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LINEAR SPACES OF SYMMETRIC MATRICES WITH
NON-MAXIMAL MAXIMUM LIKELIHOOD DEGREE

Y. JIANG - K. KOHN - R. WINTER

We study the maximum likelihood degree of linear concentration mod-
els in algebraic statistics. We relate the geometry of the reciprocal variety
to that of semidefinite programming. We show that the Zariski closure
in the Grassmannian of the set of linear spaces that do not attain their
maximal possible maximum likelihood degree coincides with the Zariski
closure of the set of linear spaces defining a projection with non-closed
image of the positive semidefinite cone. In particular, this shows that this
closure is a union of coisotropic hypersurfaces.

1. Introduction

Maximum likelihood estimation is a widespread optimization approach to fit
empirical data to a statistical model. The maximum likelihood degree (or short,
ML-degree) of a model is the number of complex critical points of this optimiza-
tion problem for generic empirical data [2]. The aim of this paper is to study
models whose actual maximum likelihood degree differs from the expected one.

The models we consider are sets of multivariate Gaussian distributions with
mean zero that are linear in the space of concentration matrices. The concentra-
tion matrices of such a model form a spectrahedron, that is the intersection of a
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linear subspace L of the space Sn of symmetric n×n matrices with the cone of
positive definite matrices.

Since the ML-degree counts the generic number of complex critical points,
it is not just an invariant of the model itself, but also of its complex Zariski
closure. In fact, the ML-degree is well-defined for any linear subspace L of the
space Sn of complex symmetric n×n matrices.

The ML-degree of a generic subspace L ⊂ Sn is known to be the degree of
its reciprocal variety that is parametrized by the inverses of all matrices in L
(see [17, Theorem 2.3]).

In fact, the ML-degree of any linear subspace L ⊂ Sn is upper bounded by
the degree of its reciprocal variety (see Theorem 1.1). We say that a linear
subspace L⊂ Sn whose ML-degree equals the degree of its reciprocal variety is
ML-maximal.

1.1. Main results

We fix the bilinear pairing (X ,Y ) 7→ trace(XY ) on the vector space Sn of com-
plex symmetric n×n matrices. This is an inner product when restricting to the
real symmetric matrices. For a linear subspace L ⊂ Sn, we write

L⊥ := {Y ∈ Sn | trace(XY ) = 0 for all X ∈ L}

for its annihilator or polar linear space with respect to the trace pairing. More-
over, we consider the Zariski closure

L−1 := {X−1 | X ∈ L, rank(X) = n} ⊂ Sn

and call its projectivization PL−1 ⊂ PSn the reciprocal variety of L. The defi-
nition of L−1 makes sense if L contains at least one full-rank matrix. We call
such a linear space L regular. We provide the following exact characterization
of ML-maximal linear spaces in terms of the intersection of their reciprocal va-
rieties and their polar spaces. A formula for the ML-degree of L in terms of
Segre classes of this intersection is given in [1].

Theorem 1.1. The ML-degree of a linear subspace L⊂ Sn is at most the degree
of its reciprocal variety. Moreover, L is ML-maximal (i.e., its ML-degree equals
deg(PL−1)) if and only if L−1∩L⊥ = {0}.

In addition, we give alternative sufficient and necessary conditions for a
linear space to be ML-maximal; see Remark 4.10.

Since generic linear spaces of symmetric matrices are ML-maximal, we
want to study the fine structure of the complementary property. For integers
k and n, we are interested in the set of all k-dimensional linear subspaces of Sn
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that are not ML-maximal. This subset of the Grassmannian Gr(k,Sn) is nei-
ther Zariski closed nor open (see Remark 4.1). Therefore, we study its Zariski
closure NMk,n in Gr(k,Sn).

We show that this variety equals the bad locus Badk,n studied in [8, Sec-
tion 3]. The authors consider k-dimensional linear subspaces L of the real sym-
metric n×n matrices Sn

R and corresponding projections Sn
R→ Hom(L,R) dual

to the inclusion L ⊂ Sn
R. Such a linear space L is called bad if the image of the

cone of positive semidefinite matrices under the projection Sn
R→ Hom(L,R) is

not closed. Bad subspaces of Sn
R are those for which strong duality in semidef-

inite programming fails, which has been thoroughly studied by Pataki [11, 14–
16]. The bad locus Badk,n is the Zariski closure in Gr(k,Sn) of the set of k-
dimensional bad subspaces of Sn

R.

Theorem 1.2. The Zariski closure NMk,n in Gr(k,Sn) of the set of non-ML-
maximal k-dimensional linear subspaces of Sn equals the bad locus Badk,n.

We describe the irreducible components of NMk,n in terms of the determi-
nantal varieties Ds of matrices of rank at most s. The coisotropic variety in
Gr(k,Sn) associated to Ds is the Zariski closure of the set of all k-dimensional
linear subspaces of Sn that intersect Ds at some smooth point non-transversely.
For all s as in the following corollary, the coisotropic variety associated to Ds

has codimension one in Gr(k,Sn) [9, Corollary 6].

Corollary 1.3. The non-ML-maximal locus NMk,n is the union of the coisotropic
hypersurfaces in Gr(k,Sn) associated to the determinantal varieties Ds, where
s ranges over the integers such that

(n−s+1
2

)
< k ≤

(n+1
2

)
−
(s+1

2

)
.

