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IDEMPOTENT FACTORIZATION OF MATRICES OVER A
PRUFER DOMAIN OF RATIONAL FUNCTIONS

L. COSSU

We consider the smallest subring D of R(X) containing every element
of the form 1/(1 4 x?), with x € R(X). D is a Priifer domain called the
minimal Dress ring of R(X). In this paper, addressing a general open
problem for Priifer non Bézout domains, we investigate whether 2 x 2
singular matrices over D can be decomposed as products of idempotent
matrices. We show some conditions that guarantee the idempotent factor-
ization in M, (D).

1. Introduction

In 1965 Andreas Dress [7] introduced a family of Priifer domains constructed
as subrings D of a field K containing every element of the form 1/(1 +x?), for
x € K. Given a field K not containing square roots of —1, the subring of K gen-
erated by {(14x?)~! : x € K} is said to be the minimal Priifer-Dress ring (or
simply the minimal Dress ring) of K. We refer to [7]] and [4] for more details on
these domains. In the paper [4]], the authors investigated minimal Dress rings of
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special classes of fields: Henselian fields, ordered fields and formally real fields
(e.g., R(A), with A a set of indeterminates). They focused in particular on the
minimal Dress ring D of the field of real rational functions R(X), characterizing
its elements [4, Prop. 2.1] and ideals [4, Prop. 2.4] and proving that D is a
Dedekind domain (i.e., a Noetherian Priifer domain) that is not a principal ideal
domain [4, Th. 2.3]. They also identified a family of 2 x 2 singular matrices
over D that can be written as a product of idempotent factors [4, Th. 3.3]. The
study of the factorization of singular square matrices over rings as product of
idempotent matrices has raised a remarkable interest both in the commutative
and non-commutative setting since the middle of the 1960’s (see [8, [11]). We
say that an integral domain R satisfies the property (ID,) if every 2 x 2 singular
matrix over R is a product of idempotent factors. A natural and well motivated
conjecture, proposed by Salce and Zanardo in [11] and then investigated in [3]]
and [5]], asserts that every domain R satisfying (ID;) must be a Bézout domain,
namely, every finitely generated ideal of R must be principal. Note that the re-
verse implication is false: not every Bézout domain verifies (ID;) (see [2, 16]).
In [3] it is proved that if R satisfies (ID; ), then every finitely generated ideal of R
is invertible and so R is a Priifer domain. Therefore, it is not restrictive to study
(ID,) within this class of domains and, in view of the above conjecture, we ex-
pect that for every Priifer non-Bézout domain R there exists at least one singular
matrix in M (R) that cannot be written as a product of idempotent factors.

In this paper we develop the investigation started in [4] on idempotent fac-
torizations of 2 x 2 matrices over the minimal Dress ring D of R(X). In Section
2 we fix the notation and recall some preliminary results and definitions. In Sec-
tion 3 we focus on the factorizations in M>(D) and, in Theorems and
we identify several conditions on a pair of elements p,q € D under which
P q
0 0
results in [4] by providing further families of 2 x 2 matrices over D that admit
idempotent factorizations. Moreover, in Example [3.14] we exhibit a singular ma-
trix in M> (D) for which the failure of the above conditions prevents an “easy”
decomposition into idempotent factors. However the general problem whether
D satisfies (ID;) remains open.

the matrix factors into idempotents. In this way we supplement the

2. Preliminaries and notation

Let R be a (commutative) integral domain. We will use the standard notations
R* to denote its multiplicative group of units and M, (R) to denote the R-algebra
of n x n matrices over R. A square matrix T over R is said to be idempotent if

. . . . fa b
T? = T. A direct computation shows that a singular nonzero matrix <c a’>



IDEMPOTENT FACTORIZATION OF MATRICES OVER A PRUFER DOMAIN 35

over an arbitrary integral domain is idempotent if and only if d = 1 —a. For a
singular matrix S € M,,(R), the property of being a product of idempotent factors
is preserved by similarity. This immediately leads to the following lemma.

