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IDEMPOTENT FACTORIZATION OF MATRICES OVER A
PRÜFER DOMAIN OF RATIONAL FUNCTIONS

L. COSSU

We consider the smallest subring D of R(X) containing every element
of the form 1/(1+ x2), with x ∈ R(X). D is a Prüfer domain called the
minimal Dress ring of R(X). In this paper, addressing a general open
problem for Prüfer non Bézout domains, we investigate whether 2× 2
singular matrices over D can be decomposed as products of idempotent
matrices. We show some conditions that guarantee the idempotent factor-
ization in M2(D).

1. Introduction

In 1965 Andreas Dress [7] introduced a family of Prüfer domains constructed
as subrings DK of a field K containing every element of the form 1/(1+x2), for
x ∈ K. Given a field K not containing square roots of −1, the subring of K gen-
erated by {(1+ x2)−1 : x ∈ K} is said to be the minimal Prüfer-Dress ring (or
simply the minimal Dress ring) of K. We refer to [7] and [4] for more details on
these domains. In the paper [4], the authors investigated minimal Dress rings of
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This research was partially supported by the ”Ernst Mach Grant - worldwide” of the Austria’s
Agency for Education and Internationalisation (OeAD), under the project ICM-2020-00054 “Fac-
torization theory in matrix rings”.
The author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le
loro Applicazioni (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM).



34 L. COSSU

special classes of fields: Henselian fields, ordered fields and formally real fields
(e.g., R(A), with A a set of indeterminates). They focused in particular on the
minimal Dress ring D of the field of real rational functions R(X), characterizing
its elements [4, Prop. 2.1] and ideals [4, Prop. 2.4] and proving that D is a
Dedekind domain (i.e., a Noetherian Prüfer domain) that is not a principal ideal
domain [4, Th. 2.3]. They also identified a family of 2× 2 singular matrices
over D that can be written as a product of idempotent factors [4, Th. 3.3]. The
study of the factorization of singular square matrices over rings as product of
idempotent matrices has raised a remarkable interest both in the commutative
and non-commutative setting since the middle of the 1960’s (see [8, 11]). We
say that an integral domain R satisfies the property (ID2) if every 2×2 singular
matrix over R is a product of idempotent factors. A natural and well motivated
conjecture, proposed by Salce and Zanardo in [11] and then investigated in [3]
and [5], asserts that every domain R satisfying (ID2) must be a Bézout domain,
namely, every finitely generated ideal of R must be principal. Note that the re-
verse implication is false: not every Bézout domain verifies (ID2) (see [2, 6]).
In [3] it is proved that if R satisfies (ID2), then every finitely generated ideal of R
is invertible and so R is a Prüfer domain. Therefore, it is not restrictive to study
(ID2) within this class of domains and, in view of the above conjecture, we ex-
pect that for every Prüfer non-Bézout domain R there exists at least one singular
matrix in M2(R) that cannot be written as a product of idempotent factors.

In this paper we develop the investigation started in [4] on idempotent fac-
torizations of 2×2 matrices over the minimal Dress ring D of R(X). In Section
2 we fix the notation and recall some preliminary results and definitions. In Sec-
tion 3 we focus on the factorizations in M2(D) and, in Theorems 3.3, 3.8 and
3.10, we identify several conditions on a pair of elements p,q ∈ D under which

the matrix
(

p q
0 0

)
factors into idempotents. In this way we supplement the

results in [4] by providing further families of 2× 2 matrices over D that admit
idempotent factorizations. Moreover, in Example 3.14 we exhibit a singular ma-
trix in M2(D) for which the failure of the above conditions prevents an “easy”
decomposition into idempotent factors. However the general problem whether
D satisfies (ID2) remains open.