In particular, a generic linear space L ∈ Gr(k,Sn) is ML-maximal.

Proof. By [8, Theorem 2], the bad locus Badk,n is the union of the coisotropic
hypersurfaces described above. Hence, Theorem 1.2 implies the assertion.

Remark 1.4. Theorem 1.2 and Corollary 1.3 provide a geometric proof for the
ML-maximality of generic linear spaces of symmetric matrices. An alternative
argument, using different techniques from commutative algebra, is given in [17,
Theorem 2.3]. ML-maximality for generic linear spaces has also been conjec-
tured in a more general setting in [13, Conjecture 5.8], and a positive answer has
since been known to follow from a result of Teissier. However, this has not been
written down in the current literature, and therefore we include this argument
in Section 3. We also note that Theorem 1.1 is in fact a special case of [13,
Theorem 5.5], but we provide a more detailed argument.

We prove Theorem 1.1 in Section 2 and Theorem 1.2 in Sections 5 and 6.
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2. Maximum likelihood estimation

In this section we prove Theorem 1.1. Let Sn
R be the space of real symmetric

n×n matrices. The log-likelihood function of a linear subspace LR ⊂ Sn
R and a

sample covariance matrix S ∈ Sn
R is

`S : LR −→ R,
X 7−→ logdet(X)− trace(SX).

The gradient of the log-likelihood at a matrix X ∈ LR is ∇X`S = X−1−S, so X
is a critical point of the log-likelihood if and only if X−1− S ∈ L⊥R . Although
the log-likelihood itself is only well-defined on the real space LR, its critical
equations are well-defined on the complex Zariski closure L ⊂ Sn of LR. The
maximum likelihood degree (ML-degree) of LR resp. L is the number of com-
plex critical points of `S (i.e., the number of invertible matrices X in L satisfying
X−1−S∈L⊥) for a generic matrix S∈L. Note that this definition of ML-degree
extends to any linear subspace of Sn.

Our main tool to prove Theorem 1.1 is the projection away from L⊥ :

πL⊥ : PSn 99K
{
K ∈ Gr(dimL⊥+1,Sn) | L⊥ ⊂K

}
∼= PdimPL,

S 7−→ LS := span{L⊥,S}.

In [1] it is shown that the ML-degree of L is the degree of this projection re-
stricted to the reciprocal variety PL−1. In other words, the ML-degree of L is
the cardinality of the generic fiber of the restricted projection πL⊥ |PL−1 :

P
(

LS∩L−1 \L⊥
)

for generic S ∈ PSn. (1)

Proof of Theorem 1.1. Let us first assume that we have PL−1∩PL⊥ = /0. Then
it follows from the above that the ML-degree of L is the cardinality of the inter-
section PLS∩PL−1 for generic S ∈ PSn. Since the dimension of the projective
space PLS is the codimension of PL−1, they intersect in either deg(PL−1) many
points (counted with multiplicity) or in infinitely many points. The latter cannot
happen for generic S, since domain and codomain of the map πL⊥ |PL−1 have
the same dimension, so its generic fiber (1) must be finite. Thus, the intersec-
tion PLS∩PL−1 consists of deg(PL−1) many points, counted with multiplicity.
In [1] it is shown that the generic fiber (1) is reduced, so PLS ∩PL−1 consists
of deg(PL−1) distinct points for generic S, and we conclude that we have ML-
degree(L) = deg(PL−1).

Conversely, we assume that the intersection PL−1 ∩PL⊥ is non-empty. If
it is finite, then, by the same reasoning as before, the intersection PLS ∩PL−1
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is again finite for generic S, and thus must consist of deg(PL−1) many points
(counted with multiplicity). Since PL−1 ∩PL⊥ 6= /0, we see that PLS ∩PL−1

consists of strictly more points than (1). All in all, we have for generic S that

ML-degree(L) = |P
(

LS∩
(
L−1 \L⊥

))
|< |PLS∩PL−1| ≤ deg(PL−1).

Hence, we are left to consider the case when the intersection PL−1 ∩PL⊥
is infinite. Since the generic fiber (1) is finite, the intersection PLS ∩ PL−1

consists of positive-dimensional components inside PL⊥ as well as k points,
among which those outside of PL⊥ contribute to the ML-degree of L. From
the following standard fact from projective geometry it follows that we have
ML-degree(L)≤ k < deg(PL−1).

Proposition 2.1. Let X ⊂ Pm be an irreducible projective variety of degree d,
and let L ⊂ Pm be a projective subspace of complementary dimension (i.e.,
dimL = m− dimX). If the intersection of X and L consists of positive dimen-
sional components and k points, then we have k < d.

Proof. The following argument is due to Kristian Ranestad.
If k = 0, there is nothing to show. Hence, we assume from now on that k > 0.

Let Y1 be the union of all maximal-dimensional irreducible components of the
intersection X ∩ L. We denote the remaining lower-dimensional components
by Z1 (i.e. X ∩ L = Y1 ∪ Z1), so in particular Z1 contains the k points. The
codimension c1 of Y1 in X satisfies 0 < c1 < dimX . We consider a general
projective space L1 ⊂ Pm of codimension c1 that contains L. All components
in the intersection X ∩L1 have codimension c1 in X . The latter can be seen by
iteratively intersecting X with general hyperplanes H1, . . . ,Hc1 containing L: at
each step, the irreducible components of X ∩H1 ∩ . . .∩Hi−1 are not contained
in Hi such that intersecting with Hi reduces the dimension by 1.