Lemma 2.1 (Lemma 3.1 of [4]). Let R be an integral domain, p,q € R. The ma-

trix (1(; g) is a product of idempotent matrices if and only if such is (g 1(;) .

The next result will also be useful in the following.

Lemma 2.2. Let p and q be nonzero elements of an integral domain R, and

/ /
M= <g g) € My)(R). If M=S-T, with S = (Z z> a singular matrix

b
and T = (Ccl l—a) an idempotent matrix over R, then S has the form S =

pl q/
0 0/)
We omit the proof, since it is essentially contained in that of Lemma 3.1 in

[6].

Finally, we recall below two immediate factorizations in M (R):

E-6 DD ED-GIEY o

From now on D will denote the minimal Dress rings of the field of rational
functions R(X). In accordance with [4], we define the degree of a rational
function f/g, with f,g € R[X], as deg(f/g) := deg(f) — deg(g).

Following the notation in [4], let I" be the set of the polynomials in R[X]
that have no roots in R. Then I' = {& ], 7%;}, where the ¥; are monic degree-
two polynomials irreducible over R[X| and 0 # « is a real number. Set ['" =
{f € RIX]: f(r) > 0,Vr € R} and, correspondingly, [~ = {—f: f € ['"}. By
Proposition 2.1 in [4],

D={f/y: feR[X],yeT,degf < degy},

and
D*={yn/v:n.n el degy =degp}.

As recalled in the introduction, we know from Theorem 2.3 and Proposition 2.4
of [4] that D is a Dedekind domain which is not a principal ideal domain. As an
example, the ideal generated by 1/y and X /¥, with y € I'\ R, is not principal. It
is worth remarking that a non-constant polynomial of R[X]| never lies in D.
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Given a polynomial f € R[X] we will denote as l.c.(f) its leading coeffi-
cient. In the following, given an element p = f/y € D we will always assume
that 7 is a product of monic irreducible polynomials of degree 2. We will then
define the leading coefficient of a rational function p € D as the leading coeffi-
cient of its numerator.

3. Idempotent factorizations in M, (D)

In this section we investigate property (ID;) over D. We find sufficient con-
ditions on the entries of a singular matrix over D to get a factorization into
idempotents. We start recalling two results of [4] that we will need in our dis-
cussion.

Lemma 3.1 (Lemma 3.2 of [4]). Let x,y be non-zero polynomials in R[X] with
degx = degy.

(a) If y(u) > 0 (or y(u) < 0) for every u root of x, then there exists B € T such
that § = x> +yB € T't, degx — 1 < degB < degx = deg §/2.

(b) If x(z) > 0 (or x(z) < 0) for every z root of y, then there exists N € I such
that § = xn +y* € 't and degy — 1 < degn < degy = degd /2.

Theorem 3.2 (Th. 3.3 of [4]). Let p, q be elements of D. Then the matrix

(I(; g) is a product of idempotent matrices if one of the following holds:

(i) degp > degq and q(u) > 0 (or q(u) < 0) for every u root of p
(ii) degg > degp and p(z) > 0 (or p(z) < 0) for every 7 root of q.

Two polynomials x,y € R[X] are said to be weakly comaximal if ged(x,y) €
I, i.e., if x and y have no common roots in R. Let p and ¢ be two elements of D.
Then we can always write p = x/y and ¢ = y/¥, with y € T'" and x,y € R[X].
We say that p and g are weakly comaximal if so are x and y. Given an element
p € D, we will write p > 0 (resp. p < 0) if p(r) > 0 (resp. p(r) < 0) for each
reR.

Theorem 3.3. Let p and q be weakly comaximal elements of D. If either p > 0

P 9
0 0

or q > 0, then the matrix is a product of idempotent matrices.

Proof. By Lemma <1(; g) is a product of idempotent matrices if and only

if such is

l(; , therefore we can safely assume that p > 0.

q
0
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Let us first consider the case deg p > degg. We can assume without loss of
generality that deg p = degg. In fact, since (g g) is similar to <€ p gq)
and p and p + ¢ are still weakly comaximal, if deg p > deggq, it not restrictive to
replace g with p + q. Thus, let deg p = degq and set p = x/y and ¢ = y/7, with
x,y € R[X],yeT™.

