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CONDUCTOR DEGREE AND SOCLE DEGREE

SILVIA ABRESCIA - LAURA BAZZOTTI - LUCIA MARINO

1. Introduction.

Let K be an infinite field and let R = Klxp,...,x,] be the usual
coordinate ring of P*. Let X = {Py,..., Ps} be s distinct points in " and
let Ix = p) N ... N p, be the ideal of X. We call A = R/Ix the homogeneous
coordinate ring of X C P".

There exists a canonical embedding of A into its integral closure, i.e.,

A=R/(piN...0p) > P R/pi=EPKv]=T
i=1 i=1

Each ideal I C A can be extended to T, associating to I the ideal generated by
I in T (cfr [8], Ch. VIII, sec. 5).

We call the conductor of A in T the biggest ideal J in A that coincides
with its extension to 7. The conductor, considered as an ideal in T, is generated
by homogeneous forms, i.e.

J=<vl', .00 >
The sequence {«ay, ..., s} is called the conductor sequence of A and the
numbers «y, ..., « are called the conductor degrees in X.
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From a theorem by Orecchia ([10], Th. 4.3) we can characterize the
conductor sequence in terms of the points of X; namely, we have that «;
is the minimal degree of a homogeneous polynomial F in R such that F e
721 m--~ﬂﬁi—1ﬂﬁi+l---mﬂs anngé‘p,i.

In view of this Theorem, we give the following

Definition 1.1. Let X = (Py, ..., P,} be a set of s distinct points in P", We
say that F' € R is a separator for P; (1 <i < s)if F(P;)) = 0forall j # i,
I < j <s,and F(P) # 0. We call the minimal degree of a separator for P;
the degree of P; in X.

Thus, Orecchia’s Theorem can be reformulated to say that the degree of
P; in X is a conductor degree in X. For this reason, we often denote by «; the
degree of P; in X or simply by o when no confusion arises.

In Section 2, following [6], we see that the conductor sequence of A is
contained in a set of permissible values, which depend on the Hilbert function
of A.

It is well known that there are different set of points having the same Hilbert
function but with different conductor sequences (Example 1). In other words,
the conductor sequence is not, in general, uniquely determined by the Hilbert
function. '

We restrict our attention to sets X of distincts points in P2. In the first part
of Section 3 we show, by adapting a general result by Geramita, Kreuzer and
Robbiano ([4]), that the maximum of the permissible values always appears in
the conductor sequence of any set of points with Hilbert function H.

So, two questions naturally arise. Given a Hilbert function, H, for s
distinct points,

Question 1. Is there any permissible value (besides the maximum one) guar-
anteed to appear in the conductor sequence of every set of points with Hilbert
Sfunction H?

Question 2. Are there other more restrictive conditions on the conductor se-
quence?

_ In the second part of Section 3 we give a positive answer to Question 2. In
fact the main result of this paper is to get different restrictions on the possible
values of conductor degrees. Given a set of distinct points X in P2, we can
consider the socle of any artinian reduction of the homogeneous coordinate ring
of X, A = R/Ix. Itis aknown result of homological algebra (see [9], Th. 1.3.6),
that the graded Betti numbers of A are the same for any artinian reduction of
A and that they are connected to the degrees of the minimal generators of the
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socle of any artinian reduction of A. So these degrees are invariants too. We
call them the socle-permissible values for A and we prove, in Theorem 3.9,
that the possible values for the conductor degrees in X are socle-permissible
values for A. So it is possible to associate to any set of points X in P? a set of
socle-permissible values for A, Sx. We show (see Example 4) that not all socle-
permissible values for A are realized by some point P € X. So a new question
arises. '

Question 3. Given a set of distinct points X C P2, does there exist a configura-
tion of points X' such that Sx = Sy and such that any socle-permissible value
for R /Iy is realized by at least one point P € X'?

In Section 4, we show that it is possible to consider particular configura-
tions of points X, that we call lex-configurations, such that all socle-permissible
values for R/Ix are realized by at least one point P € X (Proposition 4.6).

In Section 5, we answer Question 3 in another particular case, that is when
X is a set of generic points. In this case, we succeed in constructing a set of
point X’ with the required property.

