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TIME DISCRETIZATION OF A NONLOCAL PHASE-FIELD
SYSTEM WITH INERTIAL TERM

S. KURIMA

Time discretizations of phase-field systems have been studied. For
example, a time discretization, an error estimate for a parabolic-parabolic
phase-field system have been studied by Colli–K. [Commun. Pure Appl.
Anal. 18 (2019)]. Also, a time discretization and an error estimate for
a simultaneous abstract evolution equation applying parabolic-hyperbolic
phase field systems and the linearized equations of coupled sound and
heat flow have been studied (see K. [ESAIM Math. Model. Numer.
Anal.54 (2020), Electron. J. Differential Equations 2020, Paper No. 96]).
On the other hand, although existence, continuous dependence estimates,
behavior of solutions to nonlocal phase-field systems with inertial terms
have been studied by Grasselli–Petzeltová–Schimperna [Quart. Appl.
Math. 65 (2007)], time discretizations of these systems seem to be not
studied yet. In this paper we focus on employing a time discretization
scheme for a nonlocal phase-field system with inertial term and establish-
ing an error estimate for the difference between continuous and discrete
solutions.
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1. Introduction

Time discretizations of phase-field systems have been studied. For example, for
the classical phase-field model proposed by Caginalp (cf. [2, 4]; one may also
see the monographs [1, 5, 16]){

θt +ϕt −∆θ = f in Ω× (0,T ),
ϕt −∆ϕ +β (ϕ)+π(ϕ) = θ in Ω× (0,T ),

(E1)

Colli–K. [3] have studied a time discretization and an error estimate, where Ω

is a domain in Rd (d ∈ N), T > 0, β : R→ R is a maximal monotone function,
π : R→R is an anti-monotone function, f : Ω× (0,T )→R is a given function.
Also, for a simultaneous abstract evolution equation applying the parabolic-
hyperbolic phase-field system (see e.g., [6–8, 17, 18]){

θt +ϕt −∆θ = f in Ω× (0,T ),
ϕtt +ϕt −∆ϕ +β (ϕ)+π(ϕ) = θ in Ω× (0,T ),

(E2)

a time discretization scheme has been employed and an error estimate has been
derived (see [11]). Moreover, for a simultaneous abstract evolution equation
applying (E2) (in the case that f = 0) and the linearized equations of coupled
sound and heat flow (see e.g, Matsubara–Yokota [13]){

θt +(γ −1)ϕt −σ∆θ = 0 in Ω× (0,T ),
ϕtt − c2∆ϕ −m2ϕ =−c2∆θ in Ω× (0,T ),

(E3)

a time discretization and an error estimate have been studied, where c > 0,
σ > 0, m ∈ R, γ > 1 are constants (see [12]). On the other hand, Grasselli–
Petzeltová–Schimperna [9] have derived existence, a continuous dependence
estimate and behavior of solutions to the nonlocal phase-field system{

θt +ϕt −∆θ = f in Ω× (0,T ),
ϕtt +ϕt +a(·)ϕ − J ∗ϕ +β (ϕ)+π(ϕ) = θ in Ω× (0,T ),

(E4)

where a(x) :=
∫

Ω

J(x − y)dy for x ∈ Ω, (J ∗ ϕ)(x) :=
∫

Ω

J(x − y)ϕ(y)dy for

x ∈ Ω, J : Rd → R is a given function. However, time discretizations of (E4)
seem to be not studied yet.

In this paper, for the nonlocal phase-field system with inertial term

θt +ϕt −∆θ = f in Ω× (0,T ),

ϕtt +ϕt +a(·)ϕ − J ∗ϕ +β (ϕ)+π(ϕ) = θ in Ω× (0,T ),

∂νθ = 0 on ∂Ω× (0,T ),

θ(0) = θ0, ϕ(0) = ϕ0, ϕt(0) = v0 in Ω,

(P)
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we employ the following time discretization scheme: find (θn+1,ϕn+1) such that

θn+1−θn
h + ϕn+1−ϕn

h −∆θn+1 = fn+1 in Ω,

zn+1 + vn+1 +a(·)ϕn − J ∗ϕn +β (ϕn+1)+π(ϕn+1) = θn+1 in Ω,

zn+1 =
vn+1−vn

h , vn+1 =
ϕn+1−ϕn

h in Ω,

∂νθn+1 = 0 on ∂Ω

(P)n

for n = 0, ...,N − 1, where h = T
N , N ∈ N and fk :=

1
h

∫ kh

(k−1)h
f (s)ds for k =

1, ...,N. Here Ω ⊂ Rd (d = 1,2,3) is a bounded domain with smooth boundary
∂Ω, ∂ν denotes differentiation with respect to the outward normal of ∂Ω, θ0 :
Ω →R, ϕ0 : Ω →R and v0 : Ω →R are given functions. Moreover, in this paper
we assume that

(A1) J(−x) = J(x) for all x ∈ Rd and sup
x∈Ω

∫
Ω

|J(x− y)|dy <+∞.

(A2) β : R→ R is a single-valued maximal monotone function such that there
exists a proper lower semicontinuous convex function β̂ : R → [0,+∞)
satisfying that β̂ (0) = 0 and β = ∂ β̂ , where ∂ β̂ is the subdifferential of
β̂ . Moreover, β : R→ R is local Lipschitz continuous.

(A3) π : R→ R is a Lipschitz continuous function.

(A4) f ∈ L2(Ω× (0,T )), θ0 ∈ H1(Ω), ϕ0,v0 ∈ L∞(Ω).

In the case that β (r) = ar3, β̂ (r) = a
4 r4, π(r) = br+ c for r ∈ R, where a > 0,

b,c ∈ R are some constants, the conditions (A2) and (A3) hold.