As a further reduction, we may assume that degp = degg = 0. In fact,
being p > 0, every root of p has even multiplicity and degx is even. Moreover,
if degx < degy, taking any 7 € I'" such that degx = deg,

(X/y y/V) _ <T/7 0> (x/f y/f)

0 0 0 O 0 0

is a factorization in M, (D) and, by (I), the matrix on the left of the above equal-
ity is a product of idempotents if such is the second factor of the product on the
right.

Since for every z root of y, x(z) is always > 0, we have got in the position
to apply Lemma [3.1] (ii) to x and y. Therefore, there exists 1 € I" such that
8 =xn+y?> €'t where degn = degx and deg § = 2degn.

Then, since degx = degy = degy = degn, 6/yn € D* and xn /8, yn/o,
xy/8, ¥*/8 € D. Moreover, the relation 1 —xn/8 = y?>/§ implies that T =
(xn/ § yn/é

xy/8 /8

) is an idempotent matrix over D. Therefore

(x(/)y y(/)y) _ (5/0yn 8) T,

and using (I)) we conclude that l(; g is a product of idempotent matrices
over D. On the other hand, if degg > degp, it suffices to apply Theorem [3.2]
(i1). O

Remark 3.4. The matrix (l(; g) € M;(D) is a product of idempotent matrices

even if p and g are two comaximal elements of D such that either p <0 or g <0.
The proof is basically the same as that of Theorem [3.3]

In what follows the symbol ) denotes the j-th derivative of the polynomial
feR[X].

Lemma 3.5. Let x,y € R[X]| and € € R™ be such that:

* y has 0 as unique root with multiplicity k;
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x(0) #0;
Y >0in (0,€] for0<i<k—1;
y&) does not change sign in 0,€];
xU) is either zero or does not change sign in (0,€| for 0 < j <k.

there exists a real number ry > 0 such that, for every r € (0,rq], rx+y has

at most one root in (0, €|, and exactly one root if x < 0 in (0, €.

Proof. Note that y*)(0) # 0, hence y*) has nonzero max and min in [0,].
Since, by assumption, x¥) is either zero or does not change sign in (0,€], an
easy direct check shows that, for all possible signs, there exists ry > 0 such that,
for every r € (0, rg), rx*) + y®) is either strictly positive or negative in [0, g]. It
follows that Vr € (0, ro], rxd=1 1 y(k=1) ig either increasing or decreasing in the
interval and hence it has at most one root.

Let us consider the (k — 1)-th derivative of rx+y. We distinguish three
cases.

@)

(i)

(iii)

If %=1 >0 in (0, €], then rx*~1) 4+ y*=1) > 0 in this neighborhood for
every r € (0, rg |. Therefore, being increasing, rx*~2) 4 y(*=2) has at most
a unique root in the interval.

If %=1 < 0 in (0,&] and y*~1(0) # 0, then, by possibly choosing a
smaller ro, rx*~1) 4 y(k=1) s either strictly positive or negative in [0, €]
for every r € (0,rg), and again we get that rx*~2) ++y*=2) has at most a
unique root.

If x*~1) < 0in (0,€] and y*~1(0) = 0, by possibly choosing a smaller
ro, rx*=D(g) +y*=D(g) > 0 for every r € (0,ry]. Since rx*~1(0) +
y*=1)(0) < 0, we have two possibilities: or rx*~1) 4 y*=1) > 0 in (0, €]
for every r € (0,rg], or there exists x;_, € (0,&) such that rx*=D (xf_ )+

k=1) has at most

yk=1) (x;_;) = 0 and this zero is unique since k=) oy
one root. As a consequence, in the first case rx*=2) + y*=2) i strictly in-
creasing and admits at most one root, in the second case it decreases on

(0,x}_,) and increases on (x}_,€].

