IDEMPOTENT FACTORIZATION OF MATRICES OVER A PRÜFER DOMAIN OF RATIONAL FUNCTIONS

L. COSSU

Abstract

We consider the smallest subring D of $\mathbb{R}(X)$ containing every element of the form $1 /\left(1+x^{2}\right)$, with $x \in \mathbb{R}(X) . D$ is a Prüfer domain called the minimal Dress ring of $\mathbb{R}(X)$. In this paper, addressing a general open problem for Prüfer non Bézout domains, we investigate whether 2×2 singular matrices over D can be decomposed as products of idempotent matrices. We show some conditions that guarantee the idempotent factorization in $M_{2}(D)$.

1. Introduction

In 1965 Andreas Dress [7] introduced a family of Prüfer domains constructed as subrings D_{K} of a field K containing every element of the form $1 /\left(1+x^{2}\right)$, for $x \in K$. Given a field K not containing square roots of -1 , the subring of K generated by $\left\{\left(1+x^{2}\right)^{-1}: x \in K\right\}$ is said to be the minimal Prüfer-Dress ring (or simply the minimal Dress ring) of K. We refer to [7] and [4] for more details on these domains. In the paper [4], the authors investigated minimal Dress rings of

Received on February 2, 2021

AMS 2010 Subject Classification: 15A23, 13F05, 13A15
Keywords: Factorization of matrices, idempotent matrices, minimal Dress rings, Prüfer domains. This research was partially supported by the "Ernst Mach Grant - worldwide" of the Austria's Agency for Education and Internationalisation (OeAD), under the project ICM-2020-00054 "Factorization theory in matrix rings".
The author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM).
special classes of fields: Henselian fields, ordered fields and formally real fields (e.g., $\mathbb{R}(\mathcal{A})$, with \mathcal{A} a set of indeterminates). They focused in particular on the minimal Dress ring D of the field of real rational functions $\mathbb{R}(X)$, characterizing its elements [4, Prop. 2.1] and ideals [4, Prop. 2.4] and proving that D is a Dedekind domain (i.e., a Noetherian Prüfer domain) that is not a principal ideal domain [4, Th. 2.3]. They also identified a family of 2×2 singular matrices over D that can be written as a product of idempotent factors [4, Th. 3.3]. The study of the factorization of singular square matrices over rings as product of idempotent matrices has raised a remarkable interest both in the commutative and non-commutative setting since the middle of the 1960's (see [8, 11]). We say that an integral domain R satisfies the property $\left(\mathrm{ID}_{2}\right)$ if every 2×2 singular matrix over R is a product of idempotent factors. A natural and well motivated conjecture, proposed by Salce and Zanardo in [11] and then investigated in [3] and [5], asserts that every domain R satisfying $\left(\mathrm{ID}_{2}\right)$ must be a Bézout domain, namely, every finitely generated ideal of R must be principal. Note that the reverse implication is false: not every Bézout domain verifies $\left(\mathrm{ID}_{2}\right)$ (see [2, 6]). In [3] it is proved that if R satisfies $\left(\mathrm{ID}_{2}\right)$, then every finitely generated ideal of R is invertible and so R is a Prüfer domain. Therefore, it is not restrictive to study $\left(\mathrm{ID}_{2}\right)$ within this class of domains and, in view of the above conjecture, we expect that for every Prüfer non-Bézout domain R there exists at least one singular matrix in $M_{2}(R)$ that cannot be written as a product of idempotent factors.

In this paper we develop the investigation started in [4] on idempotent factorizations of 2×2 matrices over the minimal Dress ring D of $\mathbb{R}(X)$. In Section 2 we fix the notation and recall some preliminary results and definitions. In Section 3 we focus on the factorizations in $M_{2}(D)$ and, in Theorems 3.3, 3.8 and 3.10, we identify several conditions on a pair of elements $p, q \in D$ under which the matrix $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ factors into idempotents. In this way we supplement the results in [4] by providing further families of 2×2 matrices over D that admit idempotent factorizations. Moreover, in Example 3.14 we exhibit a singular matrix in $M_{2}(D)$ for which the failure of the above conditions prevents an "easy" decomposition into idempotent factors. However the general problem whether D satisfies $\left(\mathrm{ID}_{2}\right)$ remains open.

2. Preliminaries and notation

Let R be a (commutative) integral domain. We will use the standard notations R^{\times}to denote its multiplicative group of units and $M_{n}(R)$ to denote the R-algebra of $n \times n$ matrices over R. A square matrix \mathbf{T} over R is said to be idempotent if $\mathbf{T}^{2}=\mathbf{T}$. A direct computation shows that a singular nonzero matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
over an arbitrary integral domain is idempotent if and only if $d=1-a$. For a singular matrix $\mathbf{S} \in M_{n}(R)$, the property of being a product of idempotent factors is preserved by similarity. This immediately leads to the following lemma.

Lemma 2.1 (Lemma 3.1 of [4]). Let R be an integral domain, $p, q \in R$. The matrix $\left(\begin{array}{rr}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices if and only if such is $\left(\begin{array}{ll}q & p \\ 0 & 0\end{array}\right)$.

