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REGULARITY FOR THE SOLUTIONS OF DOUBLE
OBSTACLE PROBLEMS INVOLVING NONLINEAR
ELLIPTIC OPERATORS ON THE HEISENBERG GROUP

SILVANA MARCHI

We study the Holder continuity of the homogeneous gradient of the
weak solutions u € W? of double obstacle problems involving nonlinear
elliptic operators on the Heisenberg group.

1. Introduction.

Let H", n > 1 be the Heisenberg group and let X;, i = 1, ..., 2n, be the
generators of the corresponding Lie algebra with their commutators up to the
first order. Let Xu = (Xju, ..., X,u) and let © be an open bounded subset
of H". The purpose of this paper is to investigate the local Holder continuity of
the gradient Xu of the weak solutions u € WHr (2, X), p > 1, of the double
obstacle problem for operators of the form

divgA(x, Xu) — B(x, u, Xu)
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where A and B denote, respectively, vector and scalar vaioed functions
A:H' x R — R
B:H'"xRxR”™ >R
satisfying the following structure conditions for fixed p > 1:

(@) A(x,h) = g(x)|h|P~2h, for each (x, h) € H" x R?*, where g:H"—> R
satisfies ”g“Lw(Q) < TI'y and

) [gx)—gx)| <|x—x |°‘I for all x, x’ € H".

©) |B(x,u, h)| < Ty(Jh|P0~ 7)+|u|p ~lpa(x)) forall (x, u, h) e H" x R x
R?", where a € L! (), > —E——

loc

The obstacles 1y, ¥, satisfient

(d) Y1, ¥ € Ch2(Q)
(e) Y1 = Yo > Y ae. in Q2

where Y € W'P(2, X). Here oy, 'y, T, are positive constants and a, € (0, 1).
Moreover, whereas |g(x) — g(x’)| and |A| denote resp. scalar and vectorial
Euclidean norms, |x — x’| denotes the Heisenberg norm in H". Finally if Q is
the homogeneous dimension of H" (we will remind these definitions in section
2), then p* 1f p < Q and p* is an arbitrary number greater than p if
r=0.

We denote by Wb 1’(S2 X) the space of functions f € LP(2) such
that X f € LP(2) for k = 1,...,2n, with norm | fll;,, = || fllzr) +
Zi"l | Xk fllLe () and by W1 ”(Q X) the closure of C{°(£2) with respect to
the norm of W7 (Q, X).

A function u € W' (R, X) is said to be a weak solution of the double
obstacle problem related to the operator divyA + B if ¥y > u > v, and

(1) / [AGx, Xu)Xo + B(x,u, Xu)p]dx = 0
Q

holds for all ¢ € Wy” (R, X) such that ¥ > u + ¢ > .

We let C denote a positive constant which may depend only on the
structural constants Q, n, p, ay, az, I'1, I'z, £, not necessarily the same at each
occurrance.

The result we mean establish about the solutions of the problem (1) is
linked to the anologous one relative to the solutions of the equation

() / |Xv|P2Xv Xpdx =0
Q
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Ve Wzi)cp (R, X), forall p € WOl "P(2, X). We will require that any solution v
of (2) has Holder continuous horizontal derivatives. Moreover we will suppose
that there are positive constants C and & € (0, 1) such that any solution v of (2)

satisfies

1/p
3) sp1X0] £ ¥(@) iz | Xl dx)
B(xp,R—0R) | B(x0, R)| JBxo R
4) max;—i1, . 2z OSCR(xyp) XiV < C ("p‘)a sup [ Xv]

B(x¢,R/2)

for any homogeneous ball (see section 2) B(xp, R) CC Q and for all p < R /2.

As a matter of fact in [14] we proved the estimates (3) and (4) for any
2 < p < 1++/5 and we are stating them also for 1 + 7% < p < 2[16]. The
strong limitation on the range of admissibility of p required in [14] is linked
to the method used which relies on the local L? regularity of the derivative
in the degenerate direction of the solutions of the approximating equations.
Notwithstanding we couldn’t extend this result to other values of p, we true
it possible to improve [14], perhaps by a different method. Here we wish to
prove the following result.