2. Preliminaries and notation

Let R be a (commutative) integral domain. We will use the standard notations
R× to denote its multiplicative group of units and Mn(R) to denote the R-algebra
of n× n matrices over R. A square matrix T over R is said to be idempotent if

T2 = T. A direct computation shows that a singular nonzero matrix
(

a b
c d

)
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over an arbitrary integral domain is idempotent if and only if d = 1− a. For a
singular matrix S∈Mn(R), the property of being a product of idempotent factors
is preserved by similarity. This immediately leads to the following lemma.

Lemma 2.1 (Lemma 3.1 of [4]). Let R be an integral domain, p,q ∈ R. The ma-

trix
(

p q
0 0

)
is a product of idempotent matrices if and only if such is

(
q p
0 0

)
.

The next result will also be useful in the following.

Lemma 2.2. Let p and q be nonzero elements of an integral domain R, and

M =

(
p q
0 0

)
∈ M2(R). If M = S ·T, with S =

(
p′ q′

z t

)
a singular matrix

and T =

(
a b
c 1−a

)
an idempotent matrix over R, then S has the form S =(

p′ q′

0 0

)
.

We omit the proof, since it is essentially contained in that of Lemma 3.1 in
[6].

Finally, we recall below two immediate factorizations in M2(R):(
p 0
0 0

)
=

(
1 −1
0 0

)(
1 0

1− p 0

)
;
(

0 q
0 0

)
=

(
1 0
0 0

)(
0 q
0 1

)
. (1)

From now on D will denote the minimal Dress rings of the field of rational
functions R(X). In accordance with [4], we define the degree of a rational
function f/g, with f ,g ∈ R[X ], as deg( f/g) := deg( f )−deg(g).

Following the notation in [4], let Γ be the set of the polynomials in R[X ]
that have no roots in R. Then Γ = {α ∏i γi}, where the γi are monic degree-
two polynomials irreducible over R[X ] and 0 ̸= α is a real number. Set Γ+ =
{ f ∈ R[X ] : f (r)> 0,∀r ∈ R} and, correspondingly, Γ− = {− f : f ∈ Γ+}. By
Proposition 2.1 in [4],

D = { f/γ : f ∈ R[X ],γ ∈ Γ,deg f ≤ degγ},

and
D× = {γ1/γ2 : γ1,γ2 ∈ Γ,degγ1 = degγ2}.

As recalled in the introduction, we know from Theorem 2.3 and Proposition 2.4
of [4] that D is a Dedekind domain which is not a principal ideal domain. As an
example, the ideal generated by 1/γ and X/γ , with γ ∈ Γ\R, is not principal. It
is worth remarking that a non-constant polynomial of R[X ] never lies in D.
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Given a polynomial f ∈ R[X ] we will denote as l.c.( f ) its leading coeffi-
cient. In the following, given an element p = f/γ ∈ D we will always assume
that γ is a product of monic irreducible polynomials of degree 2. We will then
define the leading coefficient of a rational function p ∈ D as the leading coeffi-
cient of its numerator.

3. Idempotent factorizations in M2(D)

In this section we investigate property (ID2) over D. We find sufficient con-
ditions on the entries of a singular matrix over D to get a factorization into
idempotents. We start recalling two results of [4] that we will need in our dis-
cussion.

Lemma 3.1 (Lemma 3.2 of [4]). Let x,y be non-zero polynomials in R[X ] with
degx = degy.

(a) If y(u) > 0 (or y(u) < 0) for every u root of x, then there exists β ∈ Γ such
that δ = x2 + yβ ∈ Γ+, degx−1 ≤ degβ ≤ degx = degδ/2.

(b) If x(z) > 0 (or x(z) < 0) for every z root of y, then there exists η ∈ Γ such
that δ = xη + y2 ∈ Γ+ and degy−1 ≤ degη ≤ degy = degδ/2.

Theorem 3.2 (Th. 3.3 of [4]). Let p, q be elements of D. Then the matrix(
p q
0 0

)
is a product of idempotent matrices if one of the following holds:

(i) deg p ≥ degq and q(u)> 0 (or q(u)< 0) for every u root of p

(ii) degq ≥ deg p and p(z)> 0 (or p(z)< 0) for every z root of q.