Some of the irreducible components in X ∩L1 form Y1. We denote the re-
maining components by X1 (i.e., X ∩ L1 = Y1 ∪ X1). Recall that d is the de-
gree of X ; from the equality d = deg(X ∩L1) = degY1 + degX1 it follows that
degX1 < d. Moreover, from Y1∪Z1 = X ∩L = (Y1∪X1)∩L = Y1∪ (X1∩L), it
follows that we have X1∩L= (Y1∩X1)∪Z1. In particular, the intersection X1∩L
contains the k points. We also note that X1 and L have complementary dimen-
sion inside L1: codimL1(X1) = dimL1− dimX1 = (m− c1)− (dimX − c1) =
m− dimX = dimL. Hence, if the intersection X1 ∩ L is finite, then we have
shown that k ≤ degX1 < d, so we are done.

Otherwise, if the intersection X1 ∩ L is not finite, we consider the union
Y2 of the maximal-dimensional irreducible components of X1 ∩L. We observe
that dimX1 < dimX and dimY2 < dimY1. Now we repeat our construction
above: We let Z2 be the remaining irreducible components of X1∩L = Y2∪Z2,
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choose a general projective space L2 ⊂ Pm of codimension c2 := codimX1(Y2)
that contains L, and denote by X2 the irreducible components away from Y2
in X1∩L2 = Y2∪X2. If X2∩L is finite, the same arguments as above show that
k≤ degX2 < d. Otherwise, since dimX2 < dimX1 and dim(X2∩L)< dimY2, we
can repeat the above process several times until eventually Xi∩L will be finite
for some i ∈ N. At that point we can conclude the proof as k ≤ degXi < d.

3. Generic ML-maximality

In this section we show that a general linear space of symmetric matrices is
ML-maximal. This result is not new, see Remark 1.4. What we show here is the
equivalent statement (by Theorem 1.1) that for a generic linear space L, we have
L−1 ∩L⊥ = {0}. This was conjectured in more generality in [13, Conjecture
5.8], and shown in even more generality to follow from a statement by Teissier
in [12, Corollary 2.6]. However, the authors do not write down how this follows
exactly, which is why we include it here. It was explained to us by Mateusz
Michałek.

For a positive integer n, we denote by In the identity matrix of rank n. For an
n×n-matrix X we denote by adj(X) its adjugate; we have X adj(X) = det(X) ·In,
so if X is invertible we have

X−1 = (det(X))−1 · adj(X). (2)

Lemma 3.1. Let V be a complex vector space of dimension n with dual space
V ∗, and L ⊂V a linear subspace. Let L⊥ ⊂V ∗ be the space of all linear forms
that vanish on L. Moreover, let f be a homogeneous polynomial on V , and ∇ f
its gradient map. If L is generic, we have P(∇ f )(L)∩PL⊥= /0, where P(∇ f )(L)
is the Zariski closure of P(∇ f )(L) in PV ∗.

Proof. The following is due to Mateusz Michałek.
Let k be the dimension of L. We may choose coordinates (x1, . . . ,xn) on V

and an inner product to identify the dual space V ∗ with V such that L is defined
by the equations xk+1 = · · · = xn = 0, and L⊥ is given by x1 = · · · = xk = 0.
Assume that L is generic, and assume by contradiction that there is a sequence
of elements (X j) j≥1 in P(∇ f )(L) with limit contained in PL⊥. Let (Yj) j≥1 be a
sequence in PL such that we have

(X j) j≥1 =
((

∂ f
∂x1

(Yj) : . . . : ∂ f
∂xn

(Yj)
))

j≥1
.

Then lim j→∞ X j ∈ PL⊥ implies that there exists an l ∈ {k+ 1, . . . ,n} such that
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for all i ∈ {1, . . . ,k} we have

lim
j→∞

∂ f
∂xi

(Yj)

∂ f
∂xl

(Yj)
= 0.

Fix such an l. Since L is generic, it follows from [20, II.2.1.3] that ∂ f
∂xl

is integral

over the ideal I =
(

∂ f
∂x1

, . . . , ∂ f
∂xk

)
in the ring C[x1, . . . ,xn]. By definition, the latter

means that there is an integer p, and elements ai ∈ Ip−i for i ∈ {1, . . . , p− 1},
such that (

∂ f
∂xl

)p
+∑

p−1
i=0 ai

(
∂ f
∂xl

)i

(
∂ f
∂xl

)p = 0.

Plugging in Yj and taking the limit, we find the contradiction

0 = lim
j→∞

(
∂ f
∂xl

(Yj)
)p

(
∂ f
∂xl

(Yj)
)p + lim

j→∞

∑
p−1
i=0 ai(Yj)

(
∂ f
∂xl

(Yj)
)i

(
∂ f
∂xl

(Yj)
)p = lim

j→∞

(
∂ f
∂xl

(Yj)
)p

(
∂ f
∂xl

(Yj)
)p = 1,

where the second equality follows from the fact that ai is contained in Ip−i.
Hence, we conclude that there is no sequence of elements in P(∇ f )(L) with
limit contained in PL⊥ if L is generic. This finishes the proof.

