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A GENERALIZATION OF THE SPACE OF COMPLETE
QUADRICS

A. AL AHMADIEH - M. KUMMER - M. Ş. SOREA

To any homogeneous polynomial h we naturally associate a variety
Ωh which maps birationally onto the graph Γh of the gradient map ∇h and
which agrees with the space of complete quadrics when h is the determi-
nant of the generic symmetric matrix. We give a sufficient criterion for Ωh
being smooth which applies for example when h is an elementary sym-
metric polynomial. In this case Ωh is a smooth toric variety associated to
a certain generalized permutohedron. We also give examples when Ωh is
not smooth.

1. Introduction and results

Let h ∈ R[x1, . . . ,xn] be a homogeneous polynomial of degree d. We will al-
ways assume that there is no invertible linear change of coordinates T such that
h(T x) ∈ R[x1, . . . ,xk−1]. The gradient map of h is the rational map

∇h : Pn−1 99K Pn−1, x 7→ [∇h(x)] = [
∂

∂x1
h(x) : · · · : ∂

∂xn
h(x)].

It is a regular map on the open subset U ⊂ Pn−1 of all points where h does not
vanish. Its graph Γh is the Zariski closure of all pairs (x,∇h(x)) in Pn−1×Pn−1
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with x ∈ U . In this note we will study resolutions of singularities of Γh for
certain h and thereby address Question 43 in [16]:

Question 43. Can we define a generalization of the space of complete quadrics
where the role of the symmetric determinant is played by an arbitrary hyperbolic
polynomial h? Such a manifold could be a canonical resolution of the graph of
the gradient map of h.

One motivation for this question is the study of so-called hyperbolic expo-
nential families in [12] where the gradient map plays a prominent role. While
the construction we present in this article is motivated by the theory of hyper-
bolic polynomials, hyperbolicity plays a subordinate role in the rest of the paper.
Instead, other properties such as M-convexity will matter.

In the case when h = det(X) is the determinant of the n× n generic sym-
metric matrix X , such a resolution of singularities is given by the space of com-
plete quadrics. For any integer 0 < i < n and any symmetric matrix A ∈ Sn we
denote by ∧iA ∈ S(

n
i) the representing matrix of the linear map ∧iRn → ∧iRn

induced by A. Note that ∧iA is nonzero if det(A) 6= 0. Now the space of com-
plete quadrics ΩdetX is the Zariski closure of all tuples ([A], [∧2A], . . . , [∧n−1A])
in P(Sn)×P(S(

n
2))×·· ·×P(S(

n
n−2))×P(Sn) with A invertible. The projection

of ΩdetX onto the first and the last coordinate is a birational map onto Γdet(X).
Moreover, it was shown for example in [11] that ΩdetX is smooth.

In this note we will define a variety Ωh for an arbitrary homogeneous poly-
nomial h ∈ R[x1, . . . ,xn] together with a regular and birational map to Γh which
agrees with the space of complete quadrics when h = det(X) is the determinant
of the generic symmetric matrix. Before we give the definition of Ωh, we recall
the definition of a hyperbolic polynomial.

Definition 1.1. A homogeneous polynomial h∈R[x1, . . . ,xn] is hyperbolic with
respect to e∈Rn if the univariate polynomial h(te−v)∈R[t] has only real zeros
for all v ∈ Rn. The hyperbolicity cone of h at e is

Λe(h) = {v ∈ Rn : h(te− v) has only nonnegative roots}.

The prototype of a hyperbolic polynomial is the determinant of the generic
symmetric matrix det(X). Indeed, since a real symmetric matrix has only real
eigenvalues, the polynomial det(X) is hyperbolic with respect to the identity ma-
trix I. The hyperbolicity cone of det(X) at I is the cone of positive semidefinite
matrices.

The entries of ∧k+1X cut out the variety of symmetric matrices with rank at
most k. For a real symmetric matrix A the algebraic and geometric multiplicity
of an eigenvalue agree. Thus the rank of A equals to the degree of the univariate
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polynomial det(tI +A). In fact the same holds true when we replace I by any
positive definite matrix. This shows that we can express the degeneracy locus of
the rational map P(Sn) 99K P(S(

n
k+1)), [A] 7→ [∧k+1A] in terms of the hyperbolic

rank function of det(X):

Definition 1.2. Let h ∈ R[x1, . . . ,xn] be hyperbolic with respect to e ∈ Rn. The
hyperbolic rank function of h is defined as

rankh,e : Rn→ N, v 7→ deg(h(e+ tv)).