Two polynomials x,y ∈R[X ] are said to be weakly comaximal if gcd(x,y) ∈
Γ, i.e., if x and y have no common roots in R. Let p and q be two elements of D.
Then we can always write p = x/γ and q = y/γ , with γ ∈ Γ+ and x,y ∈ R[X ].
We say that p and q are weakly comaximal if so are x and y. Given an element
p ∈ D, we will write p ≥ 0 (resp. p ≤ 0) if p(r) ≥ 0 (resp. p(r) ≤ 0) for each
r ∈ R.

Theorem 3.3. Let p and q be weakly comaximal elements of D. If either p ≥ 0

or q ≥ 0, then the matrix
(

p q
0 0

)
is a product of idempotent matrices.

Proof. By Lemma 2.1,
(

p q
0 0

)
is a product of idempotent matrices if and only

if such is
(

q p
0 0

)
, therefore we can safely assume that p ≥ 0.
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Let us first consider the case deg p ≥ degq. We can assume without loss of

generality that deg p = degq. In fact, since
(

p q
0 0

)
is similar to

(
p p+q
0 0

)
and p and p+q are still weakly comaximal, if deg p > degq, it not restrictive to
replace q with p+q. Thus, let deg p = degq and set p = x/γ and q = y/γ , with
x,y ∈ R[X ], γ ∈ Γ+.

As a further reduction, we may assume that deg p = degq = 0. In fact,
being p ≥ 0, every root of p has even multiplicity and degx is even. Moreover,
if degx < degγ , taking any τ ∈ Γ+ such that degx = degτ ,(

x/γ y/γ

0 0

)
=

(
τ/γ 0

0 0

)(
x/τ y/τ

0 0

)
is a factorization in M2(D) and, by (1), the matrix on the left of the above equal-
ity is a product of idempotents if such is the second factor of the product on the
right.

Since for every z root of y, x(z) is always > 0, we have got in the position
to apply Lemma 3.1 (ii) to x and y. Therefore, there exists η ∈ Γ such that
δ = xη + y2 ∈ Γ+ where degη = degx and degδ = 2degη .

Then, since degx = degy = degγ = degη , δ/γη ∈ D× and xη/δ , yη/δ ,
xy/δ , y2/δ ∈ D. Moreover, the relation 1− xη/δ = y2/δ implies that T =(

xη/δ yη/δ

xy/δ y2/δ

)
is an idempotent matrix over D. Therefore

(
x/γ y/γ

0 0

)
=

(
δ/γη 0

0 0

)
T,

and using (1) we conclude that
(

p q
0 0

)
is a product of idempotent matrices

over D. On the other hand, if degq > deg p, it suffices to apply Theorem 3.2
(ii).

Remark 3.4. The matrix
(

p q
0 0

)
∈ M2(D) is a product of idempotent matrices

even if p and q are two comaximal elements of D such that either p≤ 0 or q≤ 0.
The proof is basically the same as that of Theorem 3.3.

In what follows the symbol f ( j) denotes the j-th derivative of the polynomial
f ∈ R[X ].

Lemma 3.5. Let x,y ∈ R[X ] and ε ∈ R+ be such that:

• y has 0 as unique root with multiplicity k;
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• x(0) ̸= 0;

• y(i) > 0 in (0,ε] for 0 ≤ i ≤ k−1 ;

• y(k) does not change sign in (0,ε];

• x( j) is either zero or does not change sign in (0,ε] for 0 ≤ j ≤ k.

Then, there exists a real number r0 > 0 such that, for every r ∈ (0,r0], rx+y has
at most one root in (0,ε], and exactly one root if x < 0 in (0,ε].