Remark 1.1. We see from (A2), (A4) and the definition of the subdifferential
that

0 ≤ β̂ (ϕ0)≤ β (ϕ0)ϕ0 ∈ L∞(Ω).

Let us define the Hilbert spaces

H := L2(Ω), V := H1(Ω)

with inner products

(u1,u2)H :=
∫

Ω

u1u2 dx (u1,u2 ∈ H),

(v1,v2)V :=
∫

Ω

∇v1 ·∇v2 dx+
∫

Ω

v1v2 dx (v1,v2 ∈V ),
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respectively, and with the related Hilbertian norms. Moreover, we use the nota-
tion

W :=
{

z ∈ H2(Ω) | ∂νz = 0 a.e. on ∂Ω
}
.

We define solutions of (P) as follows.

Definition 1.2. A pair (θ ,ϕ) with

θ ∈ H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ),

ϕ ∈W 2,∞(0,T ;H)∩W 2,2(0,T ;L∞(Ω))∩W 1,∞(0,T ;L∞(Ω))

is called a solution of (P) if (θ ,ϕ) satisfies

θt +ϕt −∆θ = f a.e. on Ω× (0,T ),

ϕtt +ϕt +a(·)ϕ − J ∗ϕ +β (ϕ)+π(ϕ) = θ a.e. on Ω× (0,T ),

θ(0) = θ0, ϕ(0) = ϕ0, ϕt(0) = v0 a.e. on Ω.

The first main result asserts existence and uniqueness of solutions to (P)n

for n = 0, ...,N −1.

Theorem 1.3. Assume that (A1)-(A4) hold. Then there exists h0 ∈ (0,1] such
that for all h ∈ (0,h0) there exists a unique solution (θn+1,ϕn+1) of (P)n satisfy-
ing

θn+1 ∈W, ϕn+1 ∈ L∞(Ω) for n = 0, ...,N −1.

Here, setting

θ̂h(t) := θn +
θn+1 −θn

h
(t −nh), (1.1)

ϕ̂h(t) := ϕn +
ϕn+1 −ϕn

h
(t −nh), (1.2)

v̂h(t) := vn +
vn+1 − vn

h
(t −nh) (1.3)

for t ∈ [nh,(n+1)h], n = 0, ...,N −1, and

θ h(t) := θn+1, ϕh(t) := ϕn+1, ϕ
h
(t) := ϕn, (1.4)

vh(t) := vn+1, zh(t) := zn+1, f h(t) := fn+1 (1.5)
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for t ∈ (nh,(n+1)h], n = 0, ...,N −1, we can rewrite (P)n as

(θ̂h)t +(ϕ̂h)t −∆θ h = f h in Ω× (0,T ),
zh + vh +a(·)ϕ

h
− J ∗ϕ

h
+β (ϕh)+π(ϕh) = θ h in Ω× (0,T ),

zh = (v̂h)t , vh = (ϕ̂h)t in Ω× (0,T ),

∂νθ h = 0 on ∂Ω× (0,T ),
θ̂h(0) = θ0, ϕ̂h(0) = ϕ0, v̂h(0) = v0 in Ω.

(P)h

We can prove the following theorem by passing to the limit in (P)h as h ↘ 0 (see
Section 4).

Theorem 1.4. Assume that (A1)-(A4) hold. Then there exists a unique solution
(θ ,ϕ) of (P).

The following theorem is concerned with the error estimate between the
solution of (P) and the solution of (P)h.

Theorem 1.5. Let h0 be as in Theorem 1.3. Assume that (A1)-(A4) hold. As-
sume further that f ∈ W 1,1(0,T ;H). Then there exist constants M > 0 and
h00 ∈ (0,h0) depending on the data such that

∥v̂h − v∥C([0,T ];H)+∥vh − v∥L2(0,T ;H)+∥ϕ̂h −ϕ∥C([0,T ];H)+∥θ̂h −θ∥C([0,T ];H)

+∥∇(θ h −θ)∥L2(0,T ;H) ≤ Mh1/2

for all h ∈ (0,h00), where v = ϕt .

Remark 1.6. From (1.1)-(1.5) we can obtain directly the following properties:

∥θ̂h∥L∞(0,T ;V ) = max{∥θ0∥V , ∥θ h∥L∞(0,T ;V )}, (1.6)

∥ϕ̂h∥L∞(0,T ;L∞(Ω)) = max{∥ϕ0∥L∞(Ω), ∥ϕh∥L∞(0,T ;L∞(Ω))}, (1.7)

∥v̂h∥L∞(0,T ;L∞(Ω)) = max{∥v0∥L∞(Ω), ∥vh∥L∞(0,T ;L∞(Ω))}, (1.8)

∥θ h − θ̂h∥2
L2(0,T ;H) =

h2

3
∥(θ̂h)t∥2

L2(0,T ;H), (1.9)

∥ϕh − ϕ̂h∥L∞(0,T ;L∞(Ω)) = h∥(ϕ̂h)t∥L∞(0,T ;L∞(Ω)) = h∥vh∥L∞(0,T ;L∞(Ω)), (1.10)

∥vh − v̂h∥L∞(0,T ;H) = h∥(v̂h)t∥L∞(0,T ;H) = h∥zh∥L∞(0,T ;H), (1.11)

h(ϕ̂h)t = ϕh −ϕ
h
. (1.12)
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Remark 1.7. Unlike in the case of local parabolic-hyperbolic phase-field sys-
tems, we cannot establish the Lp(0,T ;V )-estimate (1 ≤ p ≤ ∞) for {ϕ̂h}h and
cannot apply the Aubin–Lions lemma (see e.g., [15, Section 8, Corollary 4]) for
{ϕ̂h}h. Thus, since π : R → R is not monotone, to obtain the strong conver-
gence of {ϕ̂h}h in L∞(0,T ;H), which is necessary to verify that π(ϕh)→ π(ϕ)
strongly in L∞(0,T ;H) as h = h j ↘ 0 by the Lipschitz continuity of π and the
property (1.10), we will try to confirm Cauchy’s criterion for solutions of (P)h
(see Lemma 3.8).