The next result will also be useful in the following.
Lemma 2.2. Let p and q be nonzero elements of an integral domain R, and $\boldsymbol{M}=\left(\begin{array}{cc}p & q \\ 0 & 0\end{array}\right) \in M_{2}(R)$. If $\boldsymbol{M}=\boldsymbol{S} \cdot \boldsymbol{T}$, with $\boldsymbol{S}=\left(\begin{array}{cc}p^{\prime} & q^{\prime} \\ z & t\end{array}\right)$ a singular matrix and $\boldsymbol{T}=\left(\begin{array}{cc}a & b \\ c & 1-a\end{array}\right)$ an idempotent matrix over R, then \boldsymbol{S} has the form $\boldsymbol{S}=$ $\left(\begin{array}{cc}p^{\prime} & q^{\prime} \\ 0 & 0\end{array}\right)$.

We omit the proof, since it is essentially contained in that of Lemma 3.1 in [6].

Finally, we recall below two immediate factorizations in $M_{2}(R)$:

$$
\left(\begin{array}{cc}
p & 0 \tag{1}\\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1-p & 0
\end{array}\right) ;\left(\begin{array}{cc}
0 & q \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & q \\
0 & 1
\end{array}\right)
$$

From now on D will denote the minimal Dress rings of the field of rational functions $\mathbb{R}(X)$. In accordance with [4], we define the degree of a rational function f / g, with $f, g \in \mathbb{R}[X]$, as $\operatorname{deg}(f / g):=\operatorname{deg}(f)-\operatorname{deg}(g)$.

Following the notation in [4], let Γ be the set of the polynomials in $\mathbb{R}[X]$ that have no roots in \mathbb{R}. Then $\Gamma=\left\{\alpha \prod_{i} \gamma_{i}\right\}$, where the γ_{i} are monic degreetwo polynomials irreducible over $\mathbb{R}[X]$ and $0 \neq \alpha$ is a real number. Set $\Gamma^{+}=$ $\{f \in \mathbb{R}[X]: f(r)>0, \forall r \in \mathbb{R}\}$ and, correspondingly, $\Gamma^{-}=\left\{-f: f \in \Gamma^{+}\right\}$. By Proposition 2.1 in [4],

$$
D=\{f / \gamma: f \in \mathbb{R}[X], \gamma \in \Gamma, \operatorname{deg} f \leq \operatorname{deg} \gamma\}
$$

and

$$
D^{\times}=\left\{\gamma_{1} / \gamma_{2}: \gamma_{1}, \gamma_{2} \in \Gamma, \operatorname{deg} \gamma_{1}=\operatorname{deg} \gamma_{2}\right\}
$$

As recalled in the introduction, we know from Theorem 2.3 and Proposition 2.4 of [4] that D is a Dedekind domain which is not a principal ideal domain. As an example, the ideal generated by $1 / \gamma$ and X / γ, with $\gamma \in \Gamma \backslash \mathbb{R}$, is not principal. It is worth remarking that a non-constant polynomial of $\mathbb{R}[X]$ never lies in D.

Given a polynomial $f \in \mathbb{R}[X]$ we will denote as l.c. (f) its leading coefficient. In the following, given an element $p=f / \gamma \in D$ we will always assume that γ is a product of monic irreducible polynomials of degree 2 . We will then define the leading coefficient of a rational function $p \in D$ as the leading coefficient of its numerator.

3. Idempotent factorizations in $M_{2}(D)$

In this section we investigate property $\left(\mathrm{ID}_{2}\right)$ over D. We find sufficient conditions on the entries of a singular matrix over D to get a factorization into idempotents. We start recalling two results of [4] that we will need in our discussion.

Lemma 3.1 (Lemma 3.2 of [4]). Let x, y be non-zero polynomials in $\mathbb{R}[X]$ with $\operatorname{deg} x=\operatorname{deg} y$.
(a) If $y(u)>0($ or $y(u)<0)$ for every u root of x, then there exists $\beta \in \Gamma$ such that $\delta=x^{2}+y \beta \in \Gamma^{+}, \operatorname{deg} x-1 \leq \operatorname{deg} \beta \leq \operatorname{deg} x=\operatorname{deg} \delta / 2$.
(b) If $x(z)>0($ or $x(z)<0)$ for every z root of y, then there exists $\eta \in \Gamma$ such that $\delta=x \eta+y^{2} \in \Gamma^{+}$and $\operatorname{deg} y-1 \leq \operatorname{deg} \eta \leq \operatorname{deg} y=\operatorname{deg} \delta / 2$.

Theorem 3.2 (Th. 3.3 of [4]). Let p, q be elements of D. Then the matrix $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices if one of the following holds:
(i) $\operatorname{deg} p \geq \operatorname{deg} q$ and $q(u)>0($ or $q(u)<0)$ for every u root of p
(ii) $\operatorname{deg} q \geq \operatorname{deg} p$ and $p(z)>0($ or $p(z)<0)$ for every z root of q.

Two polynomials $x, y \in \mathbb{R}[X]$ are said to be weakly comaximal if $\operatorname{gcd}(x, y) \in$ Γ, i.e., if x and y have no common roots in \mathbb{R}. Let p and q be two elements of D. Then we can always write $p=x / \gamma$ and $q=y / \gamma$, with $\gamma \in \Gamma^{+}$and $x, y \in \mathbb{R}[X]$. We say that p and q are weakly comaximal if so are x and y. Given an element $p \in D$, we will write $p \geq 0$ (resp. $p \leq 0$) if $p(r) \geq 0$ (resp. $p(r) \leq 0$) for each $r \in \mathbb{R}$.

Theorem 3.3. Let p and q be weakly comaximal elements of D. If either $p \geq 0$ or $q \geq 0$, then the matrix $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices.

Proof. By Lemma $2.1,\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices if and only if such is $\left(\begin{array}{ll}q & p \\ 0 & 0\end{array}\right)$, therefore we can safely assume that $p \geq 0$.