It was shown in [3, Lemma 4.4] that rankh,e = rankh,a for any a∈ int(Λe(h)).
We let d = deg(h), 0≤ k < d and v∈Rn. Then we have rankh,e(v)≤ d−k−1 if
and only if all kth order partial derivatives ∂ kh

∂xi1 ···∂xik
of h vanish in v. Lets denote

by Dk
1, . . . ,D

k
mk

a basis of the span of all kth order partial derivatives of h. We
consider the rational map

∆h : Pn−1 99K Pm1−1×·· ·×Pmd−1−1,

[x] 7→ ([D1
1(x) : · · · : D1

m1
(x)], . . . , [Dd−1

1 (x) : · · · : Dd−1
md−1

(x)]).

We define the variety Ωh to be the normalisation of the image of this rational
map. The projection on the first and the last coordinate gives a birational mor-
phism ωh : Ωh → Γh. Moreover, when h = det(X) is the determinant of the
generic symmetric matrix, then Ωdet(X) is isomorphic to the space of complete
quadrics as defined above and thus Ωdet(X) is smooth in that case.

Another important example for hyperbolic polynomials are the elementary
symmetric polynomials.

Theorem 1.1. Let σd,n be the elementary symmetric polynomial of degree d in
n variables. Then Ωσd,n is a smooth toric variety.

It is well-known that σd,n is hyperbolic with respect to every point in the
positive orthant. Such polynomials are called stable. The theory of stable poly-
nomials connects nicely to discrete convex analysis [13]. We denote by δk ∈ Zn

the kth unit vector.

Definition 1.3. A nonempty set of integer points B ⊂ Zn is called M-convex if
for all x,y ∈ B and every index i with xi > yi, there exists an index j with x j < y j

such that x−δi +δ j ∈ B and y+δi−δ j ∈ B.

Theorem 1.2 (Theorem 3.2 in [2]). Let h ∈ R[x1, . . . ,xn] be a homogeneous
stable polynomial. Then the support of h is M-convex.
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In Section 5 we will give a sufficient criterion for Ωh being smooth when the
support of h is M-convex. We will apply this criterion for proving Theorem 1.1.
However, there are also stable (and thus hyperbolic) polynomials h for which
Ωh is not smooth.

Example 1.4. Consider the polynomial

h = w(2x+4y+7z)(4x+2y+7z)

+x3 +11x2y+11xy2 + y3 +15x2z+46xyz+15y2z+37xz2 +37yz2 +21z3.

One can check that h is stable. Further, using the the computer algebra system
Macaulay2 [9], one checks that Ωh is not smooth.

2. A simple polymatroid

In this section we prepare the proof of Theorem 1.1. Recall that a polymatroid
on the ground set [n] = {1, . . . ,n} is a function r : 2[n]→ Z≥0 such that for all
S,T ⊂ [n] we have:

1. r(S)≤ r(T ) if S⊂ T ,

2. r(S∪T )+ r(S∩T )≤ r(S)+ r(T ), and

3. r( /0) = 0.

If further r({i}) ≤ 1 for all i ∈ [n], then r is called a matroid. The second
property is usually called submodularity. We call the number d = r([n]) the rank
of r. See [17, Chapter 18] for a general reference on the theory of polymatroids.

Example 2.1. Let h ∈ R[x1, . . . ,xn] be hyperbolic with respect to e ∈ Rn. The
function that sends S ⊂ [n] to rankh,e(∑i∈S δi) is a polymatroid [3, Proposi-
tion 3.2].

For all 0≤ k ≤ d the kth truncation rk is the polymatroid defined by

rk(S) = min(d− k,r(S))

for all S ⊂ [n]. It follows directly from the definition that the sum of polyma-
troids is again a polymatroid. We define the following polymatroid

r = r0 + . . .+ rd .

To every polymatroid r one associates the independence polytope

P(r) = {x ∈ (R≥0)
n : ∑

i∈S
xi ≤ r(S) for all S⊂ [n]}.
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The goal of this section is to show that for every polymatroid r on [n] the poly-
tope P(r) is simple. A characterization of polymatroids, whose independence
polytope is simple, was given in [8, Theorem 2]. The following lemmata will
enable us to apply this criterion.