Proof. Note that y(k)(0) ̸= 0, hence y(k) has nonzero max and min in [0,ε].
Since, by assumption, x(k) is either zero or does not change sign in (0,ε], an
easy direct check shows that, for all possible signs, there exists r0 > 0 such that,
for every r ∈ (0,r0], rx(k)+ y(k) is either strictly positive or negative in [0,ε]. It
follows that ∀r ∈ (0,r0], rx(k−1)+y(k−1) is either increasing or decreasing in the
interval and hence it has at most one root.

Let us consider the (k − 1)-th derivative of rx + y. We distinguish three
cases.

(i) If x(k−1) ≥ 0 in (0,ε], then rx(k−1)+ y(k−1) > 0 in this neighborhood for
every r ∈ ( 0, r0 ]. Therefore, being increasing, rx(k−2)+y(k−2) has at most
a unique root in the interval.

(ii) If x(k−1) < 0 in (0,ε] and y(k−1)(0) ̸= 0, then, by possibly choosing a
smaller r0, rx(k−1) + y(k−1) is either strictly positive or negative in [0,ε]
for every r ∈ (0,r0], and again we get that rx(k−2)+ y(k−2) has at most a
unique root.

(iii) If x(k−1) < 0 in (0,ε] and y(k−1)(0) = 0, by possibly choosing a smaller
r0, rx(k−1)(ε) + y(k−1)(ε) > 0 for every r ∈ (0,r0]. Since rx(k−1)(0) +
y(k−1)(0) ≤ 0, we have two possibilities: or rx(k−1)+ y(k−1) > 0 in (0,ε]
for every r ∈ (0,r0], or there exists xr

k−1 ∈ (0,ε) such that rx(k−1)(xr
k−1)+

y(k−1)(xr
k−1) = 0 and this zero is unique since rx(k−1)+ y(k−1) has at most

one root. As a consequence, in the first case rx(k−2)+ y(k−2) is strictly in-
creasing and admits at most one root, in the second case it decreases on
(0,xr

k−1) and increases on (xr
k−1,ε].

Let us now distinguish three more cases for the (k−2)-th derivative of rx+ y.

(i) If x(k−2) ≥ 0 in (0,ε], then rx(k−2)+ y(k−2) > 0 in this neighborhood for
every r ∈ (0,r0], therefore rx(k−3)+ y(k−3) is increasing and it has at most
a unique root in the interval.
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(ii) If x(k−2) < 0 in (0,ε] and y(k−2)(0) ̸= 0, then, by possibly choosing a
smaller r0, rx(k−2) + y(k−2) is either strictly positive or negative in [0,ε]
for every r ∈ (0,r0], and again we get that rx(k−3)+ y(k−3) has at most a
unique root.

(iii) If x(k−2) < 0 in (0,ε] and y(k−2)(0) = 0, by possibly choosing a smaller
r0 rx(k−2)(ε) + y(k−2)(ε) > 0 for every r ∈ (0,r0]. Since rx(k−2)(0) +
y(k−2)(0) ≤ 0 we have two possibilities: rx(k−2)+ y(k−2) > 0 in (0,ε] for
every r ∈ (0,r0] or, for every r ∈ (0,r0], there exists xr

k−2 ∈ (0,ε) zero of
rx(k−2)+ y(k−2). By the previous step rx(k−2)+ y(k−2) is either increasing
or has a unique critical point on (0,ε]. In both this cases we cannot have
other roots besides xr

k−2. As a consequence rx(k−3)+y(k−3) is either strictly
increasing or it decreases on (0,xr

k−2) and increases on (xr
k−2,ε].

Iterating the procedure, after k steps we obtain that there exists a real number
r0 > 0 such that, for every r ∈ (0,r0], rx+ y has at most a unique root in (0,ε]
and exactly one root if x < 0 in (0,ε].