Let us first consider the case $\operatorname{deg} p \geq \operatorname{deg} q$. We can assume without loss of generality that $\operatorname{deg} p=\operatorname{deg} q$. In fact, since $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is similar to $\left(\begin{array}{cc}p & p+q \\ 0 & 0\end{array}\right)$ and p and $p+q$ are still weakly comaximal, if $\operatorname{deg} p>\operatorname{deg} q$, it not restrictive to replace q with $p+q$. Thus, let $\operatorname{deg} p=\operatorname{deg} q$ and set $p=x / \gamma$ and $q=y / \gamma$, with $x, y \in \mathbb{R}[X], \gamma \in \Gamma^{+}$.

As a further reduction, we may assume that $\operatorname{deg} p=\operatorname{deg} q=0$. In fact, being $p \geq 0$, every root of p has even multiplicity and $\operatorname{deg} x$ is even. Moreover, if $\operatorname{deg} x<\operatorname{deg} \gamma$, taking any $\tau \in \Gamma^{+}$such that $\operatorname{deg} x=\operatorname{deg} \tau$,

$$
\left(\begin{array}{cc}
x / \gamma & y / \gamma \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\tau / \gamma & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x / \tau & y / \tau \\
0 & 0
\end{array}\right)
$$

is a factorization in $M_{2}(D)$ and, by $\sqrt[11]{ }$, the matrix on the left of the above equality is a product of idempotents if such is the second factor of the product on the right.

Since for every z root of $y, x(z)$ is always >0, we have got in the position to apply Lemma 3.1 (ii) to x and y. Therefore, there exists $\eta \in \Gamma$ such that $\delta=x \eta+y^{2} \in \Gamma^{+}$where $\operatorname{deg} \eta=\operatorname{deg} x$ and $\operatorname{deg} \delta=2 \operatorname{deg} \eta$.

Then, since $\operatorname{deg} x=\operatorname{deg} y=\operatorname{deg} \gamma=\operatorname{deg} \eta, \delta / \gamma \eta \in D^{\times}$and $x \eta / \delta, y \eta / \delta$, $x y / \delta, y^{2} / \delta \in D$. Moreover, the relation $1-x \eta / \delta=y^{2} / \delta$ implies that $\mathbf{T}=$ $\left(\begin{array}{cc}x \eta / \delta & y \eta / \delta \\ x y / \delta & y^{2} / \delta\end{array}\right)$ is an idempotent matrix over D. Therefore

$$
\left(\begin{array}{cc}
x / \gamma & y / \gamma \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\delta / \gamma \eta & 0 \\
0 & 0
\end{array}\right) \mathbf{T}
$$

and using (1) we conclude that $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices over D. On the other hand, if $\operatorname{deg} q>\operatorname{deg} p$, it suffices to apply Theorem 3.2 (ii).

Remark 3.4. The matrix $\left(\begin{array}{cc}p & q \\ 0 & 0\end{array}\right) \in M_{2}(D)$ is a product of idempotent matrices even if p and q are two comaximal elements of D such that either $p \leq 0$ or $q \leq 0$. The proof is basically the same as that of Theorem 3.3.

In what follows the symbol $f^{(j)}$ denotes the j-th derivative of the polynomial $f \in \mathbb{R}[X]$.

Lemma 3.5. Let $x, y \in \mathbb{R}[X]$ and $\varepsilon \in \mathbb{R}^{+}$be such that:

- y has 0 as unique root with multiplicity k;
- $x(0) \neq 0$;
- $y^{(i)}>0$ in $(0, \varepsilon]$ for $0 \leq i \leq k-1$;
- $y^{(k)}$ does not change sign in $(0, \varepsilon]$;
- $x^{(j)}$ is either zero or does not change sign in $(0, \varepsilon]$ for $0 \leq j \leq k$.

Then, there exists a real number $r_{0}>0$ such that, for every $r \in\left(0, r_{0}\right], r x+y$ has at most one root in $(0, \varepsilon]$, and exactly one root if $x<0$ in $(0, \varepsilon]$.

Proof. Note that $y^{(k)}(0) \neq 0$, hence $y^{(k)}$ has nonzero max and min in $[0, \varepsilon]$. Since, by assumption, $x^{(k)}$ is either zero or does not change sign in $(0, \varepsilon]$, an easy direct check shows that, for all possible signs, there exists $r_{0}>0$ such that, for every $r \in\left(0, r_{0}\right], r x^{(k)}+y^{(k)}$ is either strictly positive or negative in $[0, \varepsilon]$. It follows that $\forall r \in\left(0, r_{0}\right], r x^{(k-1)}+y^{(k-1)}$ is either increasing or decreasing in the interval and hence it has at most one root.