This paper is organized as follows. In Section 2 we prove existence and
uniqueness of solutions to (P)n for n = 0, ...,N − 1. In Section 3 we derive
a priori estimates and Cauchy’s criterion for solutions of (P)h. Section 4 is
devoted to the proofs of existence and uniqueness of solutions to (P) and an
error estimate between the solution of (P) and the solution of (P)h.

2. Existence and uniqueness for the discrete problem

In this section we will show Theorem 1.3.

Lemma 2.1. For all g∈H and all h∈ (0, 1
∥π ′∥L∞(R)

) there exists a unique solution
ϕ ∈ H of the equation

ϕ +hϕ +h2
β (ϕ)+h2

π(ϕ) = g a.e. on Ω. (2.1)

Proof. We set the operator Φ : D(Φ)⊂ H → H as

Φz := h2
β (z) for z ∈ D(Φ) := {z ∈ H | β (z) ∈ H}.

Then this operator is maximal monotone. Also, we define the operator Ψ : H →
H as

Ψ(z) := hz+h2
π(z) for z ∈ H.

Then this operator is Lipschitz continuous, monotone for all h ∈ (0, 1
∥π ′∥L∞(R)

).
Thus the operator Φ+Ψ : D(Φ)⊂ H → H is maximal monotone (see e.g., [14,
Lemma IV.2.1 (p.165)]) and then for all g ∈ H and all h ∈ (0, 1

∥π ′∥L∞(R)
) there

exists a unique solution ϕ ∈ D(Φ) of the equation (2.1).

Proof of Theorem 1.1. We can rewrite (P)n as
θn+1 −h∆θn+1 = h fn+1 +ϕn −ϕn+1 +θn,

ϕn+1 +hϕn+1 +h2β (ϕn+1)+h2π(ϕn+1)

= h2θn+1 +ϕn +hvn +hϕn −h2a(·)ϕn +h2J ∗ϕn.

(Q)n
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It is enough for the proof of Theorem 1.3 to establish existence and uniqueness
of solutions to (Q)n in the case that n = 0. Let h ∈ (0, 1

∥π ′∥L∞(R)
). Then for all

ϕ ∈ H there exists a unique function θ ∈W such that

θ −h∆θ = h f1 +ϕ0 −ϕ +θ0. (2.2)

Also, owing to (A1), (A4) and Lemma 2.1, for all θ ∈ H there exists a unique
solution ϕ ∈ H of the equation

ϕ +hϕ +h2
β (ϕ)+h2

π(ϕ)

= h2
θ +ϕ0 +hv0 +hϕ0 −h2a(·)ϕ0 +h2J ∗ϕ0. (2.3)

Thus we can set T : H → H, U : H → H and S : H → H as

T ϕ = θ , Uθ = ϕ for ϕ,θ ∈ H

and
S = U ◦T ,

respectively. Now we let ϕ, ϕ̃ ∈ H. Then it follows from (2.2) that

∥T ϕ −T ϕ̃∥2
H +h∥∇(T ϕ −T ϕ̃)∥2

H =−(ϕ − ϕ̃,T ϕ −T ϕ̃)H

≤ ∥ϕ − ϕ̃∥H∥T ϕ −T ϕ̃∥H

and then it holds that

∥T ϕ −T ϕ̃∥H ≤ ∥ϕ − ϕ̃∥H . (2.4)

Also we use (2.3) and (A3) to have that

(1+h)∥Sϕ −Sϕ̃∥2
H +h2(β (Sϕ)−β (Sϕ̃),Sϕ −Sϕ̃)H

= h2(T ϕ −T ϕ̃,Sϕ −Sϕ̃)H −h2(π(Sϕ)−π(Sϕ̃),Sϕ −Sϕ̃)H

≤ h2∥T ϕ −T ϕ̃∥H∥Sϕ −Sϕ̃∥H +∥π
′∥L∞(R)h

2∥Sϕ −Sϕ̃∥2
H ,

whence the monotonicity of β leads to the inequality

∥Sϕ −Sϕ̃∥H ≤ h2

1+h−∥π ′∥L∞(R)h2 ∥T ϕ −T ϕ̃∥H . (2.5)

Therefore combining (2.4) and (2.5) implies that

∥Sϕ −Sϕ̃∥H ≤ h2

1+h−∥π ′∥L∞(R)h2 ∥ϕ − ϕ̃∥H ,
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and hence there exists h00 ∈ (0,min{1, 1
∥π ′∥L∞(R)

}) such that

0 <
h2

1+h−∥π ′∥L∞(R)h2 < 1

for all h ∈ (0,h00). Thus S : H → H is a contraction mapping in H for all h ∈
(0,h00) and then the Banach fixed-point theorem means that for all h ∈ (0,h00)
there exists a unique function ϕ1 ∈ H such that ϕ1 = Sϕ1. Hence, for all h ∈
(0,h00), by putting θ1 := T ϕ1 ∈W , there exists a unique pair (θ1,ϕ1) ∈ H ×H
satisfying (Q)n in the case that n = 0. Next we verify that ϕ1 ∈ L∞(Ω). Let
h ∈ (0,h00). Then, noting that g1 := h2θ1 +ϕ0 + hv0 + hϕ0 − h2a(·)ϕ0 + h2J ∗
ϕ0 ∈ L∞(Ω) by θ1 ∈W , W ⊂ L∞(Ω), (A4) and (A1), we can obtain that

|ϕ1(x)|2 +h|ϕ1(x)|2 +h2
β (ϕ1(x))ϕ1(x)