Remark 3.6. In the hypothesis of the above Lemma 3.5, if k = 1, the proof
becomes much easier. If x > 0 in (0,ε], rx+ y > 0 for every positive r ∈ R. Let
us assume henceforth that x < 0 in (0,ε]. There always exists a suitable r0 > 0
such that rx(ε)+ y(ε) > 0 for every r ∈ (0,r0]. Since y(0) = 0 and y(ε) > 0,
it must be y′ > 0 on (0,ε]. If in the same interval x′ ≥ 0 then rx′+ y′ > 0 and
since rx(0)+ y(0)< 0, rx+ y has a unique root in (0,ε] for every r ∈ (0,r0]. If
x′ < 0 in (0,ε], by possibly choosing a smaller r0, rx′+y′ is still strictly positive
in (0,ε] for every r ∈ (0,r0] and we conclude as before.

Lemma 3.7. Let x,y be polynomials in R[X ] without common roots, such that
degx and degy are odd, degx> degy, y has a unique root and there exist x1,x2 ∈
R roots of x such that y(x1)y(x2) < 0. Then, there exists a suitable r ∈ R, such
that rx+ y has a unique root.

Proof. It is not restrictive to assume limX→±∞ xy = +∞. If the leading coeffi-
cients l.c.(x) and l.c.(y) are discordant the proof can be accordingly adapted by
replacing r with −r.

Let limX→±∞ x,y = ±∞. The case limX→±∞ x,y = ∓∞ is analogous. Up to
a suitable translation we can assume y(0) = 0, x1 < 0 and x2 > 0. Let k be the
(odd) multiplicity of 0 as a root of y. Let I0 = (−ε,ε) be a sufficiently small
neighborhood of 0 such that x < 0 and y is strictly increasing in I0. The case
x > 0 in I0 can be treated similarly in the interval [−ε,0). By possibly choosing
a smaller ε , we may assume that in the interval (0,ε] y(i) > 0 for 1 ≤ i ≤ k−1,
y(k) does not change sign and x( j) is either zero or does not change sign for
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1 ≤ j ≤ k. By Lemma 3.5 there exists a real number r0 > 0 such that, for any
r ∈ (0,r0], rx+ y has a unique root on [0,ε]. Let us observe that, in [−ε, 0 ],
rx+ y < 0 for every positive r.

Now take M ∈ R+ such that xy > 0 for all X such that |X | > M. Clearly,
for every r > 0, rx+ y has no roots for |X | > M. We consider the closed in-
tervals I1 = [ −M, −ε ] and I2 = [ ε, M ]. Let Mx = maxI1∪I2 |x| > 0 and
my = minI1∪I2 |y|. Since y has no roots other than 0, clearly my > 0. By choosing
0 < r < my/Mx the polynomial rx+ y has no zeroes in I1 ∪ I2.

We conclude by choosing any 0 < r < min{r0,my/Mx}.

Theorem 3.8. Let p and q be elements of D. If deg p,degq are odd and either

p or q has a unique root, then the matrix
(

p q
0 0

)
is a product of idempotent

matrices.

Proof. By Lemma 2.1, we can safely assume that q has a unique root. We first
consider the case p and q weakly comaximal.

If degq ≥ deg p, since q has a unique root and p and q have no common
factors, the hypothesis of Th. 3.2 (ii) are satisfied.

If deg p > degq we distinguish two cases. If q does not change sign on
the roots of p, we are done by Theorem 3.2 (i). Otherwise, by Lemma 3.7, it
is always possible to find a suitable r ∈ R such that rp+ q has a unique root.