Let us consider the $(k-1)$-th derivative of $r x+y$. We distinguish three cases.
(i) If $x^{(k-1)} \geq 0$ in $(0, \varepsilon]$, then $r x^{(k-1)}+y^{(k-1)}>0$ in this neighborhood for every $r \in\left(0, r_{0}\right]$. Therefore, being increasing, $r x^{(k-2)}+y^{(k-2)}$ has at most a unique root in the interval.
(ii) If $x^{(k-1)}<0$ in $(0, \varepsilon]$ and $y^{(k-1)}(0) \neq 0$, then, by possibly choosing a smaller $r_{0}, r x^{(k-1)}+y^{(k-1)}$ is either strictly positive or negative in $[0, \varepsilon]$ for every $r \in\left(0, r_{0}\right]$, and again we get that $r x^{(k-2)}+y^{(k-2)}$ has at most a unique root.
(iii) If $x^{(k-1)}<0$ in $(0, \varepsilon]$ and $y^{(k-1)}(0)=0$, by possibly choosing a smaller $r_{0}, r x^{(k-1)}(\varepsilon)+y^{(k-1)}(\varepsilon)>0$ for every $r \in\left(0, r_{0}\right]$. Since $r x^{(k-1)}(0)+$ $y^{(k-1)}(0) \leq 0$, we have two possibilities: or $r x^{(k-1)}+y^{(k-1)}>0$ in $(0, \varepsilon]$ for every $r \in\left(0, r_{0}\right]$, or there exists $x_{k-1}^{r} \in(0, \varepsilon)$ such that $r x^{(k-1)}\left(x_{k-1}^{r}\right)+$ $y^{(k-1)}\left(x_{k-1}^{r}\right)=0$ and this zero is unique since $r x^{(k-1)}+y^{(k-1)}$ has at most one root. As a consequence, in the first case $r x^{(k-2)}+y^{(k-2)}$ is strictly increasing and admits at most one root, in the second case it decreases on $\left(0, x_{k-1}^{r}\right)$ and increases on $\left(x_{k-1}^{r}, \boldsymbol{\varepsilon}\right]$.

Let us now distinguish three more cases for the $(k-2)$-th derivative of $r x+y$.
(i) If $x^{(k-2)} \geq 0$ in $(0, \varepsilon]$, then $r x^{(k-2)}+y^{(k-2)}>0$ in this neighborhood for every $r \in\left(0, r_{0}\right]$, therefore $r x^{(k-3)}+y^{(k-3)}$ is increasing and it has at most a unique root in the interval.
(ii) If $x^{(k-2)}<0$ in $(0, \varepsilon]$ and $y^{(k-2)}(0) \neq 0$, then, by possibly choosing a smaller $r_{0}, r x^{(k-2)}+y^{(k-2)}$ is either strictly positive or negative in $[0, \varepsilon]$ for every $r \in\left(0, r_{0}\right]$, and again we get that $r x^{(k-3)}+y^{(k-3)}$ has at most a unique root.
(iii) If $x^{(k-2)}<0$ in $(0, \varepsilon]$ and $y^{(k-2)}(0)=0$, by possibly choosing a smaller $r_{0} r x^{(k-2)}(\varepsilon)+y^{(k-2)}(\varepsilon)>0$ for every $r \in\left(0, r_{0}\right]$. Since $r x^{(k-2)}(0)+$ $y^{(k-2)}(0) \leq 0$ we have two possibilities: $r x^{(k-2)}+y^{(k-2)}>0$ in $(0, \varepsilon]$ for every $r \in\left(0, r_{0}\right]$ or, for every $r \in\left(0, r_{0}\right]$, there exists $x_{k-2}^{r} \in(0, \varepsilon)$ zero of $r x^{(k-2)}+y^{(k-2)}$. By the previous step $r x^{(k-2)}+y^{(k-2)}$ is either increasing or has a unique critical point on $(0, \varepsilon]$. In both this cases we cannot have other roots besides x_{k-2}^{r}. As a consequence $r x^{(k-3)}+y^{(k-3)}$ is either strictly increasing or it decreases on $\left(0, x_{k-2}^{r}\right)$ and increases on $\left(x_{k-2}^{r}, \boldsymbol{\varepsilon}\right]$.

Iterating the procedure, after k steps we obtain that there exists a real number $r_{0}>0$ such that, for every $r \in\left(0, r_{0}\right], r x+y$ has at most a unique root in $(0, \varepsilon]$ and exactly one root if $x<0$ in $(0, \varepsilon]$.

Remark 3.6. In the hypothesis of the above Lemma 3.5, if $k=1$, the proof becomes much easier. If $x>0$ in $(0, \varepsilon], r x+y>0$ for every positive $r \in \mathbb{R}$. Let us assume henceforth that $x<0$ in $(0, \varepsilon]$. There always exists a suitable $r_{0}>0$ such that $r x(\varepsilon)+y(\varepsilon)>0$ for every $r \in\left(0, r_{0}\right]$. Since $y(0)=0$ and $y(\varepsilon)>0$, it must be $y^{\prime}>0$ on $(0, \varepsilon]$. If in the same interval $x^{\prime} \geq 0$ then $r x^{\prime}+y^{\prime}>0$ and since $r x(0)+y(0)<0, r x+y$ has a unique root in $(0, \varepsilon]$ for every $r \in\left(0, r_{0}\right]$. If $x^{\prime}<0$ in $(0, \varepsilon]$, by possibly choosing a smaller $r_{0}, r x^{\prime}+y^{\prime}$ is still strictly positive in $(0, \varepsilon]$ for every $r \in\left(0, r_{0}\right]$ and we conclude as before.

Lemma 3.7. Let x, y be polynomials in $\mathbb{R}[X]$ without common roots, such that $\operatorname{deg} x$ and $\operatorname{deg} y$ are odd, $\operatorname{deg} x>\operatorname{deg} y, y$ has a unique root and there exist $x_{1}, x_{2} \in$ \mathbb{R} roots of x such that $y\left(x_{1}\right) y\left(x_{2}\right)<0$. Then, there exists a suitable $r \in \mathbb{R}$, such that $r x+y$ has a unique root.