2. The conductor and the Hilbert function.

It is well known that the Hilbert function of a graded R-module M =

@20 M, is
Hy(t) := dimg (M,)

If Iy € R is the (saturated) ideal associated to a projective scheme Y < P”,
we’ll use the notation Hy to indicate Hg/y, .

We recall now some results from ([6]). Let X be a set of distinct points
in P* and let o be the degree of a point P € X. By definition, there exists a
homogeneous polynomial F, of degree «, that is a separator of minimal degree
for P.

Let X' = X\ {P}. Then

Fe (IX’)ot \ (IX)a
So we get ([6], Lemma 2.3)

dim(Ix), <«

dim(T); = {dim(]x), +1 >«
and the Hilbert function of X' is the following

| Hx(®) I <a
Hy (1) = { Hx() -1 t>a
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i.e.
AHx (1) t#«

Aby (1) = {AHX(t) -1 t=a

This motivates the following

Definition 2.1. ([6], Def. 4.1). Let S = {b;}, i > 0, be a zero-dimensional
differentiable O-sequence. We say that [ is a permissible value for S if the

sequence T = {¢;}
o= {bi i<l

bi—1 [>1
is again a zero-dimensional differentiable 0-sequence.
Then, by the previous remark, we can conclude

Remark 2.2. The degree of a point P € X is a permissible value for the Hilbert
function of A = R/Ix.

In other words: given a set of points X, then simply by looking at the
graph of A Hy, the possible values for the conductor degrees in X are given by
the integers ¢ for which the A Hx () can decrease by 1 and still remain a Hilbert
function.It is trivial to see that if o (X) = min {t]AHx(t) = 0} then o (X) — 1
is the maximum of the permissible values for the Hilbert function of X.

Example 1. Consider the following zero-dimensional differentiable O-sequence
(which thus can be the Hilbert function of 11 points in P2):

Hy = 1 3 6 8 10 11 11
AHy = 1 2 3 2 2 1 0

We draw the graph of AHx (see Figure 1) and we see from the graph that the
permissible values are exactly 2, 4, 5. In Figures 2 and 3 we give examples
of two different configurations of points in P? with the Hilbert function given
above but with different conductor sequences.

®
5 N 5 5 5
® ® ® ° ®
5 5 5 5 5
® ® ® ® ®

Figure 3: Configuration with conductor sequence {2, 5,5, 5,5, 5, 5,5, 5, 5, 5)
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Figure 1: Graph of the first difference function A Hx

2
[ ]

4 4 4 4
o ® ® [ ]

5 5 5 5 5 5
® [ ] [ ] ® [ o

Figure 2: Configuration with conductor sequence {2, 4, 4,4,4,5,5,5,5, 5, 5}

3. Some results on the degrees of the conductor.
3.1 A necessary value.

We know that the possible values of the conductor degrees of a set of points X,
with Hilbert function H, can be read from the first difference function A Hy.
Thanks to a result of Geramita, Kreuzer and Robbiano ([4], Prop. 1.14), we
show that there is always a point P € X such that the degree of P in X is the
largest permissible value.

Proposition 3.1. Let X be a set of s distincts points in P* and let Hy be the
Hilbert function of X. Then there exists P € X such that the degree of P in X is
a=0cX)-1.
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Proof. By Proposition 1.14 of [4], there is a point P such that X' = X\ {P}
has the following Hilbert function

_ [ He(®) t<o@X) -1
HX’(’)“[S—1 £ > o(X)

This means exactly that the degree of this point PinXisa=oX)—1. [

3.2 Socle-permissible values.

We have already said (see Remark 2.2) that the possible values for the conductor
degrees in a set of points X € P* with Hilbert function H can be deduced from
H.

We will now show that, if X C P2, they can be also read from the last term
of a minimal free resolution of the homogeneous coordinate ring of X, R/Ix.
First we recall some definitions and some general results of homological algebra
(see [9], sec. 1.1).

Let I be an homogeneous ideal of R = Klxo,...,x,]andlet A = R/I.If
we denote by 4 the homological dimension of A, then a minimal free resolution
of A is:

O—=F—>...>F—>R—>A—0

where the F;’s are free R-modules, i.e. F; = @ R(—k)P*. The exponents Bik
are invariants of A which are called the graded Betti numbers of A. Starting
from the graded Betti numbers of A, the Berti numbers, f;, are defined as

follows:
B = Zﬁjk~
k
Definition 3.2. Let A = R /1 be a Cohen-Macaulay ring and Ll_ e, L& be a
maximal R-sequence in R; on A. The artinian ring B = A/(Ly,..., L) is

called an artinian reduction of A.