Let us now distinguish three more cases for the (k — 2)-th derivative of rx+y.

®

If x*=2) >0 in (0, €], then rx*~2) +y%=2) > 0 in this neighborhood for
every r € (0,rg), therefore rx*=3) 4-y¥=3) is increasing and it has at most
a unique root in the interval.
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(i) If x*=2) < 0 in (0,€] and y*=2)(0) # 0, then, by possibly choosing a
smaller rg, rx*=2) 4 y=2) is either strictly positive or negative in [0, €]
for every r € (0,rp], and again we get that rx%=3) 4 yk=3) has at most a
unique root.

(i) If x*=2) < 0 in (0,£] and y*~2)(0) = 0, by possibly choosing a smaller
ro rx=2)(g) 4+ y*=2)(g) > 0 for every r € (0,ry]. Since rx*=2)(0) +
y*=2)(0) < 0 we have two possibilities: rx*~2) 4 y(*=2) > 0 in (0, €] for
every r € (0,ro] or, for every r € (0,rp], there exists xj_, € (0,€) zero of
rxtk=2) 4 y(k=2) By the previous step rx*=2) 4 y(=2) jg ejther increasing
or has a unique critical point on (0, €]. In both this cases we cannot have
other roots besides x;_,. As a consequence rx(k=3) 4 y(=3) s either strictly
increasing or it decreases on (0,x}_,) and increases on (x}_,,€].

Iterating the procedure, after k steps we obtain that there exists a real number
ro > 0 such that, for every r € (0,rp], rx+y has at most a unique root in (0, €]
and exactly one root if x < 0 in (0, €]. O

Remark 3.6. In the hypothesis of the above Lemma if k =1, the proof
becomes much easier. If x > 0 in (0, €], rx+y > 0 for every positive r € R. Let
us assume henceforth that x < 0 in (0, €]. There always exists a suitable ry > 0
such that rx(g) +y(g) > 0 for every r € (0,rg]. Since y(0) =0 and y(g) > 0,
it must be y) > 0 on (0, &]. If in the same interval x’ > 0 then rx’ +y" > 0 and
since rx(0) 4+ y(0) < 0, rx+y has a unique root in (0, €] for every r € (0,r]. If
x' < 0in (0, €], by possibly choosing a smaller ry, rx’ +y' is still strictly positive
in (0, €] for every r € (0, ro] and we conclude as before.

Lemma 3.7. Let x,y be polynomials in R[X| without common roots, such that
degx and degy are odd, degx > degy, y has a unique root and there exist x1,x2 €
R roots of x such that y(x;)y(x2) < 0. Then, there exists a suitable r € R, such
that rx+y has a unique root.

Proof. 1t is not restrictive to assume limy_, 1. xy = +oo. If the leading coeffi-
cients l.c.(x) and l.c.(y) are discordant the proof can be accordingly adapted by
replacing r with —r.

Let limy_,1 X,y = oo. The case limy_, 1 X,y = Foo is analogous. Up to
a suitable translation we can assume y(0) =0, x; < 0 and x, > 0. Let k be the
(odd) multiplicity of O as a root of y. Let Iy = (—¢,¢€) be a sufficiently small
neighborhood of 0 such that x < 0 and y is strictly increasing in Iy. The case
x> 01in Iy can be treated similarly in the interval [—€,0). By possibly choosing
a smaller €, we may assume that in the interval (0, €] y(i) >0for1 <i<k-—1,
y®) does not change sign and x') is either zero or does not change sign for
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1 < j <k ByLemma there exists a real number rg > 0 such that, for any
r € (0,r], rx+y has a unique root on [0, €]. Let us observe that, in [—€, 0],
rx+y < 0 for every positive r.

Now take M € R™ such that xy > 0 for all X such that [X| > M. Clearly,
for every r > 0, rx+y has no roots for |X| > M. We consider the closed in-
tervals I} = [ —M, —e ] and b, = [ &, M |. Let My = max;,p |x| > 0 and
my = miny, g, [y|. Since y has no roots other than 0, clearly m, > 0. By choosing
0 < r < my/M, the polynomial rx +y has no zeroes in I; UL,.