= g1(x)ϕ1(x)−h2(π(ϕ1(x))−π(0))ϕ1(x)−h2
π(0)ϕ1(x)

≤ 1
2
∥g1∥2

L∞(Ω)+
1
2
|ϕ1(x)|2 +h2∥π

′∥L∞(R)|ϕ1(x)|2 +
1
2

h2|ϕ1(x)|2 +
1
2

h2|π(0)|2

by multiplying the second equation in (Q)0 by ϕ1(x) and by using the Young
inequality and (A3). Therefore, by the monotonicity of β , there exists h0 ∈
(0,h00) such that for all h ∈ (0,h0) there exists a constant C1 =C1(h)> 0 such
that |ϕ1(x)| ≤C1 for a.a. x ∈ Ω.

3. Uniform estimates and Cauchy’s criterion

In this section we will derive a priori estimates and Cauchy’s criterion for solu-
tions of (P)h.

Lemma 3.1. Let h0 be as in Theorem 1.3. Then there exist constants C > 0 and
h1 ∈ (0,h0) depending on the data such that

∥vh∥2
L∞(0,T ;H)+∥ϕh∥2

L∞(0,T ;H)+∥(θ̂h)t∥2
L2(0,T ;H)+∥θ h∥2

L∞(0,T ;V ) ≤C

for all h ∈ (0,h1).

Proof. We test the first equation in (P)n by θn+1 −θn, integrate over Ω and use
the identities a(a− b) = 1

2 a2 − 1
2 b2 + 1

2(a− b)2 (a,b ∈ R) and vn+1 =
ϕn+1−ϕn

h ,
the Young inequality to infer that

h
∥∥∥θn+1 −θn

h

∥∥∥2

H
+

1
2
∥θn+1∥2

V − 1
2
∥θn∥2

V +
1
2
∥θn+1 −θn∥2

V

= h
(

fn+1,
θn+1 −θn

h

)
H
−h

(
vn+1,

θn+1 −θn

h

)
H
+h

(
θn+1,

θn+1 −θn

h

)
H

≤ 3
2

h∥ fn+1∥2
H +

3
2

h∥vn+1∥2
H +

3
2

h∥θn+1∥2
V +

1
2

h
∥∥∥θn+1 −θn

h

∥∥∥2

H
. (3.1)
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Multiplying the second equation in (P)n by hvn+1, integrating over Ω and apply-
ing the identity a(a−b) = 1

2 a2 − 1
2 b2 + 1

2(a−b)2 (a,b ∈ R), we see from (A1),
(A3) and the Young inequality that there exists a constant C1 > 0 such that

1
2
∥vn+1∥2

H − 1
2
∥vn∥2

H +
1
2
∥vn+1 − vn∥2

H +h∥vn+1∥2
H +(β (ϕn+1),ϕn+1 −ϕn)H

= h(θn+1,vn+1)H −h(a(·)ϕn − J ∗ϕn,vn+1)H −h(π(ϕn+1)−π(0),vn+1)H

−h(π(0),vn+1)H

≤ 1
2

h∥θn+1∥2
V +C1h∥ϕn∥2

H +
∥π ′∥2

L∞(R)

2
h∥ϕn+1∥2

H

+2h∥vn+1∥2
H +

∥π(0)∥2
H

2
h (3.2)

for all h ∈ (0,h0). Here it follows from (A2) and the definition of the subdiffer-
ential that

(β (ϕn+1),ϕn+1 −ϕn)H ≥
∫

Ω

β̂ (ϕn+1)−
∫

Ω

β̂ (ϕn) (3.3)

and we have from the identities a(a−b) = 1
2 a2− 1

2 b2+ 1
2(a−b)2 (a,b ∈R) and

hvn+1 = ϕn+1 −ϕn, the Young inequality that

1
2
∥ϕn+1∥2

H − 1
2
∥ϕn∥2

H +
1
2
∥ϕn+1 −ϕn∥2

H

= (ϕn+1,ϕn+1 −ϕn)H = h(ϕn+1,vn+1)H ≤ 1
2

h∥ϕn+1∥2
H +

1
2

h∥vn+1∥2
H . (3.4)

Hence, owing to (3.1)-(3.4) and summing over n = 0, ...,m−1 with 1 ≤ m ≤ N,
it holds that

1
2

h
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

H
+

1
2
∥θm∥2

V +
1
2

h2
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

V
+

1
2
∥vm∥2

H

+
1
2

h2
m−1

∑
n=0

∥zn+1∥2
H +h

m−1

∑
n=0

∥vn+1∥2
H +

∫
Ω

β̂ (ϕm)+
1
2
∥ϕm∥2

H +
1
2

h2
m−1

∑
n=0

∥vn+1∥2
H

≤ 1
2
∥θ0∥2

V +
1
2
∥v0∥2

H +
∫

Ω

β̂ (ϕ0)+
1
2
∥ϕ0∥2

H +
3
2

h
m−1

∑
n=0

∥ fn+1∥2
H

+4h
m−1

∑
n=0

∥vn+1∥2
H +2h

m−1

∑
n=0

∥θn+1∥2
V

+C1h
m−1

∑
n=0

∥ϕn∥2
H +

∥π ′∥2
L∞(R)+1

2
h

m−1

∑
n=0

∥ϕn+1∥2
H +

∥π(0)∥2
H

2
T
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for all h ∈ (0,h0) and m = 1, ...,N. Then the inequality

1
2

h
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

H
+

1−4h
2

∥θm∥2
V +

1
2

h2
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

V

+
1−8h

2
∥vm∥2

H +
1
2

h2
m−1

∑
n=0

∥zn+1∥2
H +h

m−1

∑
n=0

∥vn+1∥2
H +

∫
Ω

β̂ (ϕm)