Definition 2.2. Let r be a polymatroid on [n]. We say that a subset S ⊂ [n] is
r-inseparable if for every two disjoint and nonempty subsets S1,S2 ⊂ [n] with
S = S1∪S2 we have r(S)< r(S1)+ r(S2).

Remark 2.1. If |S| ≤ 1, then S is r-inseparable for every polymatroid r.

Lemma 2.2. Let r,r′ be polymatroids on [n]. If S ⊂ [n] is r-inseparable, then S
is (r+ r′)-inseparable.

Proof. Assume that S is not (r+r′)-inseparable. Let /0 6= S1,S2 ⊂ [n] such that S
is the disjoint union of S1 and S2. If r(S)+r′(S)≥ r(S1)+r′(S1)+r(S2)+r′(S2),
then by submodularity of r′ we get r(S) ≥ r(S1)+ r(S2) which shows that S is
not r-inseparable.

Remark 2.3. Let |S| ≥ 2 and let x ∈ [n] be a loop of r, i.e. r({x}) = 0. If x ∈ S,
then S is not r-inseparable: r(S) = r(S\{x})+ r({x}).

Lemma 2.4. Let S ⊂ [n] with |S| ≥ 2 and r a polymatroid on [n]. Then S is
r-inseparable if and only if S does not contain a loop of r.

Proof. We first observe that x ∈ [n] is a loop of r if and only if x is a loop of all
truncations rk and thus of r. Now the “only if” direction follows from Remark
2.3. For the “if” direction assume that S does not contain any loop of r. By
Lemma 2.2 it suffices to show that S is rd−1-inseparable. This is clear since

rd−1(S) = 1 < 2 = rd−1(S1)+ rd−1(S2)

for all nonempty subsets S1,S2 ⊂ S.

Lemma 2.5. Let r be a polymatroid on [n] of rank d. Let S,T ⊂ [n] such that

1. S∩T 6= /0, S 6⊂ T , T 6⊂ S,

2. r(S∩T )< r(S), r(S∩T )< r(T ), and

3. the sets S,T,S∪T are r-inseparable.

Then r(S∩T )+ r(S∪T )< r(S)+ r(T ).
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Proof. We proceed by induction on d. We first show that for d ≤ 1 there are
no subsets S,T ⊂ [n] satisfying (1),(2),(3). If d = 0, then r and r are both the
zero function. Thus there are no subsets S,T ⊂ [n] satisfying (2). If d = 1, we
still have r = r. Condition (1) implies that |S| ≥ 2. Thus (3) and Lemma 2.4
imply that S contains no loop of r. Therefore, we have r(S) = r(S∩ T ) = 1
contradicting (2).

Now let d > 1 and assume that the claim is true for the polymatroid r1
of rank d−1. We assume for the sake of a contradiction that S,T ⊂ [n] satisfy
(1),(2),(3) but r(S∩T )+r(S∪T )= r(S)+r(T ). Again (1) implies that |S| ≥ 2.
So by (3) and Lemma 2.4 the set S∪T contains no loop of r. Since d > 1, this
implies that S∪T contains no loop of r1 as well. Thus again by Lemma 2.4 the
sets S,T,S∪T are r1-inseparable. By submodularity and because r = r+ r1 we
have

r(S)+ r(T ) = r(S∩T )+ r(S∪T ) and r1(S)+ r1(T ) = r1(S∩T )+ r1(S∪T ).

So by induction hypothesis we have without loss of generality that r1(S∩T ) =
r1(S), which implies r1(S∩T ) = r1(S), and r(S∩T )< r(S). Thus we must have
r(S) = d and the equation

d + r(T ) = r(S)+ r(T ) = r(S∩T )+ r(S∪T ) = r(S∩T )+d

implies that r(T ) = r(S∩T ). This in turn shows that r(T ) = r(S∩T ) contra-
dicting (2).

Lemma 2.6. Let r be a polymatroid on [n] of rank d. Let k≥ 2 and S1, . . . ,Sk ⊂
[n] nonempty and pairwise disjoint. Let S ⊂ [n] r-inseparable with ∪k

i=1Si ⊂ S
and r(∪k

i=1Si) = r(S). Then r(∪k
i=1Si)< ∑

k
i=1 r(Si).