We conclude by choosing any 0 < r < min{rg,m,/M,}. O

Theorem 3.8. Let p and q be elements of D. If deg p,degq are odd and either

p or g has a unique root, then the matrix is a product of idempotent

P q
0 0

matrices.

Proof. By Lemma[2.1] we can safely assume that ¢ has a unique root. We first
consider the case p and g weakly comaximal.

If degg > degp, since ¢ has a unique root and p and ¢ have no common
factors, the hypothesis of Th. (ii) are satisfied.

If degp > degq we distinguish two cases. If ¢ does not change sign on
the roots of p, we are done by Theorem (i). Otherwise, by Lemma it
is always possible to find a suitable » € R such that rp 4 g has a unique root.
Therefore, by Theorem(ii), the matrix <g P 0+ q> , similar to <g g) , 18
a product of idempotent matrices.

Now consider the case of p and ¢ not weakly comaximal. If p = x/y and
g=y/v, with y e I'" and x,y € R[X], x and y have a common root. Since ¢ has
odd degree and a unique root z € R, we have x = (X —z)"xand y = (X —z)*y with
k,h positive integers, k odd, y € I', ¥ € R[X] and gcd(X —z,%) = 1. Let us choose
any 0 € I't such that either degd = min{k, 2} or degd = min{k,h} + 1, in ac-
P aq\_
00

min{k,h h—min{k,h} = k—min{k,h} 5
((x gt/ o> <<x gl Sy (X —g)omind }ya/y> .

cordance with the parity of min{k,/}. Since max{degp,degg} < 0, (

0 0 0 0

factorization in M, (D) and, by (1)), <l(; g) is a product of idempotent ma-

_ \h—min{k,h} & _ N\k—min{k,h} 5
trices if such is S = <(X 7) 0 W)y (X-2) 0 y5/}/>‘ Let us

remark that the elements of the first row of S, (X — z)" ™k 5§ /y and (X —
z)k—min{kh} 5§ /y, are now weakly comaximal.
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_ N\Nh—k=x= =
Ithk,thenS:<(X Z)O x3/y yso/y)Since)75€1“,theny_5/?’20

or y6/v < 0. In the first case we conclude by applying Theorem in the
second, by applying the analogous of Theorem [3.3|stated in remark [3.4]
%)y (X—2) 58 )y
0 0
is odd, since degx = h + degx is odd. Moreover also k — & is odd. It follows
that ¥8 /7y and (X — z)¥~"§8/y are two weakly comaximal element of D with
odd degree and, being ¥ and & elements of I, (X — )58 /v has a unique root
z € R. Therefore, from the first part of the proof, we conclude that S is a product
of idempotent matrices. If 2 is odd, being k — & even, (X —z)¥~"73 is always > 0
or < 0 and we conclude by applying Theorem [3.3] (or its analogous in remark
3.4).

All possible cases have been examined. O

If k> h, we get S = . If h is even, then degx

Lemma 3.9. Let x,y be polynomials in R[X| without common roots, such that
degx is even, degy is odd, degx > degy, y has a unique root y and there exist
x1,x2 € R roots of x such that y(x;)y(x2) < 0. Then, there exists a suitable r € R,
such that rx+y has exactly two distinct roots 71,72 € R. Moreover, if the sign of
x(y1) and that of the leading coefficient of x are the same (resp. opposite), then
x(z1)x(z2) > 0 (resp. x(z1)x(z2) <0).

Proof. We assume that limy_, 1 x = 4o0 and limx_, +.y = *£oo. If the leading
coefficients l.c.(x) and l.c.(y) have opposite signs or they are both negative, the
proof can be easily adapted.