+
1− (∥π ′∥2

L∞(R)+1)h

2
∥ϕm∥2

H +
1
2

h2
m−1

∑
n=0

∥vn+1∥2
H

≤ 1
2
∥θ0∥2

V +
1
2
∥v0∥2

H +
∫

Ω

β̂ (ϕ0)+
1
2
∥ϕ0∥2

H +
3
2

h
m−1

∑
n=0

∥ fn+1∥2
H

+4h
m−1

∑
j=0

∥v j∥2
H +2h

m−1

∑
j=0

∥θ j∥2
V +

2C1 +∥π ′∥2
L∞(R)+1

2
h

m−1

∑
j=0

∥ϕ j∥2
H

+
∥π(0)∥2

H

2
T

holds for all h ∈ (0,h0) and m = 1, ...,N. Thus there exist constants C2 > 0 and
h1 ∈ (0,h0) such that

h
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

H
+∥θm∥2

V +h2
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

V

+∥vm∥2
H +h2

m−1

∑
n=0

∥zn+1∥2
H +h

m−1

∑
n=0

∥vn+1∥2
H +

∫
Ω

β̂ (ϕm)

+∥ϕm∥2
H +h2

m−1

∑
n=0

∥vn+1∥2
H

≤C2 +C2h
m−1

∑
j=0

∥v j∥2
H +C2h

m−1

∑
j=0

∥θ j∥2
V +C2h

m−1

∑
j=0

∥ϕ j∥2
H

for all h ∈ (0,h1) and m = 1, ...,N. Therefore, thanks to the discrete Gronwall
lemma (see e.g., [10, Prop. 2.2.1]), we can obtain that there exists a constant
C3 > 0 such that

h
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

H
+∥θm∥2

V +h2
m−1

∑
n=0

∥∥∥θn+1 −θn

h

∥∥∥2

V

+∥vm∥2
H +h2

m−1

∑
n=0

∥zn+1∥2
H +h

m−1

∑
n=0

∥vn+1∥2
H +

∫
Ω

β̂ (ϕm)

+∥ϕm∥2
H +h2

m−1

∑
n=0

∥vn+1∥2
H ≤C3
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for all h ∈ (0,h1) and m = 1, ...,N.

Lemma 3.2. Let h1 be as in Lemma 3.1. Then there exists a constant C > 0
depending on the data such that

∥θ h∥L2(0,T ;W ) ≤C

for all h ∈ (0,h1).

Proof. We have from the first equation in (P)h and Lemma 3.1 that there exists
a constant C1 > 0 such that

∥−∆θ h∥L2(0,T ;H) ≤C1 (3.5)

for all h ∈ (0,h1). Thus we can prove Lemma 3.2 by Lemma 3.1, (3.5) and the
elliptic regularity theory.

Lemma 3.3. Let h1 be as in Lemma 3.1. Then there exist constants C > 0 and
h2 ∈ (0,h1) depending on the data such that

∥vh∥2
L∞(Ω×(0,T ))+∥ϕh∥2

L∞(Ω×(0,T )) ≤C

for all h ∈ (0,h2).

Proof. We derive from the identities a(a−b) = 1
2 a2− 1

2 b2+ 1
2(a−b)2 (a,b∈R)

and hvn+1 = ϕn+1 −ϕn, the Young inequality that

1
2
|ϕn+1(x)|2 −

1
2
|ϕn(x)|2 +

1
2
|ϕn+1(x)−ϕn(x)|2

= ϕn+1(x)(ϕn+1(x)−ϕn(x))

= hϕn+1(x)vn+1(x)

≤ 1
2

h∥ϕn+1∥2
L∞(Ω)+

1
2

h∥vn+1∥2
L∞(Ω). (3.6)

Testing the second equation in (P)h by hvn+1(x) and using (A1), (A3), the Young
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inequality mean that there exists a constant C1 > 0 such that

1
2
|vn+1(x)|2 −

1
2
|vn(x)|2 +

1
2
|vn+1(x)− vn(x)|2

+β (ϕn+1(x))(ϕn+1(x)−ϕn(x))

= h
(
θn+1(x)−a(x)ϕn(x)+(J ∗ϕn)(x)+π(0)−π(ϕn+1(x))−π(0)

)
vn+1(x)

≤ 1
2

h∥θn+1∥2
L∞(Ω)+

1
2

h∥−a(·)ϕn + J ∗ϕn∥2
L∞(Ω)

+
∥π ′∥2

L∞(R)

2
h∥ϕn+1∥2

L∞(Ω)+
|π(0)|2

2
h+2h∥vn+1∥2

L∞(Ω)

≤ 1
2

h∥θn+1∥2
L∞(Ω)+C1h∥ϕn∥2

L∞(Ω)

+
∥π ′∥2

L∞(R)

2
h∥ϕn+1∥2

L∞(Ω)+
|π(0)|2

2
h+2h∥vn+1∥2

L∞(Ω) (3.7)

for all h ∈ (0,h1) and a.a. x ∈ Ω. Here the condition (A2) and the definition of
the subdifferential lead to the inequality

β (ϕn+1(x))(ϕn+1(x)−ϕn(x))≥ β̂ (ϕn+1(x))− β̂ (ϕn(x)). (3.8)

Thus it follows from (3.6)-(3.8), summing over n = 0, ...,m−1 with 1 ≤ m ≤ N
and Remark 1.1 that

1
2
|ϕm(x)|2 +

1
2
|vm(x)|2 + β̂ (ϕm(x))

≤ 1
2
∥ϕ0∥2

L∞(Ω)+
1
2
∥v0∥2

L∞(Ω)+∥β̂ (ϕ0)∥L∞(Ω)