Therefore, by Theorem 3.2 (ii), the matrix
(

p rp+q
0 0

)
, similar to

(
p q
0 0

)
, is

a product of idempotent matrices.
Now consider the case of p and q not weakly comaximal. If p = x/γ and

q = y/γ , with γ ∈ Γ+ and x,y ∈ R[X ], x and y have a common root. Since q has
odd degree and a unique root z∈R, we have x=(X−z)hx̄ and y=(X−z)kȳ with
k,h positive integers, k odd, ȳ∈Γ, x̄∈R[X ] and gcd(X −z, x̄) = 1. Let us choose
any δ ∈ Γ+ such that either degδ = min{k,h} or degδ = min{k,h}+ 1, in ac-

cordance with the parity of min{k,h}. Since max{degp,degq}< 0,
(

p q
0 0

)
=(

(X − z)min{k,h}/δ 0
0 0

)(
(X − z)h−min{k,h}x̄δ/γ (X − z)k−min{k,h}ȳδ/γ

0 0

)
is a

factorization in M2(D) and, by (1),
(

p q
0 0

)
is a product of idempotent ma-

trices if such is S =

(
(X − z)h−min{k,h}x̄δ/γ (X − z)k−min{k,h}ȳδ/γ

0 0

)
. Let us

remark that the elements of the first row of S, (X − z)h−min{k,h}x̄δ/γ and (X −
z)k−min{k,h}ȳδ/γ , are now weakly comaximal.
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If h ≥ k, then S =

(
(X − z)h−kx̄δ/γ ȳδ/γ

0 0

)
. Since ȳδ ∈ Γ, then ȳδ/γ ≥ 0

or ȳδ/γ ≤ 0. In the first case we conclude by applying Theorem 3.3; in the
second, by applying the analogous of Theorem 3.3 stated in remark 3.4.

If k > h, we get S =

(
x̄δ/γ (X − z)k−hȳδ/γ

0 0

)
. If h is even, then deg x̄

is odd, since degx = h+ deg x̄ is odd. Moreover also k− h is odd. It follows
that x̄δ/γ and (X − z)k−hȳδ/γ are two weakly comaximal element of D with
odd degree and, being ȳ and δ elements of Γ, (X − z)k−hȳδ/γ has a unique root
z ∈R. Therefore, from the first part of the proof, we conclude that S is a product
of idempotent matrices. If h is odd, being k−h even, (X −z)k−hȳδ is always ≥ 0
or ≤ 0 and we conclude by applying Theorem 3.3 (or its analogous in remark
3.4).

All possible cases have been examined.

Lemma 3.9. Let x,y be polynomials in R[X ] without common roots, such that
degx is even, degy is odd, degx > degy, y has a unique root y1 and there exist
x1,x2 ∈R roots of x such that y(x1)y(x2)< 0. Then, there exists a suitable r ∈R,
such that rx+y has exactly two distinct roots z1,z2 ∈R. Moreover, if the sign of
x(y1) and that of the leading coefficient of x are the same (resp. opposite), then
x(z1)x(z2)> 0 (resp. x(z1)x(z2)< 0).

Proof. We assume that limX→±∞ x = +∞ and limX→±∞ y = ±∞. If the leading
coefficients l.c.(x) and l.c.(y) have opposite signs or they are both negative, the
proof can be easily adapted.

Up to a suitable translation we can assume y(0) = 0, x1 < 0 and x2 > 0. Let k
be the (odd) multiplicity of 0 as root of y. Let I0 = (−ε,ε) be a sufficiently small
neighborhood of 0 such that x < 0 in I0 and, in (0,ε], y(i) > 0 for 1 ≤ i ≤ k−1,
y(k) does not change sign and x( j) is either zero or does not change sign for
1 ≤ j ≤ k. The case x > 0 in I0 can be similarly treated in the neighborhood
[−ε,0). Under the above assumptions, by Lemma 3.5 there exists a real number
r0 > 0 such that, for any assigned r ∈ (0,r0], rx+ y has a unique root in [ 0, ε ].
Let us observe that in [−ε, 0 ] rx+ y < 0 for every positive r.

Take M ∈ R+ such that x,y > 0 in the interval [M,+∞). Clearly, for every
r > 0, rx+ y has no roots in (0,M).

