*) = S_{z^*} \circ U^{\#}$ , for  $z^* \in Z^*$  where  $S_{z^*}: L(Y, Z) \to Y^*$  is given by  $S_{z^*}(V) = V^*(z^*)$ , for  $V \in L(Y, Z)$ ; (use the relation:  $[U^*(z^*)](x)(y) = (z^* \circ U^{\#}x)(y)$ , for each  $x \in X, y \in Y$ ).

Since for  $z^* \in Z^*$ , we may consider the operator  $S_{z^*}: As_{p,q}^{dual}(Y,Z) \to Y^*$ , given by  $S_{z^*}(V) = V^*(z^*)$ , for  $V \in As_{p,q}^{dual}(Y,Z)$  and, by hypothesis,  $U^\#: X \to As_{p,q}^{dual}(Y,Z)$  is an (r,p)-absolutely summing dual operator, from the ideal properties of (r,p)-absolutely summing dual operators it follows that:  $U^*(z^*) \in As_{r,p}^{dual}(X,Y^*)$ . Take now  $z_1^*, \ldots, z_n^* \in Z^*$  and  $\varepsilon > 0$ . Then from the definition of the (r,p)-absolutely summing norm it follows that there exist  $\sigma_i \subset \mathbb{N}$ ,  $(1 \le i \le n)$ ,  $\sigma_i$  finite and  $(y_{ij}^{**})_{j \in \sigma_i} \subset Y^{**}$  such that

$$w_p(y_{ij}^{**}|j \in \sigma_i) \le 1 \text{ and } \|U^*(z_i^*)\|_{r,p,dual} - \varepsilon < l_r((U^*(z_i^*))^*(y_{ij}^{**})|j \in \sigma_i).$$

It is easy to prove (see [8]) that, for  $y^{**}$  and  $x \in X$ , we have

$$[y^{**} \circ U^*(z^*)](x) = y^{**}(z^* \circ U^{\#}x)$$

hence,  $T_{y^{**},z^*}: As_{p,q}^{dual}(Y,Z) \to \mathbb{R}$  (or  $\mathbb{C}$ ) defined by  $T_{y^{**},z^*}(V) = y^{**}(V^*(z^*))$  is a linear and continuous functional on  $As_{p,q}^{dual}(Y,Z)$  and the above relation shows that

$$T_{y^{**},z^*} \circ U^{\#} = y^{**} \circ U^*(z^*).$$

Then using the fact that the dual of  $U^{\#}: X \to As_{p,q}^{dual}(Y,Z)$  is (r,p)-absolutely summing, we obtain

$$\begin{split} & [\sum_{i=1}^{n} (\|U^*(z_i^*)\|_{r,p,dual} - \varepsilon)^r]^{\frac{1}{r}} < l_r(y_{ij}^{**} \circ U^*(z_i^*)|1 \leq i \leq n; \ j \in \sigma_i = \\ & l_r(T_{y_{ij}^{**},z_i^*} \circ U^{\#}|1 \leq i \leq n; \ j \in \sigma_i) = \\ & l_r((U^{\#})^*(T_{y_{ij}^{**},z_i^*})|1 \leq i \leq n; \ j \in \sigma_i) \leq \\ & \|(U^{\#})^*\|_{r,p} w_p(T_{y_{ij}^{**},z_i^*}|1 \leq i \leq n; \ j \in \sigma_i) = \\ & \|U^{\#}\|_{r,p,dual} w_p(T_{y_{ij}^{**},z_i^*}|1 \leq i \leq n; \ j \in \sigma_i). \end{split}$$