Corollary 3.2. For generic linear subspaces L⊂ Sn, we have PL−1∩PL⊥ = /0.

Proof. Let f be the map f : Sn −→ C given by X 7−→ det(X). By the Jacobi
formula and the fact that we work with symmetric matrices, for X ∈ Sn we have
(∇ f )(X) = adj(X) ∈ Sn. From this and (2) it follows that for a linear subspace
in Sn we have

PL−1∩PL⊥ = P(∇ f )(L)∩PL⊥,

where P(∇ f )(L) is the Zariski closure of P(∇ f )(L) in PSn. The statement now
follows from Lemma 3.1.

Remark 3.3. As we will show in Lemma 4.3, for the determinant map f as
in Corollary 3.2 the image P(∇ f )(L) is disjoint from PL⊥ if and only if L is
not contained in the hyperplane tangent to the zero locus Z( f ) of f at a smooth
point belonging L (this also follows from the more general statement for any
hyperbolic polynomial in [13, Proposition 5.9]). But this is true for generic L
by Bertini’s Theorem [7, Theorem 17.16]. The added value of Lemma 3.1 is
thus to show that the closure of P(∇ f )(L) is disjoint from PL⊥ for generic L.
As we saw in the proof of the lemma, where Bertini shows that the radical of the
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ideal of the singular locus Sing(Z( f )∩L) of Z( f )∩L equals the radical of the
ideal of Sing(Z( f ))∩L, Teissier shows that these two ideals are in fact integral
over each other. There are several versions of Teissier’s ‘Théorème de Bertini
idéaliste’; see [18, Proposition 2.7], [19, p.42], [6, Theorem 2.6].

4. Sufficient and necessary conditions for ML-maximality

Let k and n be two integers. By NM◦k,n we denote the set in Gr(k,Sn) of k-
dimensional linear subspaces in Sn that are not ML-maximal. Note that NMk,n
is its Zariski closure by definition, and by Theorem 1.1, we have

NM◦k,n = {L ∈ Gr(k,Sn) | PL−1∩PL⊥ 6= /0}.

In this section we show that NM◦k,n is neither Zariski open nor closed (Remark
4.1), and we provide sufficient and necessary conditions for a linear space to be
ML-maximal (Remark 4.10). More specifically, we describe a subset of NM◦k,n
in terms of tangency to the determinantal hypersurface (Lemma 4.3), and we
show that NM◦k,n is contained in the closed set

Ck,n := {L ∈ Gr(k,Sn) | ∃ (X ,Y ) ∈ PL×PL⊥ : XY = 0} (3)

(Corollary 4.7). The latter is one of the main ingredients in the proof of Theo-
rem 1.2. The set Ck,n is the union of the coisotropic hypersurfaces in Gr(k,Sn)
associated to the determinantal variety Ds, where s ranges over the integers such
that

(n−s+1
2

)
≤ k ≤

(n+1
2

)
−
(s+1

2

)
[8, Theorems 2 and 3].

Remark 4.1. The set NM◦k,n is in general neither Zariski open nor closed. To
illustrate this, we consider the stratification of the Grassmannian Gr(2,Sn) in
terms of Segre symbols described in [5, Section 5]. In [5, Example 1.3], we see
that the ML-maximal elements of Gr(2,S3) lie in the strata of Gr(2,S3) defined
by Segre symbols with only 1’s. In other words, the complement of NM◦2,3 is
the union of the two strata Gr[1,1,1] and Gr[(1,1),1]. However, in Figure 1 of the
same paper, we find the following inclusions of Zariski closures of strata of
codimensions 2, 1 and 0 in Gr(2,S3):

Gr[(1,1),1] ⊂ Gr[2,1] ⊂ Gr[1,1,1] = Gr(2,S3).

We conclude that the complement of NM◦2,3 in Gr(2,S3) is neither Zariski open
nor closed, hence neither is NM◦2,3. By [5, Example 3.1], the ML-maximal
elements of Gr(2,S4) lie again in the strata with Segre symbols containing only
1’s. The same argument shows that NM◦2,4 is neither Zariski open nor closed.
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Lemma 4.2. Let L ⊂ Sn be a regular linear space. The intersection L−1∩L⊥
does not contain matrices of full rank.

Proof. If the intersection would contain a full-rank matrix Y , then Y−1 ∈ L and
Y ∈L⊥, which yields 0 = trace(Y−1Y ) = trace(In) = n > 0; a contradiction.

For a linear space L in Sn, we denote by PL̊−1 the open subset of PL−1

given by the adjugates of all matrices in PL of rank at least n− 1. We now
describe the following subset of NM◦k,n:

{L ∈ Gr(k,Sn) | PL̊−1∩PL⊥ 6= /0}. (4)

The next lemma also follows from the more general [13, Proposition 5.9].

Lemma 4.3. The subset of NM◦k,n given by (4) is equal to

{L ∈ Gr(k,Sn) | ∃ X ∈ Reg(Dn−1) : X ∈ L ⊂ TX(Dn−1)}.