Proof. It is not restrictive to assume $\lim _{X \rightarrow \pm \infty} x y=+\infty$. If the leading coefficients l.c. (x) and l.c. (y) are discordant the proof can be accordingly adapted by replacing r with $-r$.

Let $\lim _{X \rightarrow \pm \infty} x, y= \pm \infty$. The case $\lim _{X \rightarrow \pm \infty} x, y=\mp \infty$ is analogous. Up to a suitable translation we can assume $y(0)=0, x_{1}<0$ and $x_{2}>0$. Let k be the (odd) multiplicity of 0 as a root of y. Let $I_{0}=(-\varepsilon, \varepsilon)$ be a sufficiently small neighborhood of 0 such that $x<0$ and y is strictly increasing in I_{0}. The case $x>0$ in I_{0} can be treated similarly in the interval $[-\varepsilon, 0)$. By possibly choosing a smaller ε, we may assume that in the interval $(0, \varepsilon] y^{(i)}>0$ for $1 \leq i \leq k-1$, $y^{(k)}$ does not change sign and $x^{(j)}$ is either zero or does not change sign for
$1 \leq j \leq k$. By Lemma 3.5 there exists a real number $r_{0}>0$ such that, for any $r \in\left(0, r_{0}\right], r x+y$ has a unique root on $[0, \varepsilon]$. Let us observe that, in $[-\varepsilon, 0]$, $r x+y<0$ for every positive r.

Now take $M \in \mathbb{R}^{+}$such that $x y>0$ for all X such that $|X|>M$. Clearly, for every $r>0, r x+y$ has no roots for $|X|>M$. We consider the closed intervals $I_{1}=[-M,-\varepsilon]$ and $I_{2}=[\varepsilon, M]$. Let $M_{x}=\max _{I_{1} \cup I_{2}}|x|>0$ and $m_{y}=\min _{I_{1} \cup I_{2}}|y|$. Since y has no roots other than 0 , clearly $m_{y}>0$. By choosing $0<r<m_{y} / M_{x}$ the polynomial $r x+y$ has no zeroes in $I_{1} \cup I_{2}$.

We conclude by choosing any $0<r<\min \left\{r_{0}, m_{y} / M_{x}\right\}$.

Theorem 3.8. Let p and q be elements of D. If $\operatorname{deg} p, \operatorname{deg} q$ are odd and either p or q has a unique root, then the matrix $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices.

Proof. By Lemma 2.1, we can safely assume that q has a unique root. We first consider the case p and q weakly comaximal.

If $\operatorname{deg} q \geq \operatorname{deg} p$, since q has a unique root and p and q have no common factors, the hypothesis of Th. 3.2 (ii) are satisfied.

If $\operatorname{deg} p>\operatorname{deg} q$ we distinguish two cases. If q does not change sign on the roots of p, we are done by Theorem 3.2 (i). Otherwise, by Lemma 3.7, it is always possible to find a suitable $r \in \mathbb{R}$ such that $r p+q$ has a unique root. Therefore, by Theorem 3.2 (ii), the matrix $\left(\begin{array}{cc}p & r p+q \\ 0 & 0\end{array}\right)$, similar to $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$, is a product of idempotent matrices.

Now consider the case of p and q not weakly comaximal. If $p=x / \gamma$ and $q=y / \gamma$, with $\gamma \in \Gamma^{+}$and $x, y \in \mathbb{R}[X], x$ and y have a common root. Since q has odd degree and a unique root $z \in \mathbb{R}$, we have $x=(X-z)^{h} \bar{x}$ and $y=(X-z)^{k} \bar{y}$ with k, h positive integers, k odd, $\bar{y} \in \Gamma, \bar{x} \in \mathbb{R}[X]$ and $\operatorname{gcd}(X-z, \bar{x})=1$. Let us choose any $\delta \in \Gamma^{+}$such that either $\operatorname{deg} \delta=\min \{k, h\}$ or $\operatorname{deg} \delta=\min \{k, h\}+1$, in accordance with the parity of $\min \{k, h\}$. Since $\max \{\operatorname{deg} p, \operatorname{deg} q\}<0,\left(\begin{array}{cc}p & q \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{cc}(X-z)^{\min \{k, h\}} / \delta & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}(X-z)^{h-\min \{k, h\}} \bar{x} \delta / \gamma & (X-z)^{k-\min \{k, h\}} \bar{y} \boldsymbol{\delta} / \gamma \\ 0 & 0\end{array}\right)$ is a factorization in $M_{2}(D)$ and, by (1), $\left(\begin{array}{cc}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices if such is $\mathbf{S}=\left(\begin{array}{cc}(X-z)^{h-\min \{k, h\}} \bar{x} \boldsymbol{\delta} / \gamma & (X-z)^{k-\min \{k, h\}} \bar{y} \boldsymbol{\delta} / \gamma \\ 0 & 0\end{array}\right)$. Let us remark that the elements of the first row of $\mathbf{S},(X-z)^{h-\min \{k, h\}} \bar{x} \delta / \gamma$ and $(X-$ $z)^{k-\min \{k, h\}} \bar{y} \delta / \gamma$, are now weakly comaximal.

If $h \geq k$, then $\mathbf{S}=\left(\begin{array}{cc}(X-z)^{h-k} \bar{x} \delta / \gamma & \bar{y} \delta / \gamma \\ 0 & 0\end{array}\right)$. Since $\bar{y} \delta \in \Gamma$, then $\bar{y} \delta / \gamma \geq 0$ or $\bar{y} \delta / \gamma \leq 0$. In the first case we conclude by applying Theorem 3.3; in the second, by applying the analogous of Theorem 3.3 stated in remark 3.4 .