But for  $V \in As_{p,q}^{dual}(Y, Z)$ , with  $||V||_{p,q,dual} \le 1$  we have:

$$\sum_{j \in \sigma_i} |T_{y_{ij}^{**}, z_i^{*}}(V)|^p = \sum_{j \in \sigma_i} |y_{ij}^{**}(V^*(z_i^{*}))|^p \le$$

$$\|V^*(z_i^{*}\|^p \sup \{\sum_{j \in \sigma_i} |y_{ij}^{**}(y^{*})|^p; \|y^{*}\| \le 1\} =$$

$$\|V^*(z_i^{*}\|^p [w_p(y_{ii}^{**}|j \in \sigma_i)]^p \le \|V^*(z_i^{*})\|^p$$

and hence:

$$(\sum_{i=1}^{n} \sum_{j \in \sigma_{i}} |T_{y_{ij}^{**}, z_{i}^{*}}(V)|^{p})^{\frac{1}{p}} \leq (\sum_{i=1}^{n} \|V^{*}(z_{i}^{*})\|^{p})^{\frac{1}{p}} = l_{p}(V^{*}(z_{i}^{*})|1 \leq i \leq n) \leq \|V^{*}\|_{p,q} w_{q}(z_{i}^{*}|1 \leq i \leq n) = \|V\|_{p,q,dual} w_{q}(z_{i}^{*}|1 \leq i \leq n) \leq w_{q}(z_{i}^{*}|1 \leq i \leq n),$$

from where:

$$\begin{split} w_q(T_{y_{ij}^{**},z_i^*}|1 &\leq i \leq n; \ j \in \sigma_i) = \\ \sup \{ (\sum_{i=1}^n \sum_{j \in \sigma_i} |T_{y_{ij}^{**},z_i^*}(V)|^p)^{\frac{1}{p}} | V \in As_{p,q}^{dual}(Y,Z), \ \|V\|_{p,q,dual} \leq 1 \} \\ &\leq w_q(z_i^*|1 \leq i \leq n). \end{split}$$

From this we obtain that:

$$\left[\sum_{i=1} (\|U^*(z_i^*)\|_{r,p,dual} - \varepsilon)^r\right]^{\frac{1}{r}} < \|U^*\|_{r,p,dual} w_q(z_i^*|1 \le i \le n)$$

and so:

$$\left[\sum_{i=1}^{r} (\|U^*(z_i^*)\|_{r,p,dual}^r)^{\frac{1}{r}} \le \|U^*\|_{r,p,dual} w_q(z_i^*|1 \le i \le n)\right]$$

i.e.

$$U^* \in As_{r,q}(Z^*, As_{r,p}^{dual}(X, Y^*))$$
 and  $||U^*||_{r,q} \le ||U^*||_{r,p,dual}$ .

In [1] Theorem 2.1, or in the book [2] chapter III, p. 445–466, some stability results for a large class of normed ideals of operators are proved. In particular it is proved that the normed ideal of the p-absolutely summing dual operators is stable under projective tensor products, i.e. if  $U \in As_p^{dual}(X, X_1)$ ,  $V \in As_p^{dual}(Y, Y_1)$ , then  $(U \tilde{\otimes}_{\pi} V)^* : L(X_1, Y_1^*) \to L(X, Y^*)$  is p-absolutely summing and so a natural question is: if  $U \in As_p^{dual}(X, X_1)$ ,  $V \in As_p^{dual}(Y, Y_1)$ , then is  $(U \tilde{\otimes}_{\pi} V)^* : L(X_1 Y_1^* \to As_p(X, Y^*) p$ -absolutely summing.

We will prove in the next theorem a more general result which improves that from [1] or [2].