Remark 3.3. By an important result of homological algebra ([9], Th. 1.3.6),
we know that the graded Betti numbers in a minimal free resolution of a Cohen-
Macaulay ring A (as R-module) do not change when we consider any artinian
reduction of A.

We now suppose that J is an artinian homogeneous ideal of § =
Klxo,...,x]and B = §/J. Then

B:K@Blea...EBBp where B, # 0

LetM=B,p...0 B, denote the maximal homogeneous ideal of B.
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Definition 3.4. The socle of B, denoted soc(B), is:
soc(B) = Anng(ON).

It is well known that, if J is an artinian homogeneous ideal in S and B = §/J,
then the rank (as a S-module) of the last free module in a minimimal free
resolution of B is the dimension of the socle of B as K vector space, i.e.

Bir1 = dimg (soc(B)).
Moreover, under the same hypothesis,

Remark 3.5. The socle of B has ,3¢+ | x minimal generators of degree k— (¢+1).
We now give the following

Definition 3.6. Let / be a homogeneous Cohen-Macaulay ideal in R =
Klxo,...,x,) and A = R/I. We call the socle-permissible values for A the
distinct degrees of the minimal generators of the socle of any artinian reduction
of A.

Notice that the Definition 3.6 works thanks to Remark 3.3. Moreover, by
Remark 3.5, the Definition 3.6 can be restated to say that [ € N is a socle-
permissible value for A if and only if R(—(! + n)) appears in the last term of a
minimal free resolution of A.

Remark 3.7. Let X be a set of s distincts points in P” and let Hx be the Hilbert
function of X. We know that the function § Hx is the Hilbert function of any
artinian reduction of A = R/Ix. Let B denote an artinian reduction of A. If we
write:

B=K®B ®...®B, where B, #0

then, by the obvious inclusion B, C soc(B), we obtain that p is a socle-

permissible value for A. It is immediate. to see that p = o(X) — 1, so p is
the maximum socle-permissible value for A and it coincides with the maximum
permissible value for Hy.

Let’s apply these observations to an example.

Example 2. Let X be a set of points defined by the saturated ideal
Iy = (x(x —2), xy, y(y = 2)(y — 22)) € K[x, y, z].

Let A be the homogeneous coordinate ring of X and let B = A/(z) be an
artinian reduction of A.
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So, if we denote by S = K[x, y], we have B = S/(x?, xy, y®) and the
minimal free resolution of B as a S-module is
0— (-4 @ S(-3) = S(-3)dS(-2)2 = S — B — 0

From this resolution we see that dim k (soc(B)) = 2 with minimal generators
indegrees4—2 =2and3—2 = 1. So the socle-permissible values are exactly
2 and 1.

In the following, we specialize our discussion to sets of points in P? and
denote again by R = K[x, y, z] the usual homogeneous coordinate ring.

Lemma 3.8. Let X be a finite set of distinct points in P?. Let F be a separator
of minimal degree for the point P € X. Then the ideal (Ix, F) € R is saturated.

Proof. Letdeg (F) = «.
We can construct the following exact sequence:
(1) 0— R/(Ix : F)(—a) £ R/Ix — R/(Ix, F) = 0

where the first map is multiplication by F and the second is the canonical map
onto a quotient. We notice that (Ix : F) = 7 1s the ideal of the separated point
P and the saturation of the ideal (Ix, F) is the ideal of the remaining points
X' = X\ {P}. We know that (Ix, F) C sat(Ix, F). In order to prove the other
inclusion, it is enough to show both ideals have the same Hilbert function.

By Lemma 2.3 of [6], we have

Hy (¢ t<a
Hrysatin, ) (1) = Hy () = {Higt; -1 1z«

On the other hand, from the exact sequence (1) we get that

Hx (¢ t<a
Hryix (D) = Hy) — Hp(t — ) = {Higr; -1 t>a

We see that the Hi}bert functions are the same, so the two ideals have to coincide.
O
Theorem 3.9. Let X a finite set of distinct points in P2. Let
0—> EPR(=j) - P R~ - R — R/Ix — 0
jeB, keB,

be a graded minimal free resolution of R/Ix. Then for any point P € X the
degree‘of P in X, a, is a socle-permissible value for R /Ix ie.

a+2eB,
where By is the set of syzygies of the module R /Ix.
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Proof. Let F be a separator of deg (F) = « for the point P € X.