+
1
2

h
m−1

∑
n=0

∥θn+1∥2
L∞(Ω)+C1h

m−1

∑
n=0

∥ϕn∥2
L∞(Ω)

+
∥π ′∥2

L∞(R)+1

2
h

m−1

∑
n=0

∥ϕn+1∥2
L∞(Ω)+

5
2

h
m−1

∑
n=0

∥vn+1∥2
L∞(Ω)+

|π(0)|2

2
T

for all h ∈ (0,h1), m = 1, ...,N and a.a. x ∈ Ω, which implies that

1
2
∥ϕm∥2

L∞(Ω)+
1
2
∥vm∥2

L∞(Ω)

≤ 1
2
∥ϕ0∥2

L∞(Ω)+
1
2
∥v0∥2

L∞(Ω)+∥β̂ (ϕ0)∥L∞(Ω)

+
1
2

h
m−1

∑
n=0

∥θn+1∥2
L∞(Ω)+C1h

m−1

∑
n=0

∥ϕn∥2
L∞(Ω)

+
∥π ′∥2

L∞(R)+1

2
h

m−1

∑
n=0

∥ϕn+1∥2
L∞(Ω)+

5
2

h
m−1

∑
n=0

∥vn+1∥2
L∞(Ω)+

|π(0)|2

2
T
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for all h ∈ (0,h1) and m = 1, ...,N. Then the inequality

1− (∥π ′∥2
L∞(R)+1)h

2
∥ϕm∥2

L∞(Ω)+
1−5h

2
∥vm∥2

L∞(Ω)

≤ 1
2
∥ϕ0∥2

L∞(Ω)+
1
2
∥v0∥2

L∞(Ω)+∥β̂ (ϕ0)∥L∞(Ω)

+
1
2

h
m−1

∑
n=0

∥θn+1∥2
L∞(Ω)+

2C1 +∥π ′∥2
L∞(R)+1

2
h

m−1

∑
j=0

∥ϕ j∥2
L∞(Ω)

+
5
2

h
m−1

∑
j=0

∥v j∥2
L∞(Ω)+

|π(0)|2

2
T (3.9)

holds for all h ∈ (0,h1) and m = 1, ...,N. Here we see from the continuity of the
embedding W ↪→ L∞(Ω) and Lemma 3.2 that there exist constants C2,C3 > 0
such that

h
N−1

∑
n=0

∥θn+1∥2
L∞(Ω) = ∥θ h∥2

L2(0,T ;L∞(Ω)) ≤C2∥θ h∥2
L2(0,T ;W ) ≤C3 (3.10)

for all h ∈ (0,h1). Therefore we have from (3.9) and (3.10) that there exist
constants C4 > 0 and h2 ∈ (0,h1) such that

∥ϕm∥2
L∞(Ω)+∥vm∥2

L∞(Ω)

≤C4 +C4h
m−1

∑
j=0

∥ϕ j∥2
L∞(Ω)+C4h

m−1

∑
j=0

∥v j∥2
L∞(Ω)

for all h ∈ (0,h2) and m = 1, ...,N. Then we can obtain that there exists a con-
stant C5 > 0 such that

∥ϕm∥2
L∞(Ω)+∥vm∥2

L∞(Ω) ≤C5

for all h ∈ (0,h2) and m = 1, ...,N by the discrete Gronwall lemma (see e.g., [10,
Prop. 2.2.1]).

Lemma 3.4. Let h2 be as in Lemma 3.3. Then there exists a constant C > 0
depending on the data such that

∥ϕ
h
∥2

L∞(Ω×(0,T )) ≤C

for all h ∈ (0,h2).

Proof. We can verify this lemma by Lemma 3.3 and (A4).
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Lemma 3.5. Let h2 be as in Lemma 3.3. Then there exists a constant C > 0
depending on the data such that

∥zh∥2
L2(0,T ;L∞(Ω)) ≤C

for all h ∈ (0,h2).

Proof. Since it follows from Lemma 3.3 and the continuity of β that there exists
a constant C1 > 0 such that

∥β (ϕh)∥L∞(Ω×(0,T )) ≤C1

for all h ∈ (0,h2), we can confirm that Lemma 3.5 holds by the second equation
in (P)h, (A1), (A3), Lemmas 3.3, 3.4, the continuity of the embedding W ↪→
L∞(Ω) and Lemma 3.2.

Lemma 3.6. Let h2 be as in Lemma 3.3. Then there exist constants C > 0 and
h3 ∈ (0,h2) depending on the data such that

∥zh∥2
L∞(0,T ;H) ≤C

for all h ∈ (0,h3).

Proof. Since the second equation in (P)n leads to the identity

z1 +hz1 +a(·)ϕ0 − J ∗ϕ0 +β (ϕ1)+π(ϕ1) = θ1,

it holds that

∥z1∥2
H +h∥z1∥2

H

=−(a(·)ϕ0 − J ∗ϕ0,z1)H − (β (ϕ1),z1)H − (π(ϕ1),z1)H +(θ1,z1)H .