If $k>h$, we get $\mathbf{S}=\left(\begin{array}{cc}\bar{x} \delta / \gamma & (X-z)^{k-h} \overline{\bar{y}} \delta / \gamma \\ 0 & 0\end{array}\right)$. If h is even, then $\operatorname{deg} \bar{x}$ is odd, since $\operatorname{deg} x=h+\operatorname{deg} \bar{x}$ is odd. Moreover also $k-h$ is odd. It follows that $\bar{x} \delta / \gamma$ and $(X-z)^{k-h} \bar{y} \delta / \gamma$ are two weakly comaximal element of D with odd degree and, being \bar{y} and δ elements of $\Gamma,(X-z)^{k-h} \bar{y} \delta / \gamma$ has a unique root $z \in \mathbb{R}$. Therefore, from the first part of the proof, we conclude that \mathbf{S} is a product of idempotent matrices. If h is odd, being $k-h$ even, $(X-z)^{k-h} \bar{y} \delta$ is always ≥ 0 or ≤ 0 and we conclude by applying Theorem 3.3 (or its analogous in remark 3.4).

All possible cases have been examined.
Lemma 3.9. Let x, y be polynomials in $\mathbb{R}[X]$ without common roots, such that $\operatorname{deg} x$ is even, $\operatorname{deg} y$ is odd, $\operatorname{deg} x>\operatorname{deg} y, y$ has a unique root y_{1} and there exist $x_{1}, x_{2} \in \mathbb{R}$ roots of x such that $y\left(x_{1}\right) y\left(x_{2}\right)<0$. Then, there exists a suitable $r \in \mathbb{R}$, such that $r x+y$ has exactly two distinct roots $z_{1}, z_{2} \in \mathbb{R}$. Moreover, if the sign of $x\left(y_{1}\right)$ and that of the leading coefficient of x are the same (resp. opposite), then $x\left(z_{1}\right) x\left(z_{2}\right)>0\left(\right.$ resp. $\left.x\left(z_{1}\right) x\left(z_{2}\right)<0\right)$.

Proof. We assume that $\lim _{X \rightarrow \pm \infty} x=+\infty$ and $\lim _{X \rightarrow \pm \infty} y= \pm \infty$. If the leading coefficients 1.c. (x) and 1.c. (y) have opposite signs or they are both negative, the proof can be easily adapted.

Up to a suitable translation we can assume $y(0)=0, x_{1}<0$ and $x_{2}>0$. Let k be the (odd) multiplicity of 0 as root of y. Let $I_{0}=(-\varepsilon, \varepsilon)$ be a sufficiently small neighborhood of 0 such that $x<0$ in I_{0} and, in $(0, \varepsilon], y^{(i)}>0$ for $1 \leq i \leq k-1$, $y^{(k)}$ does not change sign and $x^{(j)}$ is either zero or does not change sign for $1 \leq j \leq k$. The case $x>0$ in I_{0} can be similarly treated in the neighborhood $[-\varepsilon, 0)$. Under the above assumptions, by Lemma 3.5 there exists a real number $r_{0}>0$ such that, for any assigned $r \in\left(0, r_{0}\right], r x+y$ has a unique root in $[0, \varepsilon]$. Let us observe that in $[-\varepsilon, 0] r x+y<0$ for every positive r.

Take $M \in \mathbb{R}^{+}$such that $x, y>0$ in the interval $[M,+\infty)$. Clearly, for every $r>0, r x+y$ has no roots in $(0, M)$.

Now we choose $N \in \mathbb{R}^{+}$such that $x>0, y<0$ for $X \leq-N$ and $x^{\prime}>0$ and $y^{\prime}<0$ in the interval $(-\infty,-N)$. Under these assumptions, there exists a real number $r_{1}>0$ such that, for any assigned $r \in\left(0, r_{1}\right], r x^{\prime}+y^{\prime}<0$ and $(r x+y)(-N)<0$. Therefore, $r x+y$ has a unique root in $(-\infty,-N]$ for every $r \in\left(0, r_{1}\right]$.

Let us consider the closed intervals $I_{1}=[-N,-\varepsilon]$ and $I_{2}=[\varepsilon, M]$. Let $M_{x}=\max _{I_{1} \cup U_{2}}|x|>0$ and $m_{y}=\min _{I_{1} \cup U_{2}}|y|>0(y$ has no roots other than 0$)$.

By choosing $0<r<m_{y} / M_{x}$ the polynomial $r x+y$ has no zeroes in $I_{1} \cup I_{2}$.
We can conclude by choosing any $0<r<\min \left\{r_{0}, r_{1}, m_{y} / M_{x}\right\}$.
The last statement of the theorem follows immediately by construction.
Theorem 3.10. Let p and q be two weakly comaximal elements of D. If $\operatorname{deg} p$ is even, $\operatorname{deg} q$ is odd and either p has a unique root or q has a unique root u such that $p(u)$ has the same sign of the leading coefficient of p, then the matrix $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices.

Proof. We start assuming that p has a unique root. Since p has even degree it is not restrictive to assume that $p \geq 0$. Then we conclude by Theorem 3.3.

Assume now that q has a unique root u and that $p(u)$ has the same sign of the leading coefficient of p. We distinguish two cases.

If $\operatorname{deg} q>\operatorname{deg} p$, since q has a unique root and p and q do not have common factors, we conclude by applying Th. 3.2 (ii).