We recall that(Ix : F) = p is the ideal of the separated point P and
(Ix, F) is the ideal of the remaining points X’ = X \ {P} by Lemma 3.8.
Applying the “mapping cone” construction (cfr [9], sec. 1.1) to the resolutions
of R/Ixand R/(Ix : F) = R/p, and from the sequence (1), we get a resolution
for the ideal R/(Ix, F), namely:

0
0 0 R(—a —2)
R(—a —2) B; R=)DP  R(—a—1)> & @; R(—j)"
R(—a —1)? D R(=k)P R(—a) & D, R(—k)Pn
R(—a) R R
0 — R/(—a) — L= R/Ix — > R/(Ix, F) —> 0

This construction gives a resolution that, generally, is not minimal, but since
(Ix, F) is saturated, the resolution of (/x, F) must be of length 2. This
means that the term R(—a — 2) must cancel with something in R(—a — 1)? @
@B, R(=j)P, that is R(—a — 2) must be one of the R(—j)’s, i.e. @ +2 € B,
and we are done. O

Example 3. We first determine the two minimal free resolutions associated to
the sets of points X and X, represented in Figure 2 and in Figure 3.

We obtain, for the first configuration of points, X; (Figure 2)

0— R(=T)®R(—6)®R(—4) — R(—6)DR(—=5) D R(—3)>—~> R— R/Ix, —0

and so the socle-permissible values for R/Ix, areexactly 7—2=5,6~2=4
and 4 — 2 = 2. For the second configuration of points, X, (Figure 3), we have

0— R(-7) ® R(—4) - R(=5)® R(-3)* > R — R/Ix, — 0

and so the socle-permissible values for R/Ix, are 7 —2 = 5and 4 — 2 = 2.
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We observe that in both cases illustrated in the above example, for any
socle-permissible value, «, for R/Iyx,, (i = 1,2), there exists at least one point
P €X; such that the degree of P in X; is exactly «. This is not true in general,
as the following example shows.

Example 4. We consider the set X of 7 distinct points in P? chosen such that
no three of them lie on a line, nor six of them lie on a conic. Using the CoCoA
system (see [1]), we compute the graded minimal free resolution of R/Ix:

0— R(=5)@® R(—4) — R(-3)> > R — R/Ix — 0

By Definition 3.6, we know that the socle-permissible values for R /Ix are
5—2=3and4 -2 =2. v

We know that the maximum value, 3, always appears, so we have only to
show that the degree of P; cannot be 2 for i = 1, ..., 7. But it is true since no
$ix points are on a conic, so the only degree that appears is 3.

4. A particular case: the lex-configuration.

In this section we prove that given a set of points X in a particular
configuration, that we’ll call the lex-configuration, all socle-permissible values
for R/Ix do appear.

This case specializes the more general one of permissible values discussed
in [6], where the authors give (in Theorem 4.3) a positive answer to the question
of finding a configuration realizing all permissible values.

We now give some basic definitions.

Definition 4.1. Let < denote the lexicographic order on the monomials in 7 in-
determinates {x,, ..., x,}. We say that a set of monomials M < K [x1, ..., x,]
of degree d is a lex-segment if

teMandt =t =t e M.

Definition 4.2. Let J € K[xy, ..., x,] be a monomial ideal. We say that J is a
lex-segment ideal if the monomial basis of J; is a lex-segment for all d € N.

As a matter of notation, we denote by J the ideal obtained by applying the
Hartshorne lifting procedure (see [3]) to a monomial ideal J.

Definition 4.3. Let / be an artinian lex¥segment ideal in K[xy,...,x,]. We
call a lex-configuration the zero-dimensional projective scheme C " associated
to the ideal 1.
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Example 5. We consider the artinian lex-segment ideal
I=@x%,xy" y%) C K[x, yl.
The lifting ideal we want is:
I'=(x(x — 2)(x — 22, x3(x — 2), xy(y = Dy — 22)(y — 32),

Yy —2)(y—22)(y = 32)(y —42)(y — 52)) € K|[x, y, z].