Thus we deduce from the Young inequality, (A1), the continuity of β , (A3),
Lemmas 3.1, 3.3 that there exists a constant C1 > 0 such that

∥z1∥2
H ≤C1 (3.11)

for all h ∈ (0,h2). Now we let n ∈ {1, ...,N−1}. Then we have from the second
equation in (P)n that

zn+1 − zn +hzn+1 +ha(·)vn −hJ ∗ vn +β (ϕn+1)−β (ϕn)

+π(ϕn+1)−π(ϕn) = θn+1 −θn. (3.12)
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Moreover, we test (3.12) by zn+1, integrate over Ω, recall (A1), Lemma 3.3, the
local Lipschitz continuity of β , (A3), and use the Young inequality to infer that
there exist constants C2,C3 > 0 such that

1
2
∥zn+1∥2

H − 1
2
∥zn∥2

H +
1
2
∥zn+1 − zn∥2

H +h∥zn+1∥2
H

=−h(a(·)vn − J ∗ vn,zn+1)H −h
(

β (ϕn+1)−β (ϕn)

h
,zn+1

)
H

−h
(

π(ϕn+1)−π(ϕn)

h
,zn+1

)
H
+h

(
θn+1 −θn

h
,zn+1

)
H

≤C2h∥vn∥H∥zn+1∥H +C2h∥vn+1∥H∥zn+1∥H +h
∥∥∥θn+1 −θn

h

∥∥∥
H
∥zn+1∥H

≤C3h∥zn+1∥H +h
∥∥∥θn+1 −θn

h

∥∥∥
H
∥zn+1∥H

≤ h∥zn+1∥2
H +

1
2

h
∥∥∥θn+1 −θn

h

∥∥∥2

H
+

C2
3

2
h (3.13)

for all h ∈ (0,h2). Thus, summing (3.13) over n = 1, ..., ℓ− 1 with 2 ≤ ℓ ≤ N,
we see from (3.11) and Lemma 3.1 that there exists a constant C4 > 0 such that

1
2
∥zℓ∥2

H ≤ 1
2
∥z1∥2

H +h
ℓ−1

∑
n=1

∥zn+1∥2
H +

1
2

h
ℓ−1

∑
n=1

∥∥∥θn+1 −θn

h

∥∥∥2

H
+

C2
3

2
T

≤C4 +h
ℓ−1

∑
n=1

∥zn+1∥2
H

for all h ∈ (0,h2) and ℓ = 2, ...,N, whence we have from (3.11) that there exist
constants C5 > 0 and h3 ∈ (0,h2) such that

∥zm∥2
H ≤C5 +C5h

m−1

∑
j=0

∥z j∥2
H

for all h ∈ (0,h3) and m = 1, ...,N. Therefore the discrete Gronwall lemma (see
e.g., [10, Prop. 2.2.1]) implies that there exists a constant C6 > 0 such that

∥zm∥2
H ≤C6

for all h ∈ (0,h3) and m = 1, ...,N.

Lemma 3.7. Let h3 be as in Lemma 3.6. Then there exists a constant C > 0
depending on the data such that

∥θ̂h∥H1(0,T ;H)∩L∞(0,T ;V )+∥ϕ̂h∥W 1,∞(0,T ;L∞(Ω))

+∥v̂h∥W 1,∞(0,T ;H)∩W 1,2(0,T ;L∞(Ω))∩L∞(0,T ;L∞(Ω)) ≤C

for all h ∈ (0,h3).
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Proof. This lemma can be proved by (1.6)-(1.8), Lemmas 3.1, 3.3, 3.5 and 3.6.

The following lemma asserts Cauchy’s criterion for solutions of (P)h.

Lemma 3.8. Let h3 be as in Lemma 3.6. Then there exists a constant C > 0
depending on the data such that

∥v̂h − v̂τ∥C([0,T ];H)+∥vh − vτ∥L2(0,T ;H)+∥ϕ̂h − ϕ̂τ∥C([0,T ];H)

+∥θ̂h − θ̂τ∥C([0,T ];H)+∥∇(θ h −θ τ)∥L2(0,T ;H)

≤C(h1/2 + τ
1/2)+C∥ f h − f τ∥L2(0,T ;H)

for all h,τ ∈ (0,h3).

Proof. It holds that

1
2

d
ds

∥v̂h(s)− v̂τ(s)∥2
H = (zh(s)− zτ(s), v̂h(s)− v̂τ(s))H

= (zh(s)− zτ(s), v̂h(s)− vh(s))H +(zh(s)− zτ(s),vh(s)− vτ(s))H

+(zh(s)− zτ(s),vτ(s)− v̂τ(s))H . (3.14)

Here we derive from the second equation in (P)h that

(zh(s)− zτ(s),vh(s)− vτ(s))H

=−∥vh(s)− vτ(s)∥2
H

+
(
−a(·)(ϕ

h
(s)−ϕ

τ
(s))+ J ∗ (ϕ

h
(s)−ϕ

τ
(s)),vh(s)− vτ(s)

)
H

−
(
β (ϕh(s))−β (ϕτ(s)),vh(s)− vτ(s)

)
H

−
(
π(ϕh(s))−π(ϕτ(s)),vh(s)− vτ(s)

)
H

+(θ h(s)−θ τ(s),vh(s)− vτ(s))H . (3.15)

The property (1.12) means that

∥ϕ
h
(s)−ϕ

τ
(s)∥2

H

= ∥−h(ϕ̂h)t(s)+ τ(ϕ̂τ)t(s)+ϕh(s)−ϕτ(s)∥2
H

≤ 3h2∥(ϕ̂h)t(s)∥2
H +3τ

2∥(ϕ̂τ)t(s)∥2
H +3∥ϕh(s)−ϕτ(s)∥2

H . (3.16)

We can obtain that

∥ϕh(s)−ϕτ(s)∥2
H

= ∥ϕh(s)− ϕ̂h(s)+ ϕ̂h(s)− ϕ̂τ(s)+ ϕ̂τ(s)−ϕτ(s)∥2
H

≤ 3∥ϕh(s)− ϕ̂h(s)∥2
H +3∥ϕ̂h(s)− ϕ̂τ(s)∥2

H +3∥ϕ̂τ(s)−ϕτ(s)∥2
H (3.17)
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and

1
2

d
ds

∥ϕ̂h(s)− ϕ̂τ(s)∥2
H = (vh(s)− vτ(s), ϕ̂h(s)− ϕ̂τ(s))H . (3.18)