**Theorem 2.** Let  $1 \leq q \leq p \leq r < \infty$ . If  $U \in As_{p,q}^{dual}(X, X_1), V \in As_{r,p}^{dual}(Y, Y_1)$ , then the dual of the projective tensor product  $(U\tilde{\otimes}_{\pi}V)^* \in As_{r,q}(L(X_1, Y_1^*), As_{r,p}(X, Y^*))$ , and  $\|(U\tilde{\otimes}_{\pi}V)^*\|_{r,q} \leq \|U\|_{p,q,dual}\|V\|_{r,p,dual}$ . In particular:

 $As_{r,p}^{dual} \otimes_{\pi} As_{p,q}^{dual} \subset As_{r,q}^{dual}$  and the normed ideal of operators  $(As_{p}^{dual}, \| \|_{p,dual})$  is tensor stable with respect to the projective tensor product i.e. if  $U \in As_{p}^{dual}(X, X_{1})$ ,  $V \in As_{p}^{dual}(Y, Y_{1})$ , then the projective tensor product  $U \tilde{\otimes}_{\pi} V \in As_{p}^{dual}(X \tilde{\otimes}_{\pi} Y, X_{1} \tilde{\otimes}_{\pi} Y_{1})$  and  $\| U \tilde{\otimes}_{\pi} V \|_{p,dual} \leq \| U \|_{p,dual} \| V \|_{p,dual}$ .

*Proof.* Let  $S = V \tilde{\otimes}_{\pi} U : Y \tilde{\otimes}_{\pi} X \to Y_1 \tilde{\otimes}_{\pi} X_1$ . For  $y \in Y$ , let  $A_y : X_1 \to Y_1 \tilde{\otimes}_{\pi} X_1$  be given by  $A_y(x_1) = (Vy) \otimes x_1$ . Evidently  $S^{\#}y = A_y \circ U$  and, because  $U \in As_{p,q}^{dual}(X, X_1)$ , by the ideal property of the (p,q)-absolutely summing dual operators,  $S^{\#}y \in As_{p,q}^{dual}(X, Y_1 \tilde{\otimes}_{\pi} X_1)$ .

For  $y_1 \in Y_1$ , Let  $B_{y_1}: X_1 \to Y_1 \tilde{\otimes}_{\pi} X_1$  be the operator given by  $B_{y_1}(x_1) = y_1 \otimes x_1$  and  $B: Y_1 \to L(X, X_1 \tilde{\otimes}_{\pi} X_1)$  defined by  $B(y_1)(x) = y_1 \otimes (Ux)$ . We have:  $B(y_1) = B_{y_1} \circ U$ . Since U has (p,q)-absolutely summing dual, we obtain:  $B(y_1) \in As_{p,q}^{dual}(X, Y_1 \tilde{\otimes}_{\pi} X_1)$  and  $\|B(y_1)\|_{p,q,dual} \leq \|B_{y_1}\| \|U\|_{p,q,dual} \leq \|y_1\| \|U\|_{p,q,dual}$ , for each  $y_1 \in Y_1$  and so

$$||B:Y_1 \to As_{p,q}^{dual}(X,Y_1\tilde{\otimes}_{\pi}X_1)||_{op} \le ||U||_{p,q,dual}.$$

Now as it is easy to see  $S^{\#} = B \circ V$  and, since  $V \in As_{r,p}^{dual}(Y, Y_1)$ , the ideal property of (r, p)—absolutely summing dual operators shows that:

$$S^{\#} \in As_{r,p}^{dual}(Y, As_{p,q}^{dual}(X, Y_1 \tilde{\otimes}_{\pi} X_1))$$

and

$$||S^{\#}: Y \to As_{p,q}^{dual}(X, Y_1 \tilde{\otimes}_{\pi} X_1)||_{r,p,dual} \le$$
  
 $||B: Y_1 \to As_{p,q}^{dual}(X, Y_1 \tilde{\otimes}_{\pi} X_1)||_{op} ||V||_{r,p,dual}.$ 

From the above inequalities we will obtain

$$||S^{\#}: Y \to As_{p,q}^{dual}(X, Y_1 \tilde{\otimes}_{\pi} X_1)||_{r,p,dual} \le ||U||_{p,q,dual} ||V||_{r,p,dual}.$$