N
N
N
N N
N
N N
N ~
N ~
N ~
D N
i o0
_ . N
\_' N\ \
NG| N
N
N
oMok
AN N
N N N
® o o o TH----—,
N
N \\ N
N
o o o oo I
N N . y

generators of  generators of generators of
degree 3 degree 3 degree 3

Figure 4: Costruction of a lex-configuration

2
—e

4 4 4 4
—e ° ® °

5 5 5 5 5 5
—e ° ° ° .- ®

Figure 5: Values of conductor degrees and notations for a lex-configuration
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Let X be the set of points associated to /. In Figure 4 we represent the
artinian ring K [x, y]/I (the squares indicate the minimal generators of 7). The
lex-configuration is given by Figure 5. If we compute the conductor sequence
of A = R/I, we can notice that the degree in X of all the points lying on the
same horizontal line is the same (see Figure 5). This is a general property of
lex-configurations as Proposition 4.4 shows.

Proposition 4.4. Let X be a lex-configuration in P?. We suppose that the points
of X are placed on m horizontal lines Iy, k = 1,..., m (as in Figure 5) and we
denote by ny the number of points on the k-th line, ny > ny’ > ... > n,, # 0.
For any point P €1y, let ay denote the degree of P-in X. Then '

oy =n,+k—2 k=1,....m

Proof. This is a recursive proof based on iterated applications of Bézout’s
Theorem.

1. Let F be a separator of degree d for the point P on the k-th horizontal line.
We prove that d > ny + k — 2. By hypothesis n,, < n,,—1 < ... < ny, s0o
we have

2) me=meor—1=mao—2<...=m—(k-2)<n-(k-1)

For a contradiction we suppose d = deg (F) < ny + k — 2. By (2) we
obtain ny + (k — 2) < ny < ny,sod < ny. Since F intersects the line [;
(of equation L; = 0) in n; > d points, by Bézout Theorem it factors as
F = G|L;, wheredeg (G|) = d—1. Now, for (2) ny+(k—3) < n3 < no,
so d — 1 < ny and by Bézout Theorem G, factors as G; = L,G,.
By the same reasoning, we get that F = L;L,... L;_1Gk_;, where deg
(Gk-1) = d — (k — 1) and G4_, vanishes on all points of X \ {P} except
those lyingon [;, fori < k. Again, since d < ny+k—2 = ni+(k—-1)—1,
then deg (Gi-1) < ng—1, so Gy has to vanish on the line /; and therefore
on P, too. Contradiction. We conclude that d > ny + k — 2.

2. There exists a separator of degree exactly ny + k — 2. We first consider
the curve of equation G = 0 obtained as the union of the horizontal lines
liy....lkm1, G = LiLy -+ Ly_;. Then we will prove that there exists a
form F of degree ny — 1 which vanishes at all points of X \ {P} except
those lying on the horizontal lines /;’s (i = 1, ...,k — 1). We observe that
F G is a separator for P and that the degree of F'G is exactly ny +k —2, so
we are done. We only need to prove the existence of the form F of degree
nx — 1. To do this, we notice that the number of points in the set X\ Uf.:ll l;
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is Y o= mtD) S0 F has to vanish on m@t) — 1 points. But we

know that dimg R, -1 = ("" “) thus we conclude that there always exists
a form F of degree ny — 1 such that F vanishes on all points of X except
those lying on the horizontal lines /;’s (i = 1,...,k — 1). It is trivial to
prove that F* cannot vanish on the point P. So FG is a separator for P of
degree n; + k — 2.