Theorem 1. Let p > 1 such that the solutions v of (2) satisfy (3) and (4) (this
happens at least for 1 + % < p < 14/5). Then the solutions u of (1) belong

to C llof (82), for some B € (0, 1) depending only on the structural constants and

the constants in (3) and (4).

The conditions (3) and (4) concerning the solutions v of (2) are consistent
with the method we adopt to prove Theorem 1. In fact we link u and v with
the solutions uo and u; of resp. double and single obstacle problems relative
to the operator A freezed in xg € 2, that is Ag(h) = g(xo)|h|P~2h ~ |h|P~2h.
Precisely the estimates of

f[Xu—Xu0|pdx, / | Xug — Xu|f dx, f [ Xu, — Xv|? dx

B(x0,R) B(xo,R) B(xo.R)

we will establish in section 3 for sufficiently small R < 1, fournish an estimate

for |, Blxo.R |Xu — Xv|? dx which together with the conditions (3) and (4)
xg,R) A

enables us to prove that, in B(xo, R), u belongs to some Morrey’s space and

Xu to some Campanato’s space, finally « belongs to C'#(B(xy, R)) for some

B € (0, 1) independent on xg, R.
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The proof of Theorem 1 is largely inspired to [16]. However, whereas in the
euclidean setting of [16] the Holder continuity of the solutions of the inequality
(1) could exploited, as stated by many authors as [6], [5], [19], [3], [13], we
don’t have this information and we have to work with lack of boundedness of
the solutions.

For this reason, as in [20], we adopt the direct approach described in
[8] to estimate fB(xO)R)(lXulP + |u|P")dx instead of fB(xo,R) | Xu|? dx and
f B(xo.R) lu|P"dx separately.

This technique agrees with the condition (¢) we have imposed to B in
place of the usual one

|B(x,u, Xu)| < T(A17"H + ul™" +a(x)

of [13], [16] (but also of [3], [18], [5], [4],... ). With respect to [16] we give
sometimes a simpler proof of some estimates, specially in the case p < 1.

2. Basic knowledge.

The Heisenberg group H" is the Lie group whose underlying manifold is
R?*! with the following group law : for all x = (x/,1) = (x1,..., X, 1),
y=0"8) =1 Y2n, 5,

xoy=&+y,t+s+2[x",yD

where [x', y'] := 31 (ViXign = Xi Vidn)-
H" is a homogeneous group, that is a group with dilations, defined as

(X', 1) = (W', M%)

where the direction ¢ plays a particular role (the space is non-isotropic) corre-
sponding to the definition of the group action.

A norm for H" which is homogeneous of degree 1 with respect to the
dilations is the Heisenberg norm

x| = |, 01 = x|t + 12, forany x = (¥, 1) e H".

If for a moment we denote by |x|y and |x|g := (|x'|? 4+ ¢2)!/? the Heisenberg
norm and resp. the Euclidean norm of a point x = (x’, ) € H", the following
obvious inequalities hold

x| < |xlg < x> when |x|y <1
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The distance associated to the Heisenberg norm is

1 1

dx,y):=|y  ox|,x,ycH", wherey " = —y.
B(x,r) will denote the homogeneous ball with center in x € H" and radius
r > 0. )
For every function w defined on H", both left and right translations are
defined on H" as |
Lyw(x) =w(y ox)

Ryw(x) = w(xoy)

The Lebesgue measure is invariant with respect to the translations of the group,
though the shape of the ball changes if one shifts its center, and it is proportional
to the Q-th power of the radius, where QO = 2n 4 2 is the homogeneous
dimension of H", that is |B(x, r)| =~ r2|B(0, 1)|.

An operator N on H" is left-invariant if L ,(Nw) = N(L,w), and similarly
for right-invariance.