If $\operatorname{deg} p>\operatorname{deg} q$ we have two possibilities. If q does not change sign on the roots of p, we are done by Theorem 3.2 (i). Otherwise, by Lemma 3.9, it is always possible to find a suitable $r \in \mathbb{R}$ such that $r p+q$ has exactly two roots z_{1}, z_{2} such that $x\left(z_{1}\right) x\left(z_{2}\right)>0$. Therefore, by Theorem 3.2 (ii), the matrix $\left(\begin{array}{cc}p & r p+q \\ 0 & 0\end{array}\right)$, similar to $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$, is a product of idempotent matrices.

Remark 3.11. Let $p=x / \gamma$ and $q=y / \gamma$ be elements of D such that $\max \{\operatorname{deg} p$, $\operatorname{deg} q\}=0$. If p and q have a common factor $M \notin \Gamma$, whenever the degree of M is odd and $\operatorname{deg} \delta \geq 1+\operatorname{deg} M$, the decomposition

$$
\left(\begin{array}{cc}
p & q \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
M / \boldsymbol{\delta} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x \delta / M \gamma & y \delta / M \gamma \\
0 & 0
\end{array}\right)
$$

is not a factorization in D since $\max \{\operatorname{deg}(x \delta / M \gamma), \operatorname{deg}(y \delta / M \gamma)\} \geq 1$. For this reason, we cannot generalize Theorem 3.10 to the non-comaximal case as we have done in Theorem 3.8.

However, under the additional hypothesis that $\max \{\operatorname{deg} p, \operatorname{deg} q\}<0$, the following corollary holds.

Corollary 3.12. Let $p=(X-z)^{k} \bar{x} / \gamma$ and $q=(X-z)^{h} \bar{y} / \gamma$, with $k, h \in \mathbb{N}^{+}, \bar{x}, \bar{y} \in$ $\mathbb{R}[X], \gamma \in \Gamma^{+}, \bar{x}(z) \neq 0, \bar{y}(z) \neq 0$ be two elements of D such that $\max \{\operatorname{deg} p$, $\operatorname{deg} q\}<0$. If $\operatorname{deg} p$ is even, $\operatorname{deg} q$ is odd and either p has z as unique root and $\operatorname{sgn}(\bar{y}(z))=\operatorname{sgn}($ l.c. $(\bar{y}))$ or q has z as unique root and $\operatorname{sgn}(\bar{x}(z))=\operatorname{sgn}($ l.c. $(\bar{x}))$, then the matrix $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices.

Proof. We skip the details of the proof since it is analogous to the second part of the proof of Theorem 3.8 . We reach our conclusion by properly applying Theorems 3.3 and 3.10 and using (1).

Remark 3.13. It is worth noting that the pairs $(p, q) \in D^{2}$ such that $\left(\begin{array}{cc}p & q \\ 0 & 0\end{array}\right)$ is a product of idempotent matrices can generate both principal and non-principal ideals of D. Thus, this characterization of the elements p and q is not related to the idempotent factorization of $\left(\begin{array}{cc}p & q \\ 0 & 0\end{array}\right)$. The same fact can be observed in [5] for the factorization into idempotent factors of matrices of the form $\left(\begin{array}{ll}p & q \\ 0 & 0\end{array}\right)$ over real quadratic integer rings.

Theorems $3.3,3.8,3.10$ and Corollary 3.12 contribute to narrow down the class of singular dimension 2 matrices over D that might not admit an idempotent factorization. We provide an explicit example here below.

Example 3.14. The simplest example of 2×2 singular matrix over D to which the above results do not apply and for which we cannot prove or disprove the existence of an idempotent factorization is the matrix

$$
\mathbf{M}=\left(\begin{array}{cc}
\left(X^{2}-1\right) /\left(1+X^{2}\right) & X /\left(1+X^{2}\right) \\
0 & 0
\end{array}\right)
$$

Nevertheless, it can bee seen without too much effort that \mathbf{M} does not admit "easy" idempotent decompositions.

First of all, \mathbf{M} cannot factor in $M_{2}(D)$ as $\mathbf{M}=\left(\begin{array}{ll}p^{\prime} & 0 \\ 0 & 0\end{array}\right) \mathbf{T}$, with \mathbf{T} idempotent. Let $p^{\prime}=x^{\prime} / \eta, a=a^{\prime} / \delta, b=b^{\prime} / \delta, c=c^{\prime} / \delta \in D, a(1-a)=b c$ and assume by contradiction that

$$
\mathbf{M}=\left(\begin{array}{cc}
p^{\prime} & 0 \tag{2}\\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a & b \\
c & 1-a
\end{array}\right)
$$

The matrix equation (2) leads to the equalities

$$
\left(X^{2}-1\right) / X=a^{\prime} / b^{\prime}=c^{\prime} /\left(\delta-a^{\prime}\right)
$$

It follows that there exist $t, s \in \mathbb{R}[X]$ such that $a^{\prime}=\left(X^{2}-1\right) t, b^{\prime}=X t, c^{\prime}=$ $\left(X^{2}-1\right) s$ and $\delta-a^{\prime}=X s$. Therefore,

$$
\begin{equation*}
\left(X^{2}-1\right) t+X s=\delta \tag{3}
\end{equation*}
$$