Using theorem 1 we obtain that  $S^*: L(Y_1, X_1^*) \to As_{r,p}^{dual}(Y, X^*)$  is (r, q)—absolutely summing and

$$||S^*: L(Y_1, X_1^*) \to As_{r,p}^{dual}(Y, X^*)||_{r,q} \le$$

$$||S^{\#}:Y\rightarrow As_{p,q}^{dual}(X,Y_{1}\tilde{\otimes}_{\pi}X_{1})||_{r,p,dual}.$$

Hence:

$$||S^*: L(Y_1, X_1^*) \to As_{r,p}^{dual}(X, Y^*)||_{r,q} \le ||U||_{p,q,dual} ||V||_{r,p,dual}.$$

Let us consider now two natural isometries:  $h: L(X_1, Y_1^*) \to L(Y_1, X_1^*), h(\hat{\psi}, where [\psi(x_1)](y_1) = [\hat{\psi}(y_1)](x_1)$  and  $g: As_{r,p}^{dual}(Y, X^*) \to As_{r,p}(X, Y^*), g(T) = T^* \circ J_X$ , where  $J_X$  is the canonical embedding of X into the bidual. Then a simple calculation shows:  $(U\tilde{\otimes}_{\pi}V)^* = g \circ S^* \circ h$  and by the ideal property of (r,q)—absolutely summing operators we obtain that:

$$(U \tilde{\otimes}_{\pi} V)^* \in As_{r,q}(L(X_1, Y_1^*), As_{r,p}(X, Y^*))$$

and

$$||(U\tilde{\otimes}_{\pi}V)^{*}:L(X_{1},Y_{1}^{*})\to As_{r,p}(X,Y^{*}))||_{r,q}\leq ||g|| ||S^{*}:L(Y_{1},X_{1}^{*})\to As_{r,p}^{dual}(Y,X^{*})||_{r,q}||h||.$$

From these last inequalities we obtain

$$\|(U\tilde{\otimes}_{\pi}V)^*: L(X_1, Y_1^*) \to As_{r,p}(X, Y^*))\|_{r,q} \le \|U\|_{p,q,dual} \|V\|_{r,p,dual}.$$

To have some examples, let  $j: l_2 \to c_0$  be the canonical injection, whose dual  $j^*: l_1 \to l_2$  is 1-absolutely summing and the identity map  $i: c_0 \to c_0$  whose dual  $i^*: l_1 \to l_1$  is (2,1)-absolutely summing, see [7] for these classical results. By theorem 2, we obtain that the restriction mapping  $R: L(c_0, l_1) \to As_{2,1}(l_2, l_1)$  is a (2,1)-absolutely summing operator. In the same way the restriction mapping  $R: L(c_0, l_1) \to As(l_2, l_2)$  is an absolutely summing operator. This example is interesting since in [5] it is proved that the restriction map  $R: K(c_0, l_1) \to As_2(l_2, l_2)$  is an absolutely summing operator which does not factor through any  $L_1(\mu)$ .

The composition operator that we consider in the next proposition has been studies in [1], [6], [10], [12], [13] for some ideals of operators. Also in the paper [1] Proposition 3.3, it is proved that a certain composition operator is p-absolutely summing with respect to the operator norm, more precisely: if  $A \in As_p^{dual}(X,Y)$ ,  $B \in As_p(Z,T)$ , then  $h: L(Y,Z) \to L(X,T)$ , h(U) = BUA is a p-absolutely summing with respect to the operator norm. Again a natural question is: if  $A \in As_p^{dual}(X,Y)$ ,  $B \in As_p(Z,T)$ , then is  $h: L(Y,Z) \to As_p(X,T)$ , h(U) = BUA, p- absolutely summing.

In our next two proposition we will prove also more general results in this direction.