Proof. If L is contained in (4), then there is a matrix X in PL of rank at least
n− 1, whose adjugate is contained in PL⊥. By Lemma 4.2, X has rank n− 1,
hence it is a regular point of Dn−1. Since adj(X) is in the annihilator of the
tangent hyperplane TX(Dn−1), and adj(X) is contained in PL⊥, it follows that
L is a subset of TX(Dn−1). Conversely, let X be a regular point of Dn−1 such
that L is tangent to Dn−1 at X . Then X has rank n−1, so adj(X) lies in PL̊−1.
Moreover, since adj(X) is in the annihilator of TX(Dn−1), it is also in PL⊥.

Remark 4.4. Lemma 4.3 says that (4) is exactly the set of k-dimensional tan-
gent spaces at smooth points of the determinantal hypersurface Dn−1. Thus, its
Zariski closure is the irreducible coisotropic variety Chk−1(Dn−1). [9]

Example 4.5. The following linear space is an element in NM◦3,3 that is not

contained in its subset (4). Let L be spanned by
[

1 0 0
0 0 0
0 0 0

]
,
[

0 0 1
0 1 0
1 0 0

]
,
[

0 0 0
0 0 1
0 1 0

]
. The

intersection PL−1 ∩PL⊥ consists of the single element M =
[

0 0 0
0 0 0
0 0 1

]
, so L is

contained in NM◦3,3. However, PL̊−1∩PL⊥ is empty, since M is not the adjugate
of any matrix in L.

The linear space L is a net of conics of Type C according to Wall’s clas-
sification [21]. This means that it is a generic point in the intersection of the
Chow hypersurface Ch0(D1) of the rank-one locus D1 with the Zariski closure
Ch2(D2) of (4) described in Remark 4.4. By duality, L ∈ Ch2(D2) if and only
if L⊥ ∈ Ch0(D1). Hence L is generic among all linear spaces with the property
that both L and L⊥ contain a rank-one matrix. We also see from [4, Table 1]
that ML-degree(L) = 2 < 3 = deg(PL−1), so L is not ML-maximal.
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We end this section by showing that NM◦k,n is contained in the set Ck,n de-
fined in (3). For any L ∈ G(k,Sn), consider the Zariski closed set

CL = {(X ,Y ) ∈ PL×PSn | XY = t · In for some t ∈ C}

with the projection πL : CL→ Sn to the second coordinate.

Lemma 4.6. Let L ⊂ Sn be a regular linear space. For every Y ∈ L−1 with
rank(Y )< n, there is an X ∈ L, X 6= 0, such that XY = 0.

Proof. For any Z ∈ PL of full rank, we have (Z,Z−1) ∈ CL, so Z−1 ∈ πLCL.
Since CL is a projective variety, πLCL is closed, so L−1 is contained in πLCL.
Therefore, if Y is in L−1, then Y is in the image of πL. So there is an X ∈L with
XY = t · In for some constant t. If Y is not of full rank, this implies XY = 0.

Corollary 4.7. The set NM◦k,n is contained in Ck,n.

Proof. Let L∈NM◦k,n be a regular subspace of Sn. By definition, there is a non-
zero matrix Y in the intersection L−1∩L⊥ which has rank < n by Lemma 4.2.
Lemma 4.6 now guarantees the existence of a non-zero matrix X ∈ L such that
XY = 0, which shows that L is contained in Ck,n.

Remark 4.8. The Zariski closure NMk,n of NM◦k,n is in general not equal to Ck,n,
as can be seen by the following argument: under the involution L 7→ L⊥, the set
Ck,n gets mapped to the set C(n+1

2 )−k,n, but NMk,n is in general not mapped to
NM(n+1

2 )−k,n as Example 4.9 illustrates.
In fact, by Theorem 1.2 and [8, Theorem 3], we have the following: if there

is an integer s such that k =
(n−s+1

2

)
, then Ck,n is the union of NMk,n and the

Chow hypersurface Ch0(Ds) of Ds; otherwise, Ck,n = NMk,n.

Example 4.9. The integers k = 3,n = 3,s = 1 satisfy k =
(n−s+1

2

)
. The linear

spaceL in S3 spanned by diagonal matrices is contained in C3,3 but not in NM3,3.
According to Wall’s classification [21], L is a net of conics of Type E. Its
projectivization is a trisecant plane of the rank-one locus D1, so in particular
L is in the Chow hypersurface Ch0(D1). However, L is not contained in the
coisotropic hypersurface Ch2(D2), which is by Corollary 1.3 equal to NM3,3.

On the other hand, its polar net L⊥ is of type E∗, so by [4, Table 1] we
have ML-degree(L⊥) = 1 < 4 = deg(P(L⊥)−1). Hence the polar net L⊥ is not
ML-maximal, i.e. L⊥ ∈ NM◦3,3. Corollary 4.7 and Remark 4.8 imply that both
L⊥ and L are contained in C3,3.

Remark 4.10. Lemma 4.3 gives a sufficient condition, and Corollary 4.7 gives
a necessary condition for a linear subspace not to be ML-maximal. On the one
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hand, every linear space that is tangent to the manifold of corank-one matrices
is not ML-maximal. On the other hand, for every linear space L that is not
ML-maximal, there are non-zero matrices X ∈ L and Y ∈ L⊥ such that XY = 0.

5. Generic bad subspaces are not ML-maximal

Recall that Badk,n is the Zariski closure in Gr(k,Sn) of the set of k-dimensional
bad subspaces of Sn

R as defined in the introduction. In this and the next section,
we prove that NMk,n equals Badk,n. We start with one inclusion.