As the proof is independent of the choice of the point P on I, we conclude that

all points lying on the k-th line have the same degree in X. O
| |
¢
N AN N
' N \ N
® ® » » \
I I N N N
N N AN
l P g N N N
® * ° L e e
N N N
| [ AN N N\
Ib— bl——& - % — M- - - - - -~ - — — ls
| | AN N AN
: AN N N

- 00— -0 — 0 -0~ 0 —@— — — — |

T_ T AN N AN
N\ N N

I&— +——& —o——o——o——o\——o\— 0\——0——11

Figure 6: Example of separator

Remark 4.5. Let X C P? be a lex-configuration. So X is the zero-dimensional
projective scheme associated to the ideal I obtained by applying the Hartshorne
lifting procedure to an artinian lex-segment ideal / C K[x, y]. We suppose
that the points of X are placed on m lines Iy, k = 1,...,m (as in Figure
6) and we denote by n; the number of points on the k-th line. Recall that
ny > ny > ... > ny,. Weobserve, (see Figure 4), that the degrees of generators
of the lex-segment ideal / determine the number of collinear points in the
associated lex-configuration: in fact, if x”y? is a minimal generator of 7, then
on the (p + 1)-th horizontal line are placed exactly ¢ points. By Proposition
4.4, it follows that the degrees of the points P’s belonging to the ( p + 1)-th
horizontal line is:

Olp+1=Q+(P+1)*‘2=P+CI"1
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i.e. for any minimal generator of / of degree d there exists at least one point
P € X such that the degree of P in X is exactly d — 1.

Proposition 4.6. Let X C P? be a lex configuration. Then all the socle-
permissible values for R/Ix occur in the conductor sequence of R/Ix.

Proof. From a result of Eliahou-Kervaire ([2]), the Betti numbers for a lex-
configuration are known and come from the degrees of the generators of the
associated lex-segment ideal. Namely, let G be the set of the generators of
the lex-segment ideal J and let G* = G \ {x¢} (x? € G by definition of lex-
segment). Then [2] proved:

o B = |G|
o Baiy1 = |G}

where by G; we mean G N R;.
So a graded minimal free resolution of R/Ix is the following:

3) 00— @R(—i — DPrin @R(—i)ﬁ” — R— R/Ix— 0

We observe that if o is a socle-permissible value, then R(—a — 2) appears in
the last free module of the resolution (3), i.e. By 42 7# 0. By [2] Biasr1 # O
too, so there exists a minimal generator of J of degree o + 1. By Remark 4.5
we have that there exists at least one point P such that the degree of P in X is
exactly «.

Remark 4.7. The lex-configuration defined above is essentially the same as
the one constructed in Th. 3.3 of [6]. There the authors proved that this
configuration realizes all permissible values. Their result, together with the
Proposition 4.6, allows us to conclude that in the case of a lex-configuration,
the set of socle-permissible values and the set of permissible values coincide.

5. Open problems.

As we showed in Example 4, there exist sets of points X C P? for which
not all socle-permissible values for R/Ix are realized by a point P € X. So a
first problem in this case is to know whether it is possible to find a configuration
X' such that the set of the socle-permissible values for R/Ix coincides with the
set of the socle-permissible values for R/Ix, but such that any socle-permissible
value for R/Ix is realized by at least one point P € X'.
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As a matter of notations, we call Sx the set of the socle-permissible values
for R/ Ix.
More precisely,we consider the following

Problem. Given a set of distinct points X in P2, find a configuration of points
X’ in P? such that Sx = Sx and such that Jor any socle-permissible value for
R/Ix, a, there exists at least one point P € X' such that the degree of P in X/
is exactly «.

In Section 4, Proposition 4 solves the problem when X is a lex-
configuration. In the following we give a positive answer in another particular
case, that is X C P? a set of generic points.

5.1 The case of generic points.

Let X be a set of s generic distinct points in P2. Let d be the minimal integer

such that g1 g0
s:( _2!_ )+k=( ;_ )——(a’—k-i—l)

where 0 <k <d + 1.

- Itis known (see [5]) that the ideal Ix can be minimally generated by forms
of degrees d and d + 1, or only by forms of degree d, according to whether
d < 2k or not. Moreover, by the Hilbert-Burch Theorem, these forms can be
described as the maximal minors of a p x (p + 1) matrix (called the Hilbert-
Burch matrix of Ix) whose entries are linear forms L;; and forms Q,, of degree
2. :

The integer p depends on the values of d and k. We have two possibilities:

| case d < 2k| ‘
In this case p = k and the matrix has the following structure
Liy oo Ligk—a Qur ... Qia-iyi
M= Lo :
Lt oo Liok—a Qra -oo Qra—iri
The corresponding degree matrix is
r ... 1.2 ... 2
M= 1o
I ... 1.2 ... 2

from which the minimal free resolution is

0= R(=d —2* & R(—d — )% @ R(~a)***' > R — R/Ix — 0



144 SILVIA ABRESCIA - LAURA BAZZOTTI - LUCIA MARINO

[ case d > 2k
In this case, p = d — k and the ideal is generated (only in degree d), by the
minors of the following Hilbert-Burch matrix:

O11 o Qrd—k+1

Okt oo Qrd—k+l
M = ’ ’

LI,I N Ll,d—k—H

Lagoky .. La-ogd—k+1
and the degree matrix is

2 2
2 2
IM = 1 ... 1
1 ... 1

The minimal free resolution now is
0= R(—d — 2% @ R(—d — )*"* B R—ayd=*+' - R = R/Ix — 0
At this point, we can prove the following

Proposition 5.1. Let X C P? be a set of s generic points. Then there exists a
set of points X' such that Sx = Sy and such that all socle-permissible values
for R/Ix occur in the conductor sequence of R/ Ix.

Proof. Let d be the minimal integer such that

d+1 d+2
s=< ) )+k:( ) )——(d—k+1)

where 0 < k < d + 1. We distinguish the two cases.
First case: d < 2k
From the minimal free resolution

0— R(—d -2} - R(—=d — )* 4@ R(-d)**' - R—> R/Ix — 0
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we see that there is only one socle-permissible value for R/Ix, that is d =
o (X) — 1. Since we know from Proposition 3.1 that there exists at least one
point P € X such that the degree of P in X is ¢ (X) — 1, we can conclude that
X has the required property.

Second case: d > 2k
From the minimal free resolution

0— R(—d-2f®R(—d —1)"%* - R(—d)* ' > R - R/Ix — 0
there are two socle-permissible values for R/Ix, i.e
Sx ={d —1,d}.

In order to find a configuration X' realizing all socle-permissible values, the idea
is to construct a monomial ideal, starting from the degree matrix, and to apply
to this ideal the Hartshorne lifting procedure.

We see in details how to proceed. Consider the following matrix having
d — 2k rows and d — k + 1 columns:

x2 y2 0 ... 0

0 x2 y2 0 0
M =10 0 x2 y2 0 0

0 0 x y O

: v .. .0

0o ... 0O x vy

obtained by putting on the main diagonals the pure powers of x and y to the
degrees given by the degree matrix d M and putting 0 on the remaining entries.

Let’s consider the monomial ideal J generated by the maximal minors of
the matrix M’ and show that the configuration X’ obtained lifting this ideal is
the requested one. First of all, we observe that Sx» = Sx. So it is enough to
show that there exists at least one point P € X’ such that the degree of P in X'
is d — 1 (Proposition 3.1 tells us that there exists one point Q € X’ such that the
degree of Q in X' is d).

We observe that x4~y and x“ belong to J, because they are the minors
obtained by deleting, respectively, the (d — k)-th and the (d — k + 1)-th column
from the matrix M’. So by lifting the ideal J, we obtain a set of points X’ placed
on d horizontal lines (see Figure 7). In particular, there always exists one line
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[

I
—e—¥%
generators of
degree d

Figure 7

on which there is only one point P. It is trivial to prove that the degree of such
P in X' is exactly d — 1. O
We make the construction clear by an example.

Example 6. Let’s consider a set X of 7 = (g) + 1 generic points. In this case,
with the previous notations, we have d = 3 and k = 1 so d > 2k. The degree

matrix is: .
M = (1 1 1)
So a minimal resolution is
0— R(=5)®R(—4) - R(-3)> - R— R/Ix — 0
and we get that the socle-permissible \}alues for R/Ix are 3 and 2. We have

already seen (Example 4) that the degree of P in X is 3 for any P € X. As we
did in the previous Proposition, we construct the matrix

M’_x2y20
“\0 x vy
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which gives us the monomial ideal:
J =@ %%y, y’) € Klx, y]
The lifted ideal we want is:
J = (x(x —2)(x —22), xy(x = 2), y(y — 2)(y — 22)) € K[x, y, 2]

and the set of points X' associated to J is shown in the following figure:

[ ]
3 3 3
[ ] [ [ ]
3 3 3
® [ ] [ ]

We notice that the set of points X’ realizes all socle-permissible values for
R/J. ‘
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