**Proposition 3.** Let X, Y, Z, T be Banach spaces,  $1 \le q \le p \le r < \infty, A \in As_{p,q}^{dual}(X,Y)$ ,  $B \in As_{r,p}(Z,T)$ , and  $h : L(Y,Z) \to As_{r,p}(X,T)$ , h(U) = BUA. Then h is an (r,q)-absolutely summing operator and  $||h||_{r,q} \le ||B||_{r,p} ||A||_{p,q,dual}$ .

*Proof.* Choose  $U_1, \ldots, U_n \in L(Y, Z)$  with  $0 < \varepsilon < \|h(U_i)\|_{r,p}$ . From the definition of the (r, p)-absolutely summing norm it follows that there exists  $\sigma_i \subset \mathbb{N}$ ,  $\sigma_i$  finite  $(1 \le i \le n)$  and  $(x_{ij})_{j \in \sigma_i} \subset X$  such that  $\|h(U_i)\|_{r,p} - \varepsilon < l_r(h(U_i)(x_{ij}) \mid j \in \sigma_i)$  and  $w_p(x_{ij} \mid j \in \sigma_i) \le 1$  for each  $i = 1, \ldots, n$ . Then

$$\left[\sum_{i=1}^{n} (\|h(U_{i})\|_{r,p} - \varepsilon)^{r}\right]^{\frac{1}{r}} < l_{r}((BU_{i}A)(x_{ij}) \mid 1 \le i \le n; j \in \sigma_{i}) \le$$

$$||B||_{r,p}w_p((U_iA)(x_{ij}) | 1 \le i \le n; j \in \sigma_i),$$

since  $B \in As_{r,p}(Z, T)$ . For  $z^* \in Z^*$ ,  $||z^*|| \le 1$ ,

$$\sum_{i=1}^{n} \sum_{j \in \sigma_i} |z^*[(U_i A)(x_{ij})]|^p = \sum_{i=1}^{n} \sum_{j \in \sigma_i} |[A^*(U_i^*(z^*))](x_{ij})|^p \le$$

$$\sum_{i=1}^{n} \| A^*(U_i^*(z^*)) \|^p [w_p(x_{ij} \mid j \in \sigma_i)]^p \le \sum_{i=1}^{n} \| A^*(U_i^*(z^*)) \|^p \le$$

$$||A^*||_{p,q}^p [w_q(U_i^*(z^*) \mid 1 \le i \le n)]^p,$$

where we have used that  $A \in As_{p,q}^{dual}(X, Y)$ . Hence

$$w_p((U_i A)(x_{ij}) \mid 1 \le i \le n; j \in \sigma_i) = \sup_{\|z^*\| \le 1} (\sum_{i=1}^n \sum_{j \in \sigma_i} |z^*[(U_i A)(x_{ij})]|^p)^{\frac{1}{p}} \le$$

$$||A||_{p,q,dual} \sup_{||z^*|| \le 1} w_q(U_i^*(z^*) | 1 \le i \le n).$$

But

$$\sup_{\|z^*\| \leq 1} w_q(U_i^*(z^*) \mid 1 \leq i \leq n) = \sup_{\|z^*\| \leq 1, \|y\| \leq 1} (\sum_{i=1}^n \mid \langle y, U_i^*(z^*) \mid^q)^{\frac{1}{q}} \leq$$

$$\sup\{(\sum_{i=1}^{n} |\langle U_i, \psi \rangle|^q)^{\frac{1}{q}} | \psi \in (L(Y, Z))^*, \|\psi\| \le 1\} = w_q(U_i | 1 \le i \le n).$$

Summarizing the above inequalities we obtain

$$\left[\sum_{i=1}^{n}(\|h(U_{i})\|_{r,p}-\varepsilon)^{r}\right]^{\frac{1}{r}}<\|B\|_{r,p}\|A\|_{p,q,dual}w_{q}(U_{i}\mid 1\leq i\leq n),$$

$$\left(\sum_{i=1}^{n} (\|h(U_i)\|_{r,p}^r)^{\frac{1}{r}} \le \|B\|_{r,p} \|A\|_{p,q,dual} w_q(U_i \mid 1 \le i \le n)\right)$$

and the proposition is proved.

