LE MATEMATICHE
Vol. LVI (2001) — Fasc. I, pp. 97-107

A STUDY ON FUZZY DIFFERENTIAL GAME

EBRAHIM YOUNESS - ABD EL-MONEIM MEGAHED

In this paper we study a fuzzy differential game problem, in which the
information obtained by any player may contain some sort of uncertainties,
which are usually difficult to characterize either determinstically or stochas-
tically. A necessary condition for optimal strategy of an open loop Nash-
equilibrium solution for fuzzy differential game is derived and an illustrative
example is presented to clarify the developed result.

1. Introduction.

For a continuous differential game problems of N-Players, the dynamical
system may be described by

( min )Ji(ul, ceun) = @i(x(ty)) +
Uy eestly
I
+/ L@, u g, uy, £ dt (L)
/ I
(1.19 subject to
x(@) = f&x(®),ur, -, un, 1) (1.2)
h(uy,---,un) =0 (1.3)
x(t,) = Xo (1.4)
where I; is C' on R* x R™ x R™ x ... x R™ and ¢; is C' on R" i =
1,2,---, N, x(t) € R" is the state vector of the system at time ¢ € [t,, tf], f is
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C!on R"xR™ xR™2 . .. xR™N , J; is the cost for each Player i, and the control
variables u;, i = 1,2, ---, N are constrained by h(uy, uy, -+, un,t) >0, x(t,)
is the initial state known by all Players, ¢ = t, is the starting of the game and
t =ty is the end of the game; (see [1],[2],{8]).

In many pratical problems, the information obtained by any Player may
contain some sort of uncertainties, which is treated, in this paper, as fuzzy
information (see [6]). The considered differential game problem with fuzzy
information is a fuzzy differential game. a fuzzy differential game can arise in
many life problems, for example, the problem of guarding a territory (see [4],

[SD.

2. Problem Formulation.

Assuming that each player i has fuzzy goal in the continuous differential
game problem, then the rigid requirements of the continuous differential game
may be softened into the following fuzzy version.

( minimize JiQuy, -+ uy) = @ (x(tp)) +
t
-+/fbwh~gquODdt .1
2.1) subject 0
x(t) = f(x(@),uy, -+, uy,t) (2.2)
h(up, -+, uy) >0 \ (2.3)
x(t,) = x, (2.4)

where the symbol “minimize” denotes fuzzy version of “minimize” i.e., the
cost of each player should be minimized as much as possible under the given
constraints (see [9]), such fuzzy requirements for each player can be quantified
by eliciting membership function p;(J;),i = 1,2,---, N from the objective
function J;, for each playeri = 1,2,---, N

where p;(J;) defined by

1, J=<J!
Ji = J?
2.5 (=1 —L , Jl<s<Ur
(2.5) i (Ji) T ;
0 , JLi=J

where J° and J! denotes the value of the objective function J; such that the
degree of membership function is 0 and 1 respectively, i.e., J? is undesirable
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Figure 1. Linear membership function

cost and J;! is desirable cost for each player i = 1, ---, N. Figure 1 illustrates

the shape of the linear membership function.

The problem now is to find u* such that ptp(J; (4*)) = max rlninN i (J;i (),
u =1,

where 1 p is the membership degree of fuzzy decision making and p; (J;) is the
membership degree of fuzzy goal for each player under the given constraints.
By introducing the auxiliary variable A, this problem can be transformed into
the following equivalent problem.

maximize A (2.6)
u
, subject to
28) A= (s, w, ) @.7)
x(@#) = fx@®),uy, -, un,t) (2.8)
x(to) = X5 (29)

3. Nash-Equilibrium Fuzzy Continuous Differential Game.

In this section we shall discuss the Nash-equﬂibriuni solution for N-players
fuzzy continuous differential game.

3.1. Definition (Nash-Equilibrium fuzzy strategy)

If Ji(uy,ug, - uy), -+, Jy(uy, -+, uy) are cost functions with mems-
bership function wp;(Jy), -+, uy (Jy) for players 1,2, ---, N, the control N-
tuplue (u}, -- -, u}y) is Nash-equilibrium fuzzy strategy if fori =1,2,.-., N

/’LL'(JI'(MTs ) u:'k._p M;‘k> u;‘:_l’ Y u}kv)) =
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Wi (Ji QY iy g, uf g, udy).
Intuitively, the Nash-equilibrium concept means that if one players tries to alter
his strategy unilaterally, he can not improve his own optimization criterion.