The Lie algebra £(X) of left-invariant vector fields corresponding to H"
is generated by

X; = ax,— + 2xi+nat

Xi+n =0
T = —481

Xitn

fori =1,...,n. Since [X;, Xiyn] = —[Xisn, Xi]1 =T,i = 1,...,n, and
[X:, X;] = O in any other case, the vector fields X;, i = 1,...,2n satisfy
the Hérmander condition of order 1 [10], that is together with their first order
commutators they span the whole Lie algebra.

The vector fields X; don’t commute with right translations.

We introduce the definitions (slightly different from the usual ones) of the
Morrey’s and Campanato’s spaces.

LetO <A< 1,1 <p<ocoand Ry > 0.

Definition 1. The function w € L, .(R2) belongs to the Morrey space MP*(£2)
if and only if

1

e e [wlp dx < Cpp(?\—l)
1B(x0, p) N Q2| JBxo, )02

for every xp € 2 and 0 < p < min{Ry, diam }.
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Definition 2. The function w € L (Q) belongs to the Campanato’s space

loc
LP*(Q) if and only if

1

Y-SR wx) —w de<c17/\
| B(x0, p) N 2| B(XO,meI (x) 0,0 <Cp

for every xo € Q and 0 < p < min {Ry, diam 2}, where Wy p =
1

[B(x0, p)N82 '/B(xoyp)ﬂﬁ w(x) dx.

Definition 3. The function w belongs to the Folland-Stein space T*(Q) if and
only if
[w(x) —w(y)| -

x,yEQ I.?C - y,l

and '}

loc

() = {u | nw e T*() for every n € C(Q)}.

As an easy consequence of the Poincaré inequality [12], Theorem C, we
have

%) XueMP*(B(x,2p)) = ueLP*(B(xo, p))

Moreover, since the balls B(xg, p) have the exterior corkscrew property, we
have

(6) LP*(B(xo, p) C T'}yo(B(x0, p))
Finally from the confront between the | - |5 and | - | norms we deduce

@) Che(B(xo, p)) C Tp (B(x0, p)) C CrL2(B(x0, p))

3. Preliminaries results.
Lemma 1. [18], Lemma 1. There is a positive constant yy depending only on
Q, p,ay, 'y, such that

(Rl +1R)DP2 lh =R if1<p <2

[A(x, k) — A(x, )] — 1] > {]h—h’lf’ ifp>2

forall h, h' e R*.
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Let xp € @ and let 0 < R < 1 such that B(xo, R) C Q. Let
Ag(h) = A(xg, h) and let u be a solution of the double obstacle problem related
to divgA + B.

We say that ug € WH?(B(xg, R), X) is a weak solution of the double
obstacle problem related to divgAg if ug —u € WOI"’(B(xo, R), X), Y¥ry = up >
Y, and

(8) / Ag(Xug) Xeodx >0
B(xo,R)

holds for any ¢ € Wy'* (B(xo; R), X) such that ¥ > ug + ¢ > ¥n.

Lemma 2. Let the hypothesis of Theorem 1 hold. If ug is a weak solution of
(8), then there exist positive structural constants C, § and o (u, ug) such that

©) f | Xu—Xugl? dx < CO(R) / (1Xul? +u|P Ydx +C RE o WU

B(xo,R) B(xo,R)

where ®(R) = O(R®) as R — 0.

Proof. Let’s select the test function ¢ = u — ug in (8). This is admissible
because ¢ € WOI"’(B(xO, R), X) and Y| > ¢ + ug > . Thus we obtain

[Ao(Xu) — Ag(Xug)] - [Xu — Xugldx <

B(x0,R)

< /[AO(Xu)—A(x,Xu)]-[Xu—Xuo]dx+ / A(x, Xu) [ Xu—Xugldx

B(xo,R) B(xo,R) -

< CR* f | Xu|P~ Y\ Xu — Xugldx — / B(x,u, Xu) (u — ug) dx

B(xo,R) B(xp,R)
(p—bH/p 1/p
< CR""( / |Xu[p'dx> ( / ]Xu—Xu0|”dgc)
B(xo,R) B(xo,R) ’