Now we choose N ∈ R+ such that x > 0, y < 0 for X ≤ −N and x′ > 0
and y′ < 0 in the interval (−∞,−N). Under these assumptions, there exists
a real number r1 > 0 such that, for any assigned r ∈ (0,r1], rx′ + y′ < 0 and
(rx+ y)(−N) < 0. Therefore, rx+ y has a unique root in (−∞,−N] for every
r ∈ (0,r1].

Let us consider the closed intervals I1 = [ −N, −ε ] and I2 = [ ε, M ]. Let
Mx = maxI1∪I2 |x| > 0 and my = minI1∪I2 |y| > 0 (y has no roots other than 0).
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By choosing 0 < r < my/Mx the polynomial rx+ y has no zeroes in I1 ∪ I2.
We can conclude by choosing any 0 < r < min{r0,r1,my/Mx}.
The last statement of the theorem follows immediately by construction.

Theorem 3.10. Let p and q be two weakly comaximal elements of D. If deg p
is even, degq is odd and either p has a unique root or q has a unique root u
such that p(u) has the same sign of the leading coefficient of p, then the matrix(

p q
0 0

)
is a product of idempotent matrices.

Proof. We start assuming that p has a unique root. Since p has even degree it is
not restrictive to assume that p ≥ 0. Then we conclude by Theorem 3.3.

Assume now that q has a unique root u and that p(u) has the same sign of
the leading coefficient of p. We distinguish two cases.

If degq > deg p, since q has a unique root and p and q do not have common
factors, we conclude by applying Th. 3.2 (ii).

If deg p > degq we have two possibilities. If q does not change sign on
the roots of p, we are done by Theorem 3.2 (i). Otherwise, by Lemma 3.9,
it is always possible to find a suitable r ∈ R such that rp+ q has exactly two
roots z1,z2 such that x(z1)x(z2)> 0. Therefore, by Theorem 3.2 (ii), the matrix(

p rp+q
0 0

)
, similar to

(
p q
0 0

)
, is a product of idempotent matrices.

Remark 3.11. Let p = x/γ and q = y/γ be elements of D such that max{degp,
degq}= 0. If p and q have a common factor M /∈ Γ, whenever the degree of M
is odd and degδ ≥ 1+degM, the decomposition(

p q
0 0

)
=

(
M/δ 0

0 0

)(
xδ/Mγ yδ/Mγ

0 0

)
is not a factorization in D since max{deg(xδ/Mγ),deg(yδ/Mγ)} ≥ 1. For this
reason, we cannot generalize Theorem 3.10 to the non-comaximal case as we
have done in Theorem 3.8.

However, under the additional hypothesis that max{degp,degq} < 0, the
following corollary holds.

Corollary 3.12. Let p= (X −z)kx̄/γ and q= (X −z)hȳ/γ , with k,h∈N+, x̄, ȳ∈
R[X ], γ ∈ Γ+, x̄(z) ̸= 0, ȳ(z) ̸= 0 be two elements of D such that max{deg p,
degq} < 0. If deg p is even, degq is odd and either p has z as unique root and
sgn(ȳ(z)) = sgn(l.c.(ȳ)) or q has z as unique root and sgn(x̄(z)) = sgn(l.c.(x̄)),

then the matrix
(

p q
0 0

)
is a product of idempotent matrices.
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Proof. We skip the details of the proof since it is analogous to the second part
of the proof of Theorem 3.8. We reach our conclusion by properly applying
Theorems 3.3 and 3.10 and using (1).

Remark 3.13. It is worth noting that the pairs (p,q) ∈ D2 such that
(

p q
0 0

)
is

a product of idempotent matrices can generate both principal and non-principal
ideals of D. Thus, this characterization of the elements p and q is not related

to the idempotent factorization of
(

p q
0 0

)
. The same fact can be observed in

[5] for the factorization into idempotent factors of matrices of the form
(

p q
0 0

)
over real quadratic integer rings.

Theorems 3.3, 3.8, 3.10 and Corollary 3.12 contribute to narrow down the
class of singular dimension 2 matrices over D that might not admit an idempo-
tent factorization. We provide an explicit example here below.