The assumption that $a, b, c \in D$ also implies that $\operatorname{deg} t+2, \operatorname{deg} s+2 \leq \operatorname{deg} \delta$ hence, by (3), $\operatorname{deg} \delta=\operatorname{deg} t+2<\operatorname{deg} s+1$ and $\operatorname{deg} t$ is even. Moreover, being δ a monic polynomial in Γ^{+}, t is monic as well and, since $\delta(0)=-t(0)>0$, there exist $t_{1}, t_{2} \in \mathbb{R}$ roots of t such that t is negative in $\left(t_{1}, t_{2}\right)$. Now, from the product in (2), we have that $\left(X^{2}-1\right) /\left(1+X^{2}\right)=p^{\prime} a$, i.e., $x^{\prime} t=\eta \delta /\left(1+X^{2}\right) \in \Gamma^{+}$. But this is impossible since $t \notin \Gamma$. Analogous arguments show that \mathbf{M} cannot factor in $M_{2}(D)$ as $\mathbf{M}=\left(\begin{array}{ll}0 & q^{\prime} \\ 0 & 0\end{array}\right) \mathbf{T}$, with \mathbf{T} idempotent.

Moreover, it is also easy to show that \mathbf{M} cannot be written as a product of two idempotent matrices. If we assume by contradiction that this happens, by Lemma 2.2.

$$
\mathbf{M}=\left(\begin{array}{cc}
1 & q^{\prime} \tag{4}\\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a & b \\
c & 1-a
\end{array}\right)
$$

with $q^{\prime}, a, b, c \in D$ and $a(1-a)=b c$. Set $q^{\prime}=y^{\prime} / \eta, a=a^{\prime} / \delta, b=b^{\prime} / \delta, c=$ c^{\prime} / δ. Arguing as in the previous case, the matrix equation (4) implies that there exist $t, s \in \mathbb{R}[X]$ such that

$$
\left(X^{2}-1\right) t+X s=\delta
$$

and

$$
\eta t+y^{\prime} s=\eta \delta /\left(1+X^{2}\right)
$$

Evaluating the first equality in +1 and -1 , we get $s(-1) s(1)<0$. It follows that there exists a root of $s s_{1} \in(-1,1)$ and that $t\left(s_{1}\right)=\delta\left(s_{1}\right) /\left(s_{1}^{2}-1\right)<0$. Evaluating the second equality in s_{1} we obtain the contradiction $t\left(s_{1}\right)=\delta\left(s_{1}\right) /\left(s_{1}^{2}+\right.$ 1) >0.

Remark 3.15. As recalled in the introduction, Salce and Zanardo conjectured in [11] that every integral domain R satisfying the property $\left(\mathrm{ID}_{2}\right)$ should be a Bézout domain. The conjecture, suggested by previous results by Laffey [9], Ruitenburg [10] and Bhaskara Rao [1], is motivated by many positive cases. Unique factorization domains, projective-free domains, local domains and PRINC domains (introduced in [11]) turn to be Bézout whenever they satisfy property $\left(\mathrm{ID}_{2}\right)$. In [3] it is proved that if every singular 2×2 matrix over R is a product of idempotent matrices, then R is a Prüfer domain such that every invertible 2×2 matrix over R is a product of elementary matrices. Also, interesting examples of Prüfer non Bézout domains not satisfying $\left(\mathrm{ID}_{2}\right)$ were provided. On the other hand, the recent paper [5] raised some doubts on the general validity of the conjecture. In fact, the authors showed that the large family of dimension 2 column-row matrices over a real quadratic integer ring \mathcal{O} factorize as products of idempotent matrices, even when \mathcal{O} is not a Bézout domain. The failure of property $\left(\mathrm{ID}_{2}\right)$ for the minimal Dress ring D of $\mathbb{R}(X)$ should be proved using matrices similar to that in the above example.

REFERENCES

[1] K. P. S. Bhaskara Rao, Products of idempotent matrices over integral domains, Linear Algebra Appl. 430(10) (2009), 2690-2695.
[2] P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5-53.
[3] L. Cossu - P. Zanardo, Factorizations into idempotent factors of matrices over Prüfer domains, Comm. Algebra 47 (4) (2019), 1818-1828.
[4] L. Cossu - P. Zanardo, Minimal Prüfer-Dress rings and products of idempotent matrices, Houston J. Math 45 (4) (2019), 979-994.
[5] L. Cossu - P. Zanardo, Idempotent factorizations of singular 2×2 matrices over quadratic integer rings, Linear Multilinear Algebra 70 (2) (2022), 297-309.
[6] L. Cossu - P. Zanardo - U. Zannier, Products of elementary matrices and nonEuclidean principal ideal domains, J. Algebra 501 (2018), 182-205.
[7] A. Dress, Lotschnittebenen mit halbierbarem rechtem Winkel, Arch. Math. (Basel) 16 (1965), 388-392.
[8] S. K. Jain - A. Leroy, Decomposition of singular elements of an algebra into product of idempotents, a survey, Contributions in algebra and algebraic geometry, Contemp. Math., Amer. Math. Soc., Providence, RI, 738 (2019), 57-74.
[9] T. J. Laffey, Products of idempotent matrices, Linear Multilinear Algebra 14 (4)(1983), 309-314.
[10] W. Ruitenburg, Products of idempotent matrices over Hermite domains, Semigroup Forum 46 (3) (1993), 371-378.
[11] L. Salce - P. Zanardo, Products of elementary and idempotent matrices over integral domains, Linear Algebra Appl. 452 (2014), 130-152.

L. COSSU
Institut für Mathematik und Wissenschaftliches Rechnen
Karl-Franzens-Universität Graz
Heinrichstraße 36, 8010 Graz (Austria)
e-mail: laura.cossu@uni-graz.at