It follows from the first equation in (P)h that

1
2

d
ds

∥θ̂h(s)− θ̂τ(s)∥2
H

=−
(
−∆(θ h(s)−θ τ(s)), θ̂h(s)− θ̂τ(s)

)
H − (vh(s)− vτ(s), θ̂h(s)− θ̂τ(s))H

+( f h(s)− f τ(s), θ̂h(s)− θ̂τ(s))H

=−∥∇(θ h(s)−θ τ(s))∥2
H −

(
−∆(θ h(s)−θ τ(s)), θ̂h(s)−θ h(s)

)
H

−
(
−∆(θ h(s)−θ τ(s)),θ τ(s)− θ̂τ(s)

)
H − (θ h(s)−θ τ(s),vh(s)− vτ(s))H

− (vh(s)− vτ(s), θ̂h(s)−θ h(s))H − (vh(s)− vτ(s),θ τ(s)− θ̂τ(s))H

+( f h(s)− f τ(s), θ̂h(s)− θ̂τ(s))H . (3.19)

Therefore we have from (3.14)-(3.19), the integration over (0, t), where t ∈
[0,T ], the Schwarz inequality, the Young inequality, (A1), Lemma 3.3, the local
Lipschitz continuity of β , (A3), (1.9)-(1.11), Lemmas 3.2, 3.6 and 3.7 that there
exists a constant C1 > 0 such that

∥v̂h(t)− v̂τ(t)∥2
H +

∫ t

0
∥vh(s)− vτ(s)∥2

H ds+∥ϕ̂h(t)− ϕ̂τ(t)∥2
H

+∥θ̂h(t)− θ̂τ(t)∥2
H +

∫ t

0
∥∇(θ h(s)−θ τ(s))∥2

H ds

≤C1(h+ τ)+C1∥ f h − f τ∥2
L2(0,T ;H)+C1

∫ t

0
∥ϕ̂h(s)− ϕ̂τ(s)∥2

H ds

+C1

∫ t

0
∥θ̂h(s)− θ̂τ(s)∥2

H ds

for all h,τ ∈ (0,h4). Then we can prove Lemma 3.8 by the Gronwall lemma.

4. Existence and uniqueness for (P) and an error estimate

In this section we verify Theorems 1.4 and 1.5.

Proof of Theorem 1.2. Since f h converges to f strongly in L2(0,T ;H) as h↘ 0
(see [3, Section 5]), we see from Lemmas 3.1-3.8, (1.9)-(1.12) that there exist
some functions

θ ∈ H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ),

ϕ ∈W 2,∞(0,T ;H)∩W 2,2(0,T ;L∞(Ω))∩W 1,∞(0,T ;L∞(Ω))
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such that

θ̂h → θ weakly∗ in H1(0,T ;H)∩L∞(0,T ;V ), (4.1)

θ h → θ weakly∗ in L∞(0,T ;V ),

θ h → θ weakly in L2(0,T ;W ), (4.2)

θ̂h → θ strongly in C([0,T ];H), (4.3)

θ h → θ strongly in L2(0,T ;V ),

ϕ̂h → ϕ weakly∗ in W 1,∞(0,T ;L∞(Ω)), (4.4)

ϕh → ϕ weakly∗ in L∞(Ω× (0,T )),

ϕ
h
→ ϕ weakly∗ in L∞(Ω× (0,T )),

ϕ̂h → ϕ strongly in C([0,T ];H), (4.5)

and

v̂h → ϕt weakly∗ in W 1,∞(0,T ;H)∩W 1,2(0,T ;L∞(Ω))∩L∞(Ω× (0,T )),

vh → ϕt weakly∗ in L∞(Ω× (0,T )), (4.6)

v̂h → ϕt strongly in C([0,T ];H), (4.7)

vh → ϕt strongly in L2(0,T ;H),

zh → ϕtt weakly∗ in L∞(0,T ;H)∩L2(0,T ;L∞(Ω)) (4.8)

as h = h j ↘ 0. Here we recall (1.10) and Lemma 3.3 to derive from (4.5) that

∥ϕh −ϕ∥L∞(0,T ;H) ≤ ∥ϕh − ϕ̂h∥L∞(0,T ;H)+∥ϕ̂h −ϕ∥L∞(0,T ;H)

≤ |Ω|1/2∥ϕh − ϕ̂h∥L∞(0,T ;L∞(Ω))+∥ϕ̂h −ϕ∥L∞(0,T ;H)

=
|Ω|1/2
√

3
h∥vh∥L∞(0,T ;L∞(Ω))+∥ϕ̂h −ϕ∥L∞(0,T ;H) → 0

as h = h j ↘ 0, and hence it holds that

ϕh → ϕ strongly in L∞(0,T ;H) (4.9)

as h = h j ↘ 0. Thus we infer from (1.12), (4.9) and Lemma 3.7 that

ϕ
h
→ ϕ strongly in L∞(0,T ;H) (4.10)

as h = h j ↘ 0. Therefore, owing to (4.1)-(4.10), (A1), Lemma 3.3, the local
Lipschitz continuity of β , and (A3), we can establish existence of solutions to
(P). Moreover, we can confirm uniqueness of solutions to (P) in a similar way
to the proof of Lemma 3.8.
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Proof of Theorem 1.3. Since the inclusion f ∈ L2(0,T ;H)∩W 1,1(0,T ;H) im-
plies that there exists a constant C1 > 0 such that

∥ f h − f∥L2(0,T ;H) ≤C1h1/2

for all h > 0 (see [3, Section 5]), we can prove Theorem 1.5 by Lemma 3.8.
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46–58, Birkhäuser Verlag, Basel, (1990).
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