Proof. We first observe that since |S| ≥ 2 and S is r-inseparable, Lemma 2.4
implies that S contains no loop of r. Thus each Si also contains no loop of r.

We proceed again by induction on d. If d = 0, then there every element is a
loop contradicting the assumptions. If d = 1, then we have

r(∪k
i=1Si) = 1 < 2≤ k =

k

∑
i=1

r(Si).

Now let d > 1. Then because S contains no loop of r, it also contains no loop of
r1 which shows that S is r1-inseparable. Further ∪k

i=1Si⊂ S and r(∪k
i=1Si) = r(S)

imply that r1(∪k
i=1Si) = r1(S). By induction hypothesis we have r1(∪k

i=1Si) <

∑
k
i=1 r1(Si) which implies the claim because r = r0 is submodular.

Theorem 2.7. Let r be a polymatroid on [n]. Then the polytope P(r) is simple.
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Proof. A characterization of simple independence polytopes of polymatroids
was given in [8, Theorem 2]. It says that the polytope P(r) is simple if and only
if the conclusion of the two preceding Lemmas 2.5 and 2.6 holds.

We will be interested in the base polytope of a polymatroid rather than in
its independent polytope. If r : 2[n]→ R is a submodular function, then its base
polytope B(r) is defined as

B(r) = {x ∈ (R≥0)
n : ∑

i∈S
xi ≤ r(S) for all S⊂ [n] and

n

∑
i=1

xi = r([n])}.

Corollary 2.8. Let r be a polymatroid on [n]. Then the polytope B(r) is simple.

Proof. Clearly, the base polytope is a face of the independence polytope. Thus
the claim follows from Theorem 2.7.

Remark 2.9. Taking the sum of submodular functions is compatible with taking
the Minkowski sum of their base polytopes [13, Theorem 4.23(1)]. Thus if r is
a polymatroid on [n] of rank d, then we have that B(r) = B(r0)+ . . .+B(rd).

We end this section with describing the polytope B(r) explicitely when r is
the rank function of a matroid. We start with the following easy lemma.

Lemma 2.10. Let r = rM be the rank function of a matroidM of rank d on [n].
There is a basis B ofM such that for all i ∈ [n] we have

ai := r([i])− r([i−1]) =

{
1 if i ∈ B
0 otherwise.

Proof. SinceM is a matroid of rank d, we have ai ∈ {0,1} and B = {i ∈ [n] :
ai = 1} has cardinality d. Let k1 < · · · < kd the elements of B. We show by
induction on m that Im := {k1, . . . ,km} is independent. Assume that Im−1 is
independent. Since r([km]) = m, there is an independent subset I of [km] of
cardinality m. Thus there is an element e ∈ I \ Im−1 such that Im−1 ∪ {e} is
independent. Since r([km−1]) = m−1, we must have e = km.

Proposition 2.11. Let r = rM be the rank function of a matroid M of rank
d on [n]. The vertices of the polytope B(r) are exactly those points v ∈ Rn

whose support is a basis ofM and whose nonzero entries comprise the numbers
1, . . . ,d.

Proof. Let v be a vertex of B(r). Then v is also a vertex of P(r). Then by
[17, §18.4, Theorem 1] there exists an integer 0 ≤ k ≤ n and a bijection π :
[n]→ [n] such that vπ( j) = r({π(1), . . . ,π( j)})− r({π(1), . . . ,π( j−1)}) if j ∈
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[k] and vπ( j) = 0 otherwise. Since v lies in B(r), we can assume without loss
of generality that k = n. Further, after relabeling, we can assume that π is the
identity map. Now let B = {k1, . . . ,kd} with k1 < · · · < kd be the basis of M
as in the preceding lemma. Then we have v j = d−m+1 if j = km and zero if
j 6∈ B. This shows that v is of the desired form.

Conversely, take v ∈Rn whose support {i1, . . . , id} is a basis ofM such that
vi j = d− j+1 for j = 1, . . . ,d. Since vi j = r({i1, . . . , i j})− r({i1, . . . , i j−1}) for
j = 1, . . . ,d and all other entries of v are zero, it is a vertex of P(r) by [17, §18.4,
Theorem 1]. One checks that ∑

n
i=1 vi = r̄([n]), so v is a vertex of B(r).