Proposition 5.1. Badk,n is contained in NMk,n.

To show the proposition, we outsource all the hard work to the following lemma.

Lemma 5.2. Let s be an integer with 0 < s < n and k >
(n−s+1

2

)
. For fixed

X ,Y ∈ Sn with rank(X)= s, rank(Y )= n−s and XY = 0, we consider the variety

GX ,Y :=
{
L ∈ Gr(k,Sn) | X ∈ L,Y ∈ L⊥

}
.

A general L in GX ,Y satisfies

{Z ∈ Sn | XZ = 0} ⊆ L−1;

in particular, we have that Y is contained in L−1.

We first prove Proposition 5.1 to see how we can apply the lemma. After-
wards, we give the proof of Lemma 5.2.

Proof of Proposition 5.1. The bad locus Badk,n is the union of the irreducible
coisotropic hypersurfaces in Gr(k,Sn) associated to the bounded-rank loci Ds

where s is in the range
(n−s+1

2

)
< k ≤

(n+1
2

)
−
(s+1

2

)
[8, Theorem 2]. A general

point L in one of these hypersurfaces satisfies the following property:

∃ X ∈ L∩Reg(Ds) : L+TX Ds 6= Sn.

This implies that L and the tangent space TX Ds have a common non-zero ele-
ment Y in their annihilators. In other words, there is a non-zero matrix Y ∈ L⊥
satisfying XY = 0. The rank of that matrix Y is at most n−s. Since L is general,
we may assume that rank(Y ) = n− s. In fact, we may choose L by first fixing
any X ∈ L of rank s, then fixing any Y ∈ L⊥ of rank n− s with XY = 0, and
finally choosing the remaining basis vectors of L arbitrarily. In other words, L
is a general point of GX ,Y , so by Lemma 5.2 we see that Y is contained in L−1.
It follows that L is contained in NMk,n.
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In the proof of Lemma 5.2, we compute the total transform of a point in the
blow-up of a linear space along the indeterminacy locus of the adjugate map.
Since this is a technical construction, we first do this in a concrete example. It
was shown in [3] that the blow-up of PSn along Dn−2, i.e. the Zariski closure of
the graph of matrix inversion on PSn, is

Γ := {(X ,Y ) ∈ PSn×PSn | XY = t · In for some t ∈ C} .

For a regular linear space L in Sn, we use the Zariski closure

ΓL := {(X ,X−1) ∈ PSn×PSn | X ∈ PL}

of the graph of matrix inversion restricted to PL to understand the reciprocal
variety PL−1, as PL−1 is the image of the projection of ΓL to the second factor.
In particular, for a point X ∈ PL, we are interested in its total transform

ΓL(X) := {Z ∈ PSn | (X ,Z) ∈ ΓL} ⊆ {Z ∈ PL−1 | XZ = t · In for some t ∈ C}.

Example 5.3. (n = 3, k = 5) Let X ,Y ∈ S3 be the matrices given by

X =

1 0 0
0 0 0
0 0 0

 , Y =

0 0 0
0 1 0
0 0 1

 .
Let L be the polar linear space Y⊥ of Y in S3, and note that X is contained in
L. Setting s = 1, the matrices X ,Y satisfy the conditions in Lemma 5.2, and L
is contained in GX ,Y . We compute that (the affine cone over) the total transform
ΓL(X) is {Z ∈ S3 | XZ = 0}, so the latter is contained in L−1.

A basis for L is given by {X ,B01,B02,B1,B2}, where (B01,B02,B1,B2) is0 0 1
0 0 0
1 0 0

 ,
0 1 0

1 0 0
0 0 0

 ,
0 0 0

0 1 0
0 0 −1

 ,
0 0 0

0 0 1
0 1 0

 .

For a matrix M ∈ Sn we denote its lower-right 2×2 block by M. Note that B01
and B02 are both 0, and B1, B2 together span I⊥2 in S2. To determine the total
transform ΓL(X), we perturb X , and then compute its adjugate. Let ε be an
indeterminate. The first perturbation we compute is

X + ε(b01B01 +b02B02 +b1B1 +b2B2) =

 1 εb02 εb01
εb02 εb1 εb2
εb01 εb2 −εb1

 ,
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where (b01,b02,b1,b2) is a vector in C4 \{0}. The adjugate of this matrix is −ε2(b2
1 +b2

2) ε2(b02b1 +b01b2) ε2(b02b2−b01b1)
ε2(b02b1 +b01b2) −ε(b1 + εb2

01) −ε(b2− εb01b02)
ε2(b02b2−b01b1) −ε(b2− εb01b02) ε(b1− εb2

02)

 .
Note that the lowest degree terms are all in the 2×2 lower-right block. Dividing
by ε and setting ε = 0, we obtain the matrix0 0 0

0 −b1 −b2
0 −b2 b1

=

[
0 0
0 adj(b1B̄1 +b2B̄2)

]
.

Since B1,B2 span I⊥2 , this implies
{

Z | XZ = 0, Z̄ ∈ (I⊥2 )−1
}
⊆ ΓL(X).