+C / (X u|PP D7 Ly )P" = al) lu — uol dx

B(xo,R)
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(applying Sobolev’s inequality [12], Theorem C)

(r—=1/p 1/p
(10) < CR""( / |Xu|pdx) ( / IXu—Xuolpdx)

B(xo,R) B(xo,R)
1-1/p*
+C{( / (|Xu|f’+|u|l’)dx>
B(xy, R)
] I/p
+||a||,RQ<“p—**7>}( / |Xu-Xu‘0|de) .
B(xo,R)

If p > 2 then (9) follows from (10) and Lemma 1 with

. )
O(R) = (/ (1Xul? + |ul? )dx> + R™
B(xo,R)

(Let’s observe that fB(XO R) [ulP" dx < +oo for small R < 1, as proved in [1],

[12]), and o (u, v) = T)Q—_pf ;I;—pi*—%). Letnow 1 < p < 2. Ifweset ¢ = u—u,
in (1) we easily obtain
(11) / [ Xug|? dx 5/ | Xul? dx
B(xq,R) B(xq,R)
Moreover

(12) | Xu—Xuol” = (| Xul+|Xuo))?*~P/2((|Xu|+ | Xuol)? 2| X u—Xuo|*}*/?

Applying Holder inequality gives

(2-p)/2
/ | Xu — Xug|? dx < (/ IXulpdx) .
B(xo,R) ! B(xy, R)

p/2
[/ (1Xu| + | Xuo| )P | Xu — Xu0|2dx:l
B(xq,R)

(by (10) and Lemma 1)

2=p)/2 1/2
§C< /IXu["a’x) (/ ]Xu——Xuol”dx) :

B(xo,R) B(xo,R)
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(p—D/p
-C[Ra‘< / IXuI”dx)

B(xo,R)

. (1=1/p*) p/2
+ / (1 Xul? + |ul? )dx} + R”]
B(xo,R)
where y = Q (1 —%—%).Then

12 . @-p)/2
(13) (/ IXu—Xuol”dx> _<_c( / IXuV’dx) :

B(xo,R) B, R)
(p—1)/2
.{Roupﬂ( f )Xu|de)
B(xo,R)
. (1=1/p*)p/2
+ / (| Xul? + {ul? )a’x] + RVP/Z}
B(xo,R)
12 I=p/2p*
sclrr( [ )+ [ s ) dx|
B(X(),R) B(XO,R)
2—-p)/2 12
+( f IXu|pdx) RVP/Z} Sc{R(xl[)/2< / |Xu|pd_x)
B0, R) B(xo,R)
i I-p/2p* (2—-p)q/2 )
'*‘[ / (1 Xul? +[ul” )dxil +< / IXuI”dx) +Rypq/2]
B(x0,R) B(xo,R)

where ¢, ¢’ > 1 and é + -ql—, = 1. Let’s observe that 2(1 — 2;) > 1. Moreover,

E*EJT’ we can choose ¢ in such a way that ypq’ > Q and (2 — p)g > 1.
Then (9) follows from (13) with ®(R) = (fB(XO,R)( | Xu|? +u|”" )dx)’, where
v=>10-E)Al2~-p)g—1l,and o(u,v) = ypq' — Q.

We say that u; € WP (B(xo, R), X) is a weak solution of the single
obstacle problem related to the operator divgAg if u; > Y, ug — u; €
Wa'? (B(xo, R), X) and

*

ast >

(14) / Ao(Xuy) - Xpdx >0
B(xo,R)

for all ¢ € W,'” (B(xo, R), X) such that ¢ + u; > .
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Lemma 3. Let the hypothesis of Theorem 1 hold. If u, is a weak solution of
(14), then there exist positive structural constants C and o (ug, uy) such that

(15) / [(Xug — Xu|Pdx < CR"(”"’“')(RQ+/ lXuolpdx)
B(x0,R) ‘ B

(xo,R)