Example 2.3. For instance when M = U(2,4) is the uniform matroid on 4
elements of rank 2, then B(r1) is the standard 3-simplex in R4 and B(r0) is the
octahedron whose vertices are the permutations of (1,1,0,0) (and thus is not
simple). The Minkowski sum B(r) = B(r0)+B(r1) is simple by Corollary 2.8.
It is the truncated tetrahedron whose vertices are the permutations of (2,1,0,0).

Figure 1: Lattice polytopes from Example 2.3 (left to right): B(r0), B(r1) and
B(r). The figures were created using polymake [1].

3. Polynomials with M-convex support

Let h∈R[x1, . . . ,xn] be a homogeneous polynomial of degree d and assume that
its support supp(h)⊂ Zn is M-convex (see Definition 1.3). Recall that the New-
ton polytope Newt(h) of h is defined as the convex hull of supp(h) in Rn. The
statements in the following theorem are standard in the literature of polyma-
troids. Proofs can be found for example in [13, §4.4].

Theorem 3.1. Consider the function ρh : 2[n]→ Z≥0 defined by

ρh(S) = max{∑
i∈S

αi : α ∈ supp(h)}

for all S ⊂ [n]. Then ρh is a polymatroid of rank d, Newt(h) = B(ρh) and
supp(h) = B(ρh)∩Zn.
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Remark 3.2. If h is stable, then all coefficients of h have the same sign, see e.g.
[3, Lemma 4.3]. This implies that for every e ∈ (R>0)

n we have that

ρh(S) = rankh,e(∑
i∈S

δi)

as there can be no cancellation of terms.

An intriguing class of polynomials with M-convex support are Lorentzian
polynomials.

Definition 3.1. Let h ∈R[x1, . . . ,xn] be a homogeneous polynomial of degree d
whose support is M-convex and all of whose coefficients are nonnegative. Then
h is Lorentzian if for every i1, . . . , id−2 ∈ [n] the Hessian of the derivative

∂ d−2

∂xi1 · · ·∂xid−2

h

has at most one positive eigenvalue.

Remark 3.3. Let us clarify the relations between the different classes of polyno-
mials that appeared so far. Let h ∈ R[x1, . . . ,xn] be a homogeneous polynomial
with nonnegative coefficients. Then we have the following implications:

h is stable⇔ h is hyperbolic w.r.t. every a ∈ (R>0)
n

⇒ h is Lorentzian

⇒ supp(h) is M-convex

There are Lorentzian polynomials that are not stable [4, Example 2.3]. Further-
more, not every homogeneous polynomial with M-convex support and nonneg-
ative coefficients is Lorentzian.

Theorem 3.4 (Theorem 3.10 in [4]). A subset B ⊂ (Z≥0)
n is M-convex if and

only if there is a Lorentzian polynomial h ∈ R[x1, . . . ,xn] with B = supp(h).

Lemma 3.5 (Corollary 2.11 in [4]). Let h ∈ R[x1, . . . ,xn] be a Lorentzian poly-
nomial and e ∈ (R≥0)

n. The derivative

Deh =
n

∑
i=1

ei
∂h
∂xi

is Lorentzian as well. In particular, the support of Deh is M-convex.

Lemma 3.6. If h ∈ R[x1, . . . ,xn] is Lorentzian of degree d and e ∈ (R>0)
n, then

we have for all 0≤ k ≤ d that (ρh)k = ρDk
eh.
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Proof. It suffices to prove the claim in the case k = 1 because the general case
follows from an iterative application of this case.

Let S⊂ [n]. Since Deh has degree d−1, we have ρDeh(S)≤ d−1. If ρh(S) =
d, then there is an α ∈ supp(h) such that ∑i∈S αi = d. For any j ∈ [n] with α j > 0
we have α ′ = α−δ j ∈ supp(Deh) and thus ρDeh(S)≥ d−1. Now let ρh(S)< d
and α ∈ supp(h) such that ∑i∈S αi = ρh(S). Since the degree of h is d, there
must be an index j ∈ [n]\S such that α j > 0. We have α ′ = α−δ j ∈ supp(Deh)
and thus ρDeh(S) ≥ ρh(S). If β ∈ supp(Deh) satisfies ρDeh(S) = ∑i∈S βi, then
there is a j ∈ [n] such that β +δ j ∈ supp(h) so ρDeh(S)≤ ρh(S).