The ideal property of the (r, p)-absolutely summing dual operators shows that h takes its values also in  $As_{p,q}^{dual}(X, T)$ . For  $p = q = r \ge 1$  we can prove the following.

**Proposition 4.** Let X, Y, Z, T be Banach spaces,  $p \ge 1$ ,  $A \in As_p^{dual}(X, Y)$ ,  $B \in As_p(Z, T)$ , and  $h : L(Y, Z) \to As_p^{dual}(X, T)$ , h(U) = BUA. Then h is a p-absolutely summing operator and  $\|h\|_p \le \|B\|_p \|A\|_{p,dual}$ .

*Proof.* Choose  $U_1, \ldots, U_n \in L(Y, Z)$  with  $0 < \varepsilon < \|h(U_i)\|_{p,dual}$ . From the definition of the p-absolutely summing dual norm it follows that there exist  $\sigma_i \subset \mathbb{N}$ ,  $\sigma_i$  finite,  $(1 \le i \le n)$  and  $(t_{ij}^*)_{j \in \sigma_i} \subset T^*$  such that

$$\|h(U_i)\|_{p,dual} - \varepsilon < l_p([h(U_i)]^*(t_{ij}^*) \mid j \in \sigma_i) \text{ and } w_p(t_{ij}^* \mid j \in \sigma_i) \le 1$$

for each  $i = 1, \ldots, n$ .

Then

$$\left[\sum_{i=1}^{n} (\|h(U_{i}\|_{p,dual} - \varepsilon)^{p}]^{\frac{1}{p}} < l_{p}((A^{*}U_{i}^{*}B^{*})(t_{ij}^{*}) \mid 1 \leq i \leq n; j \in \sigma_{i}) \leq$$

$$||A^*||_p w_p((U_i^*B^*)(t_{ij}^*)||1 \le i \le n; j \in \sigma_i),$$

since  $A \in As_p^{dual}(X, Y)$ . For  $y \in Y$ ,  $||y|| \le 1$ ,

$$\sum_{i=1}^{n} \sum_{j \in \sigma_{i}} | [(U_{i}^{*}B^{*})(t_{ij}^{*})](y) |^{p} = \sum_{i=1}^{n} \sum_{j \in \sigma_{i}} | (t_{ij}^{*} \circ B \circ U_{i})(y) |^{p} \le$$

$$\sum_{i=1}^{n} \|B(U_i(y))\|^p [w_p(t_{ij}^*)| \ j \in \sigma_i)]^p \le$$

$$\sum_{i=1}^{n} \|B(U_i(y))\|^p \le \|B\|_p^p [w_p(U_i(y) \mid 1 \le i \le n)]^p.$$

where we have used that  $B \in As_n(Z, T)$ .

Hence

$$\begin{split} w_p((U_i^*B^*)(t_{ij}^*) \mid 1 \leq i \leq n; \, j \in \sigma_i) &= \sup_{\|y\| \leq 1} (\sum_{i=1}^n \sum_{j \in \sigma_i} |[(U_i^*B^*)(t_{ij}^*)](y)|^p)^{\frac{1}{p}} \leq \\ \|B\|_p \sup_{\|y\| \leq 1} w_p(U_i(y) \mid 1 \leq i \leq n). \end{split}$$

But

$$\sup_{\|y\| \le 1} w_p((U_i(y) \mid 1 \le i \le n) = \sup_{\|z^*\| \le 1, \|y\| \le 1} (\sum_{i=1}^n |\langle U_i(y), z^* \rangle|^p)^{\frac{1}{p}} \le$$

$$\sup\{(\sum_{i=1}^{n} |\langle U_i, \psi \rangle|^p)^{\frac{1}{p}} | \psi \in (L(Y, Z))^*, \|\psi\| \le 1\} = w_p(U_i | 1 \le i \le n).$$