Up to a suitable translation we can assume y(0) =0, x; < 0and x > 0. Letk
be the (odd) multiplicity of O as root of y. Let Iy = (—¢&, €) be a sufficiently small
neighborhood of 0 such that x < 0 in j and, in (0, €], y(i) >0forl <i<k-—1,
y®) does not change sign and x') is either zero or does not change sign for
1 < j <k. The case x > 0 in Iy can be similarly treated in the neighborhood
[—€,0). Under the above assumptions, by Lemma|3.5]there exists a real number
ro > 0 such that, for any assigned r € (0, rp], rx+y has a unique root in [ 0, € ].
Let us observe that in [—€, 0 | rx+y < 0 for every positive r.

Take M € R such that x,y > 0 in the interval [M,+oo). Clearly, for every
r >0, rx+y has no roots in (0,M).

Now we choose N € R such that x >0, y < 0 for X < —N and ¥’ > 0
and y' < 0 in the interval (—eo,—N). Under these assumptions, there exists
a real number r; > 0 such that, for any assigned r € (0,r(], ¥’ +y < 0 and
(rx+y)(—N) < 0. Therefore, rx -+ y has a unique root in (—oo, —N] for every
re(0,r].

Let us consider the closed intervals I; = [ —N, —€ ] and L =[¢&, M ]. Let
M, = maxy,p, |x| > 0 and my, = ming,, [y| > O (y has no roots other than 0).



42 L. COSSU

By choosing 0 < r < m, /M, the polynomial rx+ y has no zeroes in I; U .
We can conclude by choosing any 0 < r < min{ro, ri,my,/M,}.
The last statement of the theorem follows immediately by construction. [

Theorem 3.10. Let p and q be two weakly comaximal elements of D. If degp
is even, degq is odd and either p has a unique root or q has a unique root u
such that p(u) has the same sign of the leading coefficient of p, then the matrix

P q

0 0 is a product of idempotent matrices.

Proof. We start assuming that p has a unique root. Since p has even degree it is
not restrictive to assume that p > 0. Then we conclude by Theorem@}

Assume now that ¢ has a unique root u and that p(u) has the same sign of
the leading coefficient of p. We distinguish two cases.

If degg > deg p, since g has a unique root and p and ¢ do not have common
factors, we conclude by applying Th. [3.2] (ii).

If degp > degg we have two possibilities. If ¢ does not change sign on
the roots of p, we are done by Theorem [3.2] (i). Otherwise, by Lemma [3.9]
it is always possible to find a suitable r € R such that rp + g has exactly two
roots zj,z such that x(z;)x(z2) > 0. Therefore, by Theorem [3.2] (ii), the matrix
(p rp+q P q

0 0 >, similar to (0 0

) , 1s a product of idempotent matrices. 0
Remark 3.11. Let p = x/y and g = y/y be elements of D such that max{degp,
degg} = 0. If p and ¢ have a common factor M ¢ I', whenever the degree of M
is odd and deg 6 > 1+ degM, the decomposition

p q\_(M/§ O\ (x6/My yS§/My
0 0) 0 O 0 0
is not a factorization in D since max{deg(xd/My),deg(yd/My)} > 1. For this

reason, we cannot generalize Theorem [3.10| to the non-comaximal case as we
have done in Theorem 3.8

However, under the additional hypothesis that max{degp,degg} < 0, the
following corollary holds.

Corollary 3.12. Let p = (X —z2)*%/yand g = (X —2)"5/7y, withk,he N*, %, €
R[X], yeT't, x(z) #0, 3(z) # 0 be two elements of D such that max{deg p,

degq} < 0. If degp is even, degq is odd and either p has z as unique root and
sgn(¥(z)) = sgn(l.c.(¥)) or q has z as unique root and sgn(x(z)) = sgn(l.c.(x)),

then the matrix is a product of idempotent matrices.

q
00
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Proof. We skip the details of the proof since it is analogous to the second part
of the proof of Theorem [3.8] We reach our conclusion by properly applying

Theorems [3.3|and and using (). O

00
a product of idempotent matrices can generate both principal and non-principal
ideals of D. Thus, this characterization of the elements p and ¢ is not related

P 9
0 0

Remark 3.13. It is worth noting that the pairs (p,q) € D? such that (p q> is

to the idempotent factorization of ( > The same fact can be observed in

[5] for the factorization into idempotent factors of matrices of the form (5 g)

over real quadratic integer rings.