The following lemma connects the polymatroid ρh with the variety Ωh.

Proposition 3.7. Let h∈R[x1, . . . ,xn] be homogeneous of degree d with supp(h)
being M-convex. Consider the polymatroid r = ρh. For each 0 ≤ k ≤ d the set
B(rk)∩Zn agrees with the set Bk of all α ∈ Zn such that the monomial ∏

n
i=1 xαi

i
is in the support of a kth order partial derivative of h.

Proof. Both rk and Bk only depend on the support of h. Thus we can assume
without loss of generality that h is Lorentzian by Theorem 3.4. Then for any
e ∈ (R>0)

n we have that Bk is the support of Dk
eh because h has nonnegative

coefficients. Thus Bk is M-convex by Lemma 3.5 and the result follows from
Theorem 3.1 and the preceding lemma.

4. Preliminaries from algebraic and toric geometry

In this section we revisit some notions and results from algebraic geometry that
will be used in the final section. Let A be a nonzero (m+ 1)× (n+ 1) matrix.
Recall that a rational map π : Pn 99K Pm of the form [x] 7→ [Ax] is called a linear
projection and that the centre of π is the linear subspace E of all [x] ∈ Pn such
that Ax = 0. Clearly, the rational map π is regular on Pn \E. Thus if X ⊂ Pn

is a projective variety with X ∩E = /0, the restriction f = π|X : X → π(X) is a
morphism. This map f is finite, so in particular it has only finite fibers. See [15,
§I.5.3] for the definition and proofs. We will use the following standard facts on
finite morphisms which follow for example from [10, Lemma 14.8].

Lemma 4.1. Let fi : Xi→Yi, i= 1,2, be finite morphisms of projective varieties.
The product map f1× f2 is also finite. If Y1 = X2, then f2 ◦ f1 is finite. If Z ⊂ X1
is closed, then f1|Z : Z→ f1(Z) is finite.

Given a projective variety X , a normalisation of X is a normal variety Xν

with a finite birational morphism ν : Xν → X . The normalisation is unique up
to isomorphism. In particular, if Y → X is a finite birational morphism from a
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smooth variety Y , then Y is the normalisation of X because every smooth variety
is normal. See [15, §II.5] for definitions and proofs.

We will especially consider toric varieties. The book [6] gives a compre-
hensive introduction to toric varieties and we will adopt their notation. For
example, given a lattice polytope P⊂ Rn, we denote by XP the associated toric
variety [6, §2.3]. Similarly, for any finite set A⊂ Zn of lattice points we denote
by XA ⊂ P|A|−1 the image of the monomial map whose exponents are given by
the elements of A. Note that in general XP∩Zn is not necessarily isomorphic to
XP but when P is a smooth polytope this is the case by [6, Proposition 2.4.4]:
A lattice polytope P ⊂ Rn is called smooth if its associated toric variety XP is
smooth [6, §2.4]. We further have:

Corollary 4.2. Let r be a polymatroid on [n]. Then the polytope B(r) is a smooth
lattice polytope.

Proof. By the Corollary to [17, §18.4, Theorem 1] the independence polytope
P(r) is a lattice polytope. Since B(r) is a face of P(r), it is a lattice polytope as
well. Corollary 2.8 states that B(r) is simple and the Submodularity Theorem1

[7] states that B(r) is a so-called generalized permutohedron. Now the claim
follows from [14, Corollary 3.10] which says that a simple lattice polytope,
which is a generalized permutohedron, is smooth.

Remark 4.3. Let h ∈ R[x1, . . . ,xn] be homogeneous of degree d with supp(h)
being M-convex and let Bk the set of all α ∈Zn such that the monomial ∏

n
i=1 xαi

i
is in the support of a kth order partial derivative of h. Then it follows from
Proposition 3.7 and Corollary 4.2 that the Minkowski sum B1+ . . .+Bd−1 is the
set of lattice points in a smooth polytope. In general, if we drop the assumption
of M-convexity, this is no longer true. Consider for example h = a · x1x2

2 +b · x3
3

with nonzero a,b. Then B1 +B2 is the set of lattice points in a simple polytope
that is not smooth.