The second perturbation of X that we compute is the matrix

X + ε(c01B01 + c02εB02 + c1εB1 + c2εB2) =

 1 ε2c02 εc01
ε2c02 ε2c1 ε2c2
εc01 ε2c2 −ε2c1

 ,
where c = (c01,c02,c1,c2) is a vector in C4 \{0}. We find the adjugate −ε4(c2

1 + c2
2) ε3(εc02c1 + c01c2) ε3(εc02c2− c01c1)

ε3(εc02c1 + c01c2) −ε2(c1 + c2
01) −ε2(c2− εc01c02)

ε3(εc02c2− c01c1) −ε2(c2− εc01c02) ε2(c1− ε2c2
02)

 .
Again, the lowest degree terms are in the 2×2 lower-right block. We now divide
by ε2 and set ε = 0, and obtain

Zc =

0 0 0
0 −(c1 + c2

01) −c2
0 −c2 c1

 .
Let Z be the closure in S2 of the set {Zc | c ∈ C4 \ {0}}. All elements Zc ∈ Z
with c = (0,c02,c1,c2) parametrize the hypersurface (I⊥2 )−1 in S2 as before, so
(I⊥2 )−1 is contained inZ . SinceZ is irreducible, it follows thatZ is either equal
to (I⊥2 )−1 or to S2. However, the element Z(1,0,1,0) is contained in Z , and

(
Z(1,0,1,0)

)−1
=

[
−1

2 0
0 1

]
6∈ I⊥2 ,

soZ is not contained in (I⊥2 )−1, henceZ = S2. We have shown that every matrix
Z ∈ S3 with XZ = 0 is contained inZ . Therefore, ΓL(X) = {Z ∈ PS3 | XZ = 0}.
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We now give the proof of Lemma 5.2. We generalize the construction that
was done in the previous example, and we recommend reading this example
alongside the proof for illustration.

Proof of Lemma 5.2. After a change of coordinates, we may assume that

X =

[
Is 0
0 0

]
and Y =

[
0 0
0 In−s

]
. (5)

In the following, we will denote by M̄ the lower-right (n− s)× (n− s) block of
a symmetric matrix M ∈ Sn. For instance, X̄ = 0 and Ȳ = In−s.

A dimension count reveals that every L ∈ GX ,Y must contain a matrix B0
with B̄0 = 0 that is linear independent from X . Indeed, the vector space of
symmetric matrices M satisfying M̄ = 0 is contained in the hyperplane Y⊥ and
has codimension

(n−s+1
2

)
−1 in Y⊥. As L is also contained in Y⊥, its projection

away from X yields a (k−1)-dimensional vector space inside Y⊥. Since we have
k−1≥

(n−s+1
2

)
, that vector space contains a non-zero matrix B0 with B̄0 = 0.

The same dimension count also shows that the image of the projection
M 7→ M̄ onto Sn−s restricted to a general L ∈ GX ,Y is the whole hyperplane I⊥n−s.
In terms of a basis {X ,B0,B1, . . . ,Bk−2} (with B̄0 = 0) for a general L ∈ GX ,Y

this means that B̄1, . . . , B̄k−2 span the hyperplane I⊥n−s.
Equipped with this knowledge, we will now prove the assertion. Note that,

for Z ∈ Sn with (X ,Z) ∈ ΓL, we have XZ = 0. In what follows we show that
the converse holds as well; more specifically, we will show that in fact all pairs
(X ,Z) with Z ∈ Sn, XZ = 0, are contained in ΓL.

Apply matrix inversion to the blow-up of L at X . In terms of a basis
{X ,B0,B1, . . . ,Bk−2} for L, this means to compute the matrix Zb that appears
as the first non-zero coefficient of the following power series in ε:

adj(X + ε(b0B0 +b1B1 + . . .+bk−2Bk−2)) , (6)

where b = (b0,b1, . . . ,bk−2) is a non-zero vector of arbitrary power series bi

in C[[ε]]. All matrices Zb obtained in this way satisfy (X ,Zb) ∈ ΓL. In what
follows we show that the closure of the set of matrices Zb where b is a non-zero
vector of either constants, or with b0 constant and the other bi linear monomials,
already contains {(X ,Z) | Z ∈ Sn, XZ = 0}, thus proving the lemma.

Let us first compute Zb for the case where b is a non-zero vector in Ck−1.
The lowest degree terms in the matrix (6) are of degree n− s− 1 and appear
exactly in its lower right block. Their coefficients are the minors of size n−s−1
of the matrix b1B̄1 + . . .+bk−2B̄k−2 (since B̄0 = 0). More precisely, we see that

Zb =

[
0 0
0 adj(b1B̄1 + . . .+bk−2B̄k−2)

]
.
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Due to the generality of L, the matrices B̄1, . . . , B̄k−2 span the hyperplane I⊥n−s,
so the closure of the set {Z̄b | b ∈ Ck−1 \ {0}} in Sn−s equals the reciprocal
hypersurface (I⊥n−s)

−1. Hence, we have proven so far that{
(X ,Z) | XZ = 0, Z̄ ∈ (I⊥n−s)

−1
}
⊆ ΓL.