Summarizing the above inequalities we obtain:

$$\left[\sum_{i=1}^{n}(\|h(U_{i})\|_{p,dual}-\varepsilon)^{p}\right]^{\frac{1}{p}}<\|B\|_{p}\|A\|_{p,dual}w_{p}(U_{i}\mid 1\leq i\leq n),$$

$$\left(\sum_{i=1}^{n} \|h(U_i)\|_{p,dual}^{p}\right)^{\frac{1}{p}} \leq \|B\|_{p} \|A\|_{p,dual} w_{p}(U_i \mid 1 \leq i \leq n)$$

and the proposition is proved.

**Proposition 5.** Let X and Y be Banach spaces and  $1 \le p < \infty$ . Then the following conditions are equivalent:

- a)  $L(X, Y^*) = As_p(X, Y^*).$
- b) For any Banach space Z, and  $U \in As_p(X \tilde{\otimes}_{\pi} Y, Z)$  we have  $U^{\#} \in As_p(X, As_p(Y, Z))$ .

*Proof.* a) $\rightarrow$ b) If a) is true, we can prove a result much more generalthan b), namely: If  $U \in As_{r,p}(X \tilde{\otimes}_{\pi} Y, Z)$ , then:  $U^{\#} \in As_{r,p}(X, As_{r,p}(Y, Z))$ . Indeed, by the ideal property of (r, p)-absolutely summing operators it follows that  $U^{\#}x \in As_{r,p}(Y, Z)$ , for each  $x \in X$ . Choose now  $x_1, \ldots, x_n \in X$  and  $\varepsilon > 0$ .

Then by the definition of the (r, p)-absolutely summing norm it follows that there exist:  $\sigma_i \subset \mathbb{N}$ ,  $\sigma_i$  finite  $(1 \le i \le n)$  and  $(y_{ij})_{j \in \sigma_i} \subset Y$  such that

$$w_p(y_{ij} \mid j \in \sigma_i) \le 1 \text{ and } \|U^{\#}(x_i)\|_{r,p} - \varepsilon < l_r((U^{\#}x_i)(y_{ij}) \mid j \in \sigma_i)$$

for each  $i = 1, \ldots, n$ .

Hence using the fact that  $U \in As_{r,p}(X \tilde{\otimes}_{\pi} Y, Z)$  we obtain

$$\left(\sum_{i=1}^{n} [\|U^{\#}(x_{i})\|_{r,p} - \varepsilon]^{r}\right)^{\frac{1}{r}} < l_{r}((U^{\#}x_{i})(y_{ij}) \mid 1 \le i \le n; j \in \sigma_{i}) =$$

$$l_r(U(x_i \otimes y_{ij}) \mid 1 \le i \le n; j \in \sigma_i) \le ||U||_{r,p} w_p(x_i \otimes y_{ij} \mid 1 \le i \le n; j \in \sigma_i).$$

But, the hypothesis a) implies that there exists a constant C>0 such that for  $\psi\in (X\tilde{\otimes}_{\pi}Y)^*=L(X,Y^*)=As_p(X,Y^*)$  we have:  $\|\psi\|_p\leq C\|\psi\|$ .

Now

$$\sum_{i=1}^{n} \sum_{j \in \sigma_{i}} | \psi(x_{i} \otimes y_{ij}) |^{p} = \sum_{i=1}^{n} \sum_{j \in \sigma_{i}} | \psi(x_{i})(y_{ij}) |^{p} \leq$$

$$\sum_{i=1}^{n} \| \psi(x_{i}) \|^{p} [w_{p}(y_{ij} | j \in \sigma_{i})]^{p} \leq$$

$$\sum_{i=1}^{n} \| \psi(x_{i}) \|^{p} \leq \| \psi \|_{p}^{p} [w_{p}(x_{i} | 1 \leq i \leq n)]^{p} \leq$$

$$C^{p} \| \psi \|_{p}^{p} [w_{p}(x_{i} | 1 \leq i \leq n)]^{p};$$

Hence

$$w_p(x_i \otimes y_{ij} \mid 1 \le i \le n; j \in \sigma_i) \le Cw_p(x_i \mid 1 \le i \le n)$$

i.e.