5. A sufficient criterion for smoothness

Let h ∈ R[x1, . . . ,xn] be a homogeneous polynomial of degree d whose support
is M-convex with nonnegative coefficients and r = ρh. Recall that we denote by
Dk

1, . . . ,D
k
mk

a basis of the span of all kth order partial derivatives of h. For all
1≤ k < d consider the rational map

∆
kh : Pn−1 99K Pmk−1, [x] 7→ [Dk

1(x) : · · · : Dk
mk
(x)].

1The Submodularity Theorem was proved by Edmonds [7] although not stated in the language
of generalized permutahedra. An alternative, combinatorial proof is given in [5, Theorem 1.2].
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By Proposition 3.7 we can decompose the map ∆kh as πk ◦ fk where fk is the
monomial map associated to the polytope B(rk) (whose image is XB(rk)∩Zn) and
πk the linear projection given by summing the monomials in each Dk

i .

Example 5.1. Let h = x2
1x2 + x1x2

2 + x2
1x3 + x1x2x3 + x2

2x3. Then ∆1h(x) equals:

[2x1x2 + x2
2 +2x1x3 + x2x3 : x2

1 +2x1x2 + x1x3 +2x2x3 : x2
1 + x1x2 + x2

2].

We further have f1 :P2 99KP4, [x1 : x2 : x3] 7→ [x2
1 : x1x2 : x1x3 : x2

2 : x2x3]. We label
the coordinates on P4 by zi j where i and j keep track of the exponent of x1 and
x2 respectively. The image X of f1 is cut out by z10z02− z11z01,z11z10− z20z01
and z2

11− z20z02. Furthermore, the projection π1 sends [z20 : z11 : z10 : z02 : z01] to

[2z11 + z02 +2z10 + z01 : z20 +2z11 + z10 +2z01 : z20 + z11 + z02].

The centre of π1 is spanned by [0 : −1 : 0 : 1 : 1] and [1 : −1 : 1 : 0 : 0] and is
disjoint from X . Thus π1 restricts to a finite morphism X → P2.

Proposition 5.1. If the centre of the linear projection πk is disjoint from XB(rk)∩Zn

for each 1 ≤ k < d, then Ωh is smooth. More precisely, it is isomorphic to the
smooth toric variety XB(r1).

Proof. Let P = B(r1). By definition Ωh is the normalisation of the image Y ⊂
∏

d−1
i=1 Pmi−1 of the birational map ∆h(x) = (∆1h(x), . . . ,∆d−1h(x)). Consider the

rational map f :Pn−1 99K∏
d−1
i=1 P|B(ri)∩Zn|−1 given by f (x)= ( f1(x), . . . , fd−1(x))

and let π = ∏
d−1
i=1 πi. By construction ∆h factors as π ◦ f . If we compose f with

the Segre embedding of ∏
d−1
i=1 P|B(ri)∩Zn|−1, we obtain the monomial map asso-

ciated to the Minkowski sum ∑
d−1
i=1 B(ri) which is P by Remark 2.9. Thus the

image of f can be identified with XP∩Zn and Y is the image of XP∩Zn under the
rational map π : ∏

d−1
i=1 P|B(ri)∩Zn|−1 99K ∏

d−1
i=1 Pmi−1. Because P is smooth by

Corollary 4.2 the variety XP∩Zn is the smooth toric variety XP. Letting Ei be
the centre of πi, this rational map π is regular on U = ∏

d−1
i=1 (P|B(ri)∩Zn|−1 \Ei).

Since the projection of XP on the ith factor P|B(ri)∩Zn|−1 is XB(ri)∩Zn , which is
disjoint from Ei by assumption, it follows that XP ⊂U . Thus restricting π gives
a surjective morphism p = π|XP : XP→Y which is finite since each πi|XB(ri)∩Zn is
finite and by Lemma 4.1. Since ∆h = p ◦ f is birational and f is birational, it
follows that p is also birational. Thus XP is the normalisation of Y .

Example 5.2. Consider the polynomial

h = x3 +11x2y+11xy2 + y3 +15x2z+46xyz+15y2z+37xz2 +37yz2 +21z3

+w(29x2 +90xy+29y2 +150xz+150yz+137z2).
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One can check that h is stable. Note that h has the same support as the poly-
nomial in Example 1.4 but different coefficients. Using Macaulay2 [9], one
checks that the conditions of Proposition 5.1 are fulfilled and thus Ωh is smooth.
It is the toric variety associated to the triangular frustum whose vertices are ob-
tained by permuting the last three entries of (0,3,0,0) and (2,1,0,0). Here the
coordinates correspond to the variables in alphabetic order.