3.2 Formulation of Nash-Equilibrium Continuous Differential Game
The Nash-Equilibrium fuzzy continuous differential game problem can be
formulated as follows. Find u* = (uf, v*) that solves the problem

max A (3.2.1)
Ui
subject to
(3.2) A= pi(Ji(u, v7))  (3.2.2)

x() = f(x,u;,v*) (3.2.3)
h(u;(t), v*) > 0. (3.2.4)
L x(to) = X5

where
1 , Ji < Jl-l
8 . ¥y __ Jo
J’(M*L;UQ_{L , ]l_l <h<J
0 ’ Jl 2 ]i07

wi (J; (ui, v*)) =

J;? is determined by the player i based on his strategy,

Ji(uia U*) = gol(x(tf)) + / ’ Ii(x(t)7 Ui, v*, t) dls

N
filto f] xR" xRS — R" is €1, S =Y 8;,i # ,

J=1
where S; is the dimension of U;, u; € U; ¢ RS,
L[t tf] X R"xR* — R is C', i=1,2,---,N

h(-): [to, /] x RS — RY is C',

denotes the control or decision of player i, which is taken to be picewise
continuous function of time for all i, and v* is the composite control for the
remaining players, x(¢) = (x1, xp, - - -, xy) € R” is the state vector of the system
attime ¢, ¢t € [t,, t¢], J; is the cost for each player i, and the control variables is
constraint by A (u;, v*) > 0, x(t,) is the initial state known by all players, ¢t = ¢,
is the starting of the game and ¢ = #; is the end of the game.
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3.3 Theorem. Let

FO), ui(0), v (0), 1), LGe(t), wi (1), v* (1), 1)
and h(u;(t),v*(),t) i = 1,---, N be continuously differentiable on R". If
u* = (uf, v*) is an optimal control, with the state trajectory {x*(1), t € [t,, t7]}

for problenz (3.2°), then there exist N-costate vectors P;(t) and N-Hamiltonian
functions H; defined by P;(t) : [ts, ty] —> R",

(3.3.1) H;(x (1), u; (1), v* (1), Pi(0), ) = L;(x(£), u; (¢), v* (1), 1)

+ Pif (x(8), u; (1), v* (), 1) + Q(Dh(u; (1), v*(1))

such that
(3.3.2) (@) = f*@), ul, vi(@), 1), x*(t,) = X,
(3.33) 1) = —P.(t) af (x*, uf,v*, 1) _ of; (x*, u?, v*, t)’
0 x d0x
(334) BHi(x(t),u,-(t),v*(t), pi(t)’t) -0
au[

o 0gi(x ()
(3.3.5) Pi(ty) = ———-———ax(tf) ,
(3.3.6) hi(uf,v*) =0,
and
(3.3.7) Q@hi(u;,v*, 1) =0, Q@) =0,
where

4 = @i (x(tr)) — J7°
‘ Jh=Jp

i _ Ii(x(t)7ui(t)’v*7t)

L Jh— e

L 1

E]
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Proof.  Since the functions f and f, are continuous differentiable, then there
exists a solution P(r) for the equation

. 9 al 90
oo e L st

The adjoint equation of the above equation is

A

81[ * * *
(:3.9) P30 = | S+ pfe [px+[ L, uf v, 1)+ pf 6, ut, v, 1)+

Q] v") | = [HG*, e, v', 1)+ pF G, s, v, 1) + QA v
which has the solution §x(7) with initial condition 3x(t,) = 0. Since Theo-
rem 10.1 in ([3]), states that

“Let A(t) be an n x n matrix, G(t) an n-dimensional vector of piecewise
continuous functions defined on an interval [te, 1), and y, an n-dimensional
vector. Then if T € [t,, 1] there is a unique piecewise continuously differentiable
solution of the vector differential equation y() = A@)y + G(t) on the interval
(%o, t1] which satisfies the condition y(t) = Yo,

then we get

’ d
(3.3.10) E[P(t)éx(t)] =

(6O, 0500, "0, 1) + PFG @), @), "0, ) + QDA V9] -
[fz(x*, wi, U5, 1) + pf (" (1), ui (1), v*(0), 1) + Qi) h(u;, v*)].
By integrating from 1, to #;

/ff d(P@se())
A dt -

f ' (LG, a0, 07 @), 0) + PEG* w30, 000, 1) + Qb v°)] —

o

[1i (%, i (0), 0% (6), 8) + pf (1), s (2), v*(£), £) + QD) h(us, v*)]] dt,
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then

(3.3.11) P(tr)dx(tr) =
/ ' ([0 @), 470, 0" @0.0) + PFGE (0, 1 (0, 0" (0),1) + Q@h(w}, v)] -

[ G0, i), 07 (0, 0) + pf (5 (0,0, 0", 1) + Q(Dh(us, v)] [ d,

Since Do)
_ 9plx(iy
Ply) = ax(tr)
and 2
t
S11(J (i, v)) = ﬁi"(iff))) ax(tp),

then according to Theorem 11.1 in ([3]). equation (3.3.10) takes the form

(3.3.12) Sp(J (ui, v*)) =
t
/f [[Ii(x*, uf(2), v (), t) + Pf(x* (), u; (1), v* (@), 1) + Q()h(u;, v*)]—

[5G (1), w0), 070, 0) + PG (0, 1 (0), v* (0, ) + QWDh (s, 0] | dr.