Proof. The proof is largely due to [16].
The preliminar part of the proof insists on the estimate of the following
term: :

IE/ [Ao(Xuo)—AO(Xul)]-[Xuo—Xul]dx.
: B(x0,R)

Let’s select the test function ¢ = ug — u; in (14). This is admissible because
pe W P(B(xg, R), X) and ¢ + u; = ug > yr,. We have

/ Ao(Xuy) - [Xug — Xu(ldx >0
B(x0,R)

Then

[ = / Ao(XMO)~[XMQ—Xu1]dX— f Ao(Xul)-[Xuo——Xul]dx

B(x0,R) B(xo,R)
5/ Ao(Xug) - (Xug — Xu;) dx
B(x9,R)
2/ Ao(Xug) - [Xuog — X (uy Ayy)ldx
B(X() R)

+/ Ao(Xuo)'[X(ulAg/fl)—Xul]dlel—}-[z.
B(xy,R)

Now I; < 0. In fact the function ¢ = u1 A Yy — ug satisfies ¥ > ¢ + ug =
uy A Yy = Y. Moreover it belongs to W "P(B(xp, R), X) because if u; > Yy,
then 0 < ¢ = ¥y —up < u; —ug = 0 on dB(xp, R), and if uy < vy, then
@ =u; —ug=0ondB(xy, R).

Thus

(16) I < / Ao(Xuo) - [X (s Ary) — Xu]dx

B(xo,R)
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/ 1/p A P
S( f IAo(XMo)lpdx> (/ |X(u1—1,01)+|1’dx)

B(xo,R) B(xo,R)
since u; — (uy AyYy) = (uy — ¥y ™. To carry on with the estimate of I we need
now the following estimate

C RC+er if p>2

o
{an _/ X =) dx < {C RCt(r=Dr if] < p < 2.

B(xo,R)

On this aim let

'JE/B [Ao(Xuy) — Ag(X¥r) ] [ X (uy — ¥rp)T1dx

(x0,R)

- f Ao(Xup) - [ X (uy — yri)*1dx
B(xo,R)

- / Ao(XY) - [ X(uy — ) dx = Jy — ).
B(xo,R)

Defining ¢ = (u; — ¥1)*, then —¢ + u; > Yr; moreover ¥, > ug = u; on
9B (xg, R) and then ¢ € W(;’p(B(xo, R), X). Inserting —¢ in (14) gives J; < 0.
Hence

(18) J=—-h =~ / [Ao(X 1) — Ao(X (Y1 (x0)) 1 - [ X (w1 — Y1) "] dx
B(xo,R)

Letnow p > 2.
Since Ay is Lipschitz in this case, then from (18) and (d) we have

(19) 7 < C(e f Xt — X (xo) P dx + / X (s — )+ |Pdx

B(xo,R) B(xo,R)

< CE Y1l RETY + € / | X (uy — )T |7 dx
B(xo,R)

‘Moreover, from Lemma 1, we have

200 J= / Xuyzy [Ao(Xu1) — Ag(X ) ]+ [ Xuy — Xy ]dx
B(x0,R)
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> Y / IX (uy — ) T)7 dx
B(xo,R)

where xz denotes the characteristic function of a set E. Now (17) easily follows
from (19) and (20). Let now 1 < p < 2.

Since Ay is Holder continuous of constant p — 1, then, from (18) and (d)
we have

1) J < Cf Xy — Xy (o) P11 X Cuy — )| dix
B(xy,R)

t/p
<C R<Q+°‘2P>/P'< / (X (uy — )t P dx>
B(xo,R)

Moreover, as in Lemma 2 we have

/ X (1 — )P dx
B(xo,R)

2-p)/2 p/2
5( / Ilel”dx) [f(lXulH-IXW)p”leul—lelzdx:'
B(xo,R) B(xo,R)

(by Lemma 1)

(2—p)/2
22) sc( f |X«/n|f’dx> {/[AO(XMI)-AO(XW)]-

B(xo,R) B(xo,R)

p/2
X (uy —dfl)*dﬂ}

2=-p)/2
< C(/ | X |? dx) Jrr?
B(xq,R)

By (21), (22) and (d) then we have

IX (uy — wl)ﬂp dx < CRQ(2—P)/2[R(Q+azp)/P'.