Now let h = σd,n be the elementary symmetric polynomial of degree d.

Lemma 5.2. The centre of the linear projection πk is disjoint from XB(rk)∩Zn for
each 1≤ k < d.

Proof. The lattice points of B(rk) are exactly the points v∈Rn with d−k entries
equal to 1 and all other entries 0. Thus B(rk) is the hypersimplex ∆d−k. We
denote X = X∆d−k∩Zn ⊂ P(

n
d−k)−1 and we label the coordinates on P(

n
d−k)−1 by zS

for S ⊂ [n] of size d− k. Every kth order derivative of σd,n is an elementary
symmetric polynomial of degree d− k in the variables indexed by some subset
T ⊂ [n] of size n−k. Thus the centre E of πk is the common zero set of all linear
forms LT = ∑S⊂T, |S|=d−k zS for subsets T ⊂ [n] of size n− k. The statement of
[12, Lemma 6.4] is that X is disjoint from the common zero set E ′ of all linear
forms Hi = ∑S⊂[n]\i, |S|=d−k zS for i ∈ [n]. We have for all i ∈ [n]:(

n+ k−1−d
n−d

)
·Hi = ∑

T⊂[n]\{i}, |T |=n−k
LT .

This implies E ⊂ E ′ and thus X is also disjoint from E.

Proof of Theorem 1.1. This follows from Lemma 5.2 and Proposition 5.1.

Remark 5.3. By Proposition 2.11, we have that Ωσd,n is the smooth toric variety
XP where P is the convex hull of all permutations of (1, . . . ,d−1,0, . . . ,0)∈Rn.

Remark 5.4. Fix some M-convex set S ⊂ (Z≥0)
n and let V be the vector space

of polynomials h with supp(h)⊆ S. Note that there is an integer d such that any
h ∈V is homogeneous of degree d. There are matrices Ak

h whose entries depend
linearly on the coefficients of h such that, when supp(h) = S, the centre of πk is
the set of all [x] with Ak

hx = 0. Consider the incidence correspondence

Σk = {([h], [x]) ∈ P(V )×XB(rk)∩Zn : Ak
hx = 0}.

This is a projective variety. Thus the projection of Σk onto the first factor is a
closed subvariety Yk of P(V ). By construction the criterion from Proposition
5.1 applies to a polynomial h ∈ V with supp(h) = S if and only if [h] is not
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contained in any of the Yk. Therefore, depending on S, either Proposition 5.1
applies to no polynomial with support S, or to a generic such polynomial. We
say that S is torically smoothable if the latter is the case. The support of the
elementary symmetric polynomial σd,n is torically smoothable by Lemma 5.2.
Based on experiments we conjecture that S is torically smoothable at least when
S contains the support of σd,n. This condition is empty when d > n.

Remark 5.5. If h has nonnegative coefficients, then we can assume the same
for each Dk

i . Then the linear projection πk is at least regular on the nonnegative
part of XB(rk) as there can be no cancellation of terms. Thus we have at least
a regular map on the nonnegative part of XB(r1) that maps birationally onto the
graph Γh,+ of ∇h restricted to the nonnegative orthant. In general, even when h
is stable, we cannot expect πk to be regular on all of XB(rk). Take for instance the
stable polynomial from Example 1.4. In this case B(r2) is the triangular frustum
whose vertices are obtained by permuting the last three entries of (0,2,0,0) and
(1,1,0,0). Using Macaulay2 [9] one checks that the centre of π2 intersects the
toric variety XB(r2) in a real point of the torus orbit corresponding to the face
with vertices (1,1,0,0),(1,0,1,0) and (1,0,0,1).

Remark 5.6. Let h ∈ R[x1, . . . ,xn] be hyperbolic with respect to e ∈ Rn. In
the spirit of the preceding remark one can speculate whether hyperbolicity of h
guarantees smoothness of Ωh at least at some distinguished subset. To make this
more precise let U ⊂ Pn−1 be the set of all [p] such that p is in the interior of
Λe(h). Since h does not vanish on U , the gradient map ∇h is regular on U . We
can thus consider the subset C = ω

−1
h (∇h(U)) of Ωh. We think it is reasonable

to ask whether the Euclidean closure of C contains only smooth points of Ωh.
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