$$\left(\sum_{i=1}^{n} [\|U^{\#}(x_{i})\|_{r,p} - \varepsilon]^{r}\right)^{\frac{1}{r}} < C\|U\|_{r,p} w_{p}(x_{i} \mid 1 \leq i \leq n),$$

$$\left(\sum_{i=1}^{n} [\|U^{\#}(x_{i})\|_{r,p}^{r}\right)^{\frac{1}{r}} \leq C \|U\|_{r,p} w_{p}(x_{i} \mid 1 \leq i \leq n)$$

i.e.  $U^{\#} \in As_{r,p}(Y, Z)$ ).

b)  $\Rightarrow$  a) Let  $T \in L(X, Y^*) = (X \tilde{\otimes}_{\pi} Y)^*$  and let  $U : X \tilde{\otimes}_{\pi} Y \to \mathbb{K}$  be the canonical functional associated to T, where  $\mathbb{K} = \mathbb{R}$  (or  $\mathbb{C}$ ). We have

 $U \in As_p(X \tilde{\otimes}_{\pi} Y, \mathbb{K})$  and from b) taking  $Z = \mathbb{K}$  we have that  $U^{\#}: X \to As_p(Y, \mathbb{K}) = Y^*$  is p-absolutely summing. But  $U^{\#} = T \in As_p(X, Y^*)$  and a) is fulfilled.  $\square$ 

**Acknowledgment.** We thank the referee for his very careful reading of the manuscript, and for many useful suggestions and remarks which improve the first version of the paper.

## REFERENCES

- [1] B. Carl A. Defant M.S. Ramanujan, *On tensor stable ideals*, Michigan Math. Journ., 36 (1989), pp. 63–75.
- [2] A. Defant K. Floret, *Tensor norms and operator ideals*, North-Holland Math. Studies, 176 (1993).
- [3] J. Diestel J.J. Uhl, Vector measures, Math. Surv. n. 15 A.M.S., 1977.
- [4] J. Diestel H. Jarchow A. Tonge, *Absolutely Summing Operators*, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995.
- [5] Y. Gordon D.R. Lewis, *Absolutely summing operators and local unconditional structures*, Acta Math., 133 (1974), pp. 27–48.
- [6] M. Lindstrom G.Schluchtermann, *Composition of operators ideals*, Math. Scand., 84 (1999), pp. 284–296.
- [7] A. Pietsch, operator ideals, North-Holland, Berlin, 1978.
- [8] D. Popa, Grothendieck operators on the projective tensor products of spaces, Le Matematiche, 50 (1995), pp. 83–85.
- [9] D. Popa, Pietsch integral operators on the injective tensor products of spaces, Glasgow Math. Journ., 39 (1997), pp. 227–230.
- [10] G. Racher, On tensor product of weakly compact operators, Math. Annalen, 294 (1992), pp. 267–275.
- [11] P. Saab S.M. Smith, *p*-summing operators on injective tensor product of spaces, Proc. of the Royal Society of Edinburgh, 120 A (1992), pp. 283–296.
- [12] E. Saksmann H.O. Tylli, Weak compactness of multiplication operators on spaces of bounded linear operators, Math. Scand., 70 (1992), pp. 91–111.

[13] E. Saksmann - H.O. Tylli, Weak essential spectra of multiplication operators on spaces of bounded linear operators, Math. Annalen, 299 (1994), pp. 299–304.

Department of Mathematics Bd. Mamaia 124, Costanta 8700 (ROMANIA) e-mail:dpopa@univ-ovidius.ro