B(xo,R)

1/pqp/2
X (uy — yr)t|P dx) ]

B(xo,R)
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and (17) easily follows.
We are now in a position to establish (15).
Let p > 2. From (16), (17) and ( a) we have

1/p
I<C R(Qtaap )/P</ | Ao (Xug)|? a’x)
B(xy,R)

: 1/p'
<C ROtzp’/Qp)(/ | X ug|? dx) R(@+eap'/2)/p
B(xo,R)
< C{Raz(p’)z/ﬂp)‘/ | Xuol? dx + RQ+<X211’/2]
B(xo,R)
(asR < 1)

< C{Raz(p/)z/(Zp) / | Xug|? dx + RQ+az(p’)2/(2P)}
B(xo,R)

a(p)?

Taking into account Lemma 1, this establishes (15) with o (uq, u;) = >

Letnow 1 < p < 2.
From (16), (17) and ( a) we have in this case

1/p
(23) I1<C R[Q+az(p—1)p]/p(/ IXMOfp dx)
B(xo,R)

Moreover, proceeding as in Lemma 2

(2-p)/2
/ |Xu0——Xu1|”dx§C(/ IXuolpa'x) .
B(x0,R) B(xp, R)

p/2?
U (1 Xuol + |Xuy )P~ Xug — Xullzdx]
B(xy,R)

Q2—-p)/2
< c(/ |Xu0]”dx> [P/?
B(xo,R)

172
= C(/ 1Xuo|pa'x) RIQ+ea(p=1)p)/2
B(xo,R)

(by Lemma 1)

(by (23))
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(by Young’s inequality)
= C{R"/ | Xuo|Pdx + RQf“Z(P_l)I”"}
B(XQ R)

for any n > 0, and (15) follows with o (ug, u;) = n = “2(” L)
We say that v € Wl P(B(xp, R), X) is a weak solutlon of the equation

divgAg =0ifv—ue W P (B(xg, R), X) and
(24) / Ag(Xv)Xpdx =0
B(XO R)

holds for any ¢ € WOI’”(B(xo, R), X).

Lemmad. Let the hypothesis of Theorem I hold. If u; is a weak solution of (14)
and v is a weak solution of (24), then there exist positive structural constants
C and o (uy, v) such that

(25) / ]Xul-—lepdxSCR"(“"”)(RQ+ / lXuofpdx)

B(xo,R) B(xo,R)

Proof. It follows from Lemma 3 taking ¥, = —o0.

Lemmas 2,3 and 4 form a chain between u and v which allows us to
conclude that u and v are linked. This is formally stated by the following

Proposition 1. If v is a solution of (24), then there exist positive structural
constants C, §' and o (u, v) such that

(26) / |Xu — Xv|Pdx < CO(R) f (I Xul? + |u|P)dx + C R2to W)
B(xp,R) B(xy,R)
where ®(R) = O(R®) as R — 0.

Proof. Let uy and u; be weak solutions of resp. (8) and (14). First of all we
wish to show that u and u, are linked through uy. From Lemmas 2,3 and (11
we have

/|Xu—Xull”dx 52”‘1[/lXu—Xuo[”dx+fIXuo—Xull”dx]

B(x0,R) B(x0,R) B(xo,R)
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< C{@(R) f (1 Xul? + |uP)dx + ROTOMH0) 4 Roluou) / | Xul? dx

B(xo,R) B(xo,R)

+ RQ”(“O'“')} =C [@(R) / (1Xul? + [u?")dx + R"(“"“)].
B(xo0,R)

This proves that u and u, are linked. We know that u; and v are linked by (25)
and thus, by a similar argument, we can show that u and v are linked.