Example 3.14. The simplest example of 2×2 singular matrix over D to which
the above results do not apply and for which we cannot prove or disprove the
existence of an idempotent factorization is the matrix

M =

(
(X2 −1)/(1+X2) X/(1+X2)

0 0

)
.

Nevertheless, it can bee seen without too much effort that M does not admit
“easy” idempotent decompositions.

First of all, M cannot factor in M2(D) as M =

(
p′ 0
0 0

)
T, with T idempo-

tent. Let p′ = x′/η , a= a′/δ , b= b′/δ , c= c′/δ ∈D, a(1−a) = bc and assume
by contradiction that

M =

(
p′ 0
0 0

)(
a b
c 1−a

)
. (2)

The matrix equation (2) leads to the equalities

(X2 −1)/X = a′/b′ = c′/(δ −a′).

It follows that there exist t,s ∈ R[X ] such that a′ = (X2 − 1)t, b′ = Xt, c′ =
(X2 −1)s and δ −a′ = Xs. Therefore,

(X2 −1)t +Xs = δ . (3)
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The assumption that a,b,c ∈ D also implies that deg t + 2,degs + 2 ≤ degδ

hence, by (3), degδ = deg t+2 < degs+1 and deg t is even. Moreover, being δ

a monic polynomial in Γ+, t is monic as well and, since δ (0) =−t(0)> 0, there
exist t1, t2 ∈R roots of t such that t is negative in (t1, t2). Now, from the product
in (2), we have that (X2 −1)/(1+X2) = p′a, i.e., x′t = ηδ/(1+X2) ∈ Γ+. But
this is impossible since t /∈ Γ. Analogous arguments show that M cannot factor

in M2(D) as M =

(
0 q′

0 0

)
T, with T idempotent.

Moreover, it is also easy to show that M cannot be written as a product of
two idempotent matrices. If we assume by contradiction that this happens, by
Lemma 2.2,

M =

(
1 q′

0 0

)(
a b
c 1−a

)
(4)

with q′,a,b,c ∈ D and a(1− a) = bc. Set q′ = y′/η , a = a′/δ , b = b′/δ , c =
c′/δ . Arguing as in the previous case, the matrix equation (4) implies that there
exist t,s ∈ R[X ] such that

(X2 −1)t +Xs = δ

and
ηt + y′s = ηδ/(1+X2).

Evaluating the first equality in +1 and −1, we get s(−1)s(1)< 0. It follows that
there exists a root of s s1 ∈ (−1,1) and that t(s1) = δ (s1)/(s2

1 −1)< 0. Evalu-
ating the second equality in s1 we obtain the contradiction t(s1) = δ (s1)/(s2

1 +
1)> 0.

Remark 3.15. As recalled in the introduction, Salce and Zanardo conjectured
in [11] that every integral domain R satisfying the property (ID2) should be a
Bézout domain. The conjecture, suggested by previous results by Laffey [9],
Ruitenburg [10] and Bhaskara Rao [1], is motivated by many positive cases.
Unique factorization domains, projective-free domains, local domains and
PRINC domains (introduced in [11]) turn to be Bézout whenever they satisfy
property (ID2). In [3] it is proved that if every singular 2×2 matrix over R is a
product of idempotent matrices, then R is a Prüfer domain such that every invert-
ible 2× 2 matrix over R is a product of elementary matrices. Also, interesting
examples of Prüfer non Bézout domains not satisfying (ID2) were provided. On
the other hand, the recent paper [5] raised some doubts on the general validity
of the conjecture. In fact, the authors showed that the large family of dimension
2 column-row matrices over a real quadratic integer ring O factorize as products
of idempotent matrices, even when O is not a Bézout domain. The failure of
property (ID2) for the minimal Dress ring D of R(X) should be proved using
matrices similar to that in the above example.
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