Since U is convex, then from differentiability of f and [ and according to
Theorem 11.2 in ([3]). We have for each u; € U.

(3.3.13) [f,.(x*, ul, v, 1) + Pf'(x*, ul, v*, 1) + QU)h(uj, v*)]

— [ O, w0, v (0, + PFG i, v, 1) + QWA (s, ] =0

Hence
[ @, 40, 00,0 + PFG 1, 0", 1) + QO] v)
= mggfi(x*(t), i (), v* (@), 1) + Pf(x™, u;i (1), v*(2), 1) + Q(@)h(u;, v"))
Example. Let the state equations given by the following

X1(t) = us(t) +uz(t), x2(t) = up(t) — uy(t)
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where the cost for each player is

tr . . tr
T = x () + f (=221, T = 26,(ty) + / (s — 1Yt
lo

f
the time interval [z,, tr] is prescribed.

Solution. The Hamiltonian function H, for each player i given by
Hy = (ur —2)* + Pi(uy + 12),

Hy = (uy — 1) + Py(uy — uy).
The costate equations are obtained from the first order open-loop necessary

conditions as follows

1

plzt)z__%i:(), Pl([f)zwzl
X1

axl
which implies Py (t) = 1
; 0H, . dp(x2(tr))
2(0) = =5 ) = =

which implies P,(¢) = 2.

From the necesary conditions, the Hamiltonian functions is minimized if the
first derivative of u; equal zero i.e.,

oH 0H,

L —o 2

: =0
ouy ouy

0H
since a—l = 2(u; —2) + P; then u; = %
U

OH
Since a—i = 2(up — 1) -+ P, then u, = 2, and thus
Uz

ty ty 3
JllzminJI:xl(tf)—f—/ (u1—2)2dt=x1(tf)+/ (-2-—2)2dz
to

o
1
= x1(ty) + Z(tf — 1),

L
le = min J, = ZXZ(Zf) +/ (uy — l)zdl‘ = 2)Cz(l‘f) -+ (tf —15).
to
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In order to elect the membership functions p; we assume that the controls
Uy = % and u, = 1 make the cost J; undersirable (i.e. u;(J;) = 0). Therefore

tr iy 3
Jlole(lff)-}-/ (uy —2)2dl‘:X1([f)+/ (Z——Z)zdt:
to fo

25
= x1 () + Té(tf — 1),

I
Jy = 2x,(ty) +/ (g — 1)*dt = 2x,(ts),

fo

Hence
o s I men s S = 22%dr — xi () — Bty — 1)
HlJ1) = . =
Jl = T = 1) — Bty — 1)
25 16 7 (u; —2)?
—_ — — _f (ul—) dt
21 21 ), (15 — 1)
Jy = J§ 1 4
() = . / (4p — 1) dt.
=T =t ),

The flexible formulation of the original problem in the form of a fuzzy continu-
ous differential game problem can be transformed into the following problem

max A
u,uy

subject to

25 16 [ —2)?
(*) AL — — — (_ul__)_dt’
21 21, (tf — 1)

1 I )
(48) A< f (s — D2,
If — 1y t

x1(8) = ug(t) + uy(t)

Xo(t) = uy — up
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The Hamiltonian functions of membership u;(J;) for each player i are

~ 16(111 - 2)2

H, = P
1 200, = 1) + Py(uy + uy)
A (uy — 1)
e P —_
2 oy + Pr(uy — up)

from the necessary conditions we have

OH,  32(u; —2)
dur 210t — 1)

32
51"(141 —2)=(ty — t,)

21(tr — ¢,
a =208 L,
32

and .

0 H, 2(uy — 1)

2 =0=""A_"_1p

ouy ([f — 1)
then

iy =14 (tf — 1,).

By substituting about uy, up in (x), (xx) we have

L2516 2+ E(ty —t,) — 2)?

== dt
=21 21/, (tr — 1)
25 - 16[21@; — t,) 7 25 21 ,
== - | 2 (1) = = — =t — 1),
21 21[ 32 } U=t =37 ~ggr =)
and
1 v 2 2
3 < (tf_t)f (ty — )7 dr < (tf — 1,)°.
[ to



A STUDY ON FUZZY DIFFERENTIAL GAME 107

4. Conclusions.

The necessary conditions for the optimality of a fuzzy differential game are

derived and applied on Nash-Equilibrium fuzzy continuous differential game.
Deriving these conditions was based on an auxiliary variable A which can be
determined as a solution of deterministic mathematical programming problem.
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