Lemma 5. Let ve Wh7(B(xo, R), X) be a weak solution of the equation (24).
Then

@7 / IXv|? dx < C(E)Qf | Xv|? dx
B(x0,0) R JBx.m

(28) / |Xv — (X0)q,lF dx < C(—'O—)Q+“”/ |Xv|” dx
B(x0,0) R B(x0.R)

Jorall 0 < p < R. Here C and « € (0, 1) are positive structural constants.
Proof. Tt easily follows from (3) and (4) (see [16]).
Let
0@ = [ xul? + ) dx
B(x9,p)

forall p > 0.

Lemma 6. For any t > 0 there are constants C = C(t) and R = R(1) < 1
depending only on T and on the data such that

Pyo-r 0t
#(p) = C[ ()27 p(R) + RO
forallngfRER.

Proof.
/|u|f’*dxgc[ / lu — v|P" dx

B(xo,p) B(xo,R)

+ / [v— vy rl? dx + / NVxo, R — Uxy r]P dx + / qu(),p|p*dx:l
B(xg,R) B(xg,R) B(x9,0)
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If u is the exponent of the Holder continuity of v with respect to the homoge-
neous norm, then

f [V — vy, g | dx < C RETF'H
B(x0,R)
Hence, by Sobolev’s inequality [12], Theorem C,

(29) /|u|P*dxgc[RQ+P*”+ / |u—v|ﬁ*dx+(%)9 / lu!p*dx}

B(xo0,0) B(xo,R) B(xq,R)

SCI:RQ+1)/L+( / IXu——le”dx)”*/f’—f-(%)Q(D(R)]

B(xo,R)

Moreover

(30) / IXu]”dngp"l[ / | Xu — Xv|? dx + / le]"dx]

B(xg,0) B(xo,R) B(xo,R)

Adding (29) to (30) and taking into account Proposition 1 and that

/ [Xv|P dx 5/ [ Xul? dx ,
B(xp,R) B(xo,R)

we obtain (changing if necessary the value of o (u, v))
(1) p(p) < C[ (%)Q + ®(R)]¢(R) + CRO+owV)

where ®(R) — 0 as R — O. The thesis immediately follows from (31)
applying [8], Lemma 2.1, p. 86.

4. Proof of Theorem 1.

Proposition 2. u € CY*(B(xo, R)), forany 0 < A < 1.

loc
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Proof. 1t’s a direct consequence of (5), (6), (7) and Lemma 6. In fact, by
Lemma 6, Xu € MP*(B(xo, p)) forany 0 < p < R and for A = 1 — 11} for any
small T > 0.

We conclude the proof of Theorem 1 by proving that Xu € L?*(B(x, R))

for a suitable A € (0, 1).
Let 0 < 7 < 1. By Lemma 6 there exists positive structural constants C .

and 0 < Ry < 1 such that
R\ o+ Q-7
(32) ¢(R) < C(R—) @(Ro) + R
0

for all 0 < R < Ry. Then, on account of (26), (28), (32) and that
Jseo.py 1 XV dx < S35y | X 1|7 dx, we estimate as follows:

/ [ Xu — (Xu),|” dx
B(xo,p0)

SC{/ IXu—XvI”dx-i—f [ Xv — (Xv),|” dx
B(xg,p) B(xp,p0)

+ / (Xu), — (Xv>p|f’dx}
B(xy,p)

{(E)QMP/ [le”dx+/ lXu—XvI”dx}
B(xo,R) B(xo,p)

C{(ﬁ)g+dp/ | Xul? dx + ®(R)p(R) + RQ+U(u,v)}
B(xo,R)

IA
9]
=

IA
=

< C{[(%)Q+QP L @(R):l(p(R) + RQ-;—a(u,v)}

< C{[(%)Q+all + Ral] (—RR;)Q_T[(;O(RO) + ROQ_T ] + RQ+U(u,v)}‘

Let’s take now R = p”, where 0 < 0y < 1. Then we attein our goal choosing
v small enough and oy close enough to 1 so that ap + 0o(Q — ) > 0 and
00"+ Q—1)> 0.
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