Theorems [3.3] [3.8] [3.10| and Corollary [3.12] contribute to narrow down the
class of singular dimension 2 matrices over D that might not admit an idempo-
tent factorization. We provide an explicit example here below.

Example 3.14. The simplest example of 2 x 2 singular matrix over D to which
the above results do not apply and for which we cannot prove or disprove the
existence of an idempotent factorization is the matrix

(X2-1)/(1+X?) X/(1+X?)
M:( / . )

Nevertheless, it can bee seen without too much effort that M does not admit

“easy” idempotent decompositions.
/

First of all, M cannot factor in M, (D) as M = (l()) 8) T, with T idempo-

tent. Let p' =x'/n,a=d'/8,b=b"/8,c=c"/5 € D, a(1 —a) = bc and assume

by contradiction that
(P 0\ (fa b
M_<0 O) (c 1—a>' 2

The matrix equation (2] leads to the equalities
X2-1)/X=d /b =()(6—d).

It follows that there exist #,s € R[X] such that ' = (X> —1)t, b’ = Xt, ¢’ =
(X?—1)s and § —d’ = Xs. Therefore,

(X2 —1)t+Xs=§. 3
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The assumption that a,b,c € D also implies that degt + 2,degs +2 < degd
hence, by (3), deg§ = degr+2 < degs—+ 1 and degt is even. Moreover, being &
a monic polynomial in T'*, ¢ is monic as well and, since §(0) = —#(0) > 0, there
exist 71,1, € R roots of 7 such that 7 is negative in (#,#,). Now, from the product
in (2), we have that (X>—1)/(1+X?) = p'a,ie, Xt =n8/(1+X?) €'*. But
this is impossible since ¢ ¢ I". Analogous arguments show that M cannot factor
/

in Mp(D) asM = (8 %) T, with T idempotent.

Moreover, it is also easy to show that M cannot be written as a product of
two idempotent matrices. If we assume by contradiction that this happens, by

Lemmal[2.2]
M — 1 ¢\ [(a b 4
- \0 0/\c 1-a “)

with ¢;a,b,c € D and a(1 —a) = bc. Setq =y /n,a=d /8,b=1'/5,c =
¢’ /8. Arguing as in the previous case, the matrix equation (@) implies that there
exist ¢,s € R[X] such that

(X*—1)t+Xs=9§

and

nt+ys=ns8/(1+Xx?).
Evaluating the first equality in +1 and —1, we get s(—1)s(1) < 0. It follows that
there exists a root of s 51 € (—1,1) and that #(s1) = &(s1)/(s7 — 1) < 0. Evalu-

ating the second equality in s; we obtain the contradiction #(sy) = 8(s1)/(s7 +
1)>0.

Remark 3.15. As recalled in the introduction, Salce and Zanardo conjectured
in [11]] that every integral domain R satisfying the property (ID,) should be a
Bézout domain. The conjecture, suggested by previous results by Laffey [9]],
Ruitenburg [10] and Bhaskara Rao [1]], is motivated by many positive cases.
Unique factorization domains, projective-free domains, local domains and
PRINC domains (introduced in [11[]) turn to be Bézout whenever they satisfy
property (ID;). In [3] it is proved that if every singular 2 x 2 matrix over R is a
product of idempotent matrices, then R is a Priifer domain such that every invert-
ible 2 x 2 matrix over R is a product of elementary matrices. Also, interesting
examples of Priifer non Bézout domains not satisfying (ID;) were provided. On
the other hand, the recent paper [3]] raised some doubts on the general validity
of the conjecture. In fact, the authors showed that the large family of dimension
2 column-row matrices over a real quadratic integer ring O factorize as products
of idempotent matrices, even when O is not a Bézout domain. The failure of
property (ID;) for the minimal Dress ring D of R(X) should be proved using
matrices similar to that in the above example.
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