Finally, we compute Zb for the case when b is a non-zero vector where b0
a constant and the power series b1, . . . ,bk−2 have only linear terms (i.e., bi =
ciε for a constant ci). The lowest degree terms in the matrix (6) are of degree
2(n− s−1) and appear again only in its lower right block. Now the coefficients
of these terms do not only depend on b1, . . . ,bk−2, but also on b0. The closure
of the set of the resulting Z̄b forms an irreducible subvariety Z of Sn−s. Setting
b0 = 0, we see that Z contains the reciprocal hypersurface (I⊥n−s)

−1. Hence Z
is either equal to (I⊥n−s)

−1 or it is the whole ambient space Sn−s. The condition
“Z ⊆ (I⊥n−s)

−1” is Zariski closed in the entries of the matrices B0,B1, . . . ,Bk−2.
Thus, if there is one instance with Z 6⊆ (I⊥n−s)

−1, then we know Z = Sn−s for
general choices of B0, . . . ,Bk−2 (with B̄0 = 0). For general L∈ GX ,Y we can then
conclude that {(X ,Z) | Z ∈ Sn, XZ = 0} ⊆ ΓL, which proves the assertion.

We exhibit such an instance. Since B̄1, . . . , B̄k−2 span the hyperplane I⊥n−s,
we may assume that the first

(n−s+1
2

)
−1 of these matrices are a standard basis of

I⊥n−s. In particular, we may assume that B̄i, for 1≤ i≤ n− s−1, is the diagonal
matrix whose i-th entry is 1, whose (n− s)-th entry is −1, and all other entries
are 0. We fix B0 to be the matrix with a 1 as entries at (1,n) and (n,1), and all
other entries are 0. When we choose b0 = 1, bi = ε for 1 ≤ i ≤ n− s− 1, and
b j = 0 for j ≥ n− s, a direct computation reveals that Z̄b is the diagonal matrix
with entries (s−n, . . . ,s−n,1). As Z̄b is invertible, we can check that Z̄b is not
contained in (I⊥n−s)

−1. Hence, Z 6⊆ (I⊥n−s)
−1, which concludes the proof.

6. Generic non-ML-maximal subspaces are bad

We now prove the other inclusion NMk,n ⊆ Badk,n. Let L be a generic point
in NMk,n for some k,n. Since L is not ML-maximal, there is a non-zero Y in
L−1∩L⊥, which means that there is a matrix X ∈ L such that Y is contained in
ΓL(X), and this implies XY = 0. After a change of coordinates we can assume

X =

[
Iu 0
0 0

]
and Y =

[
0 0
0 Iv

]
, (7)

where u = rank(X), v = rank(Y ). We will show that L is contained in Badk,n.
We start by treating some special instances of L.

Lemma 6.1. If
(v+1

2

)
< k, then L is contained in Badk,n.
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Proof. Note that, since XY = 0 and Y is an element of L⊥, we have that L⊥ is
contained in the coisotropic variety Chc(Dv), where c = dim(L⊥)−codim(Dv).
By duality, this implies thatL is contained in Chk−codim(Dn−v)(Dn−v) [10, Lemma 3].
If we have

(v+1
2

)
< k, then n−v is either contained in the Pataki range described

in [8, Theorem 2] or it exceeds the Pataki range. If n− v is in the range, then
L is contained in Badk,n by [8, Theorem 2]. If n− v exceeds the range, then the
coisotropic variety Chk−codim(Dn−v)(Dn−v) is a subvariety of the last coisotropic
hypersurface in the Pataki range. So L is again contained in Badk,n by [8, The-
orem 2], and we are done in both cases.

Lemma 6.2. a) We have NM1,n = /0.

b) If (k,u,v) = (3,n−3,2), then L is contained in Bad3,n.

Proof. We start with part a). A one-dimensional regular linear subspace of Sn

is a point in PSn of full rank. Therefore its ML-degree is 1, and so is the degree
of its reciprocal variety. We conclude that NM1,n = /0 for all n.

For part b), let {X ,B1,B2} be a basis for L and write Bi ∈ S3 for the lower-
right 3× 3 block of Bi for i = 1,2. The locus D1 of rank-one matrices in S3 is
3-dimensional. The subset of D1 of matrices that annihilate both B1 and B2 is cut
out by two hyperplanes, and is therefore at least one-dimensional. Hence, there
is a non-zero matrix N of rank one such that tr(NB1) = tr(NB2) = 0. Let N ∈ Sn

be the matrix with lower-right 3× 3 block equal to N, and zeroes everywhere
else: N =

[ 0 0
0 N

]
. By construction, the matrix N is in the polar space of X , B1, and

B2, so we have N ∈L⊥. As the rank of N is one, there is a matrix M in Sn of rank
n−1 with MN = 0. Since MN = 0 poses no conditions on the upper-left u×u
block of M, we can choose M such that this block is the identity matrix Iu. Now
consider the matrix Xε = X + ε(M−X). For small enough ε 6= 0, this matrix
has rank n− 1. Since MN = 0 and XN = 0, we also have XεN = 0. Let Lε be
the linear space spanned by Xε , B1, and B2. Now Lε is contained in N⊥, which
is the tangent hyperplane of Dn−1 at Xε . We conclude that Lε is contained in the
coisotropic hypersurface Ch2(Dn−1). Thus, L = limε→0Lε is in Ch2(Dn−1) as
well. Since this is within the Pataki range, L is contained in Bad3,n.

Lemma 6.3. If u+ v < n, then L is contained in Badk,n.

Proof. By Lemma 6.1, we can assume that we have(
v+1

2

)
≥ k. (8)

Note that the set {M ∈ Sn |XM = 0} is isomorphic to Sn−u, and sinceL⊥ has
codimension k, it follows that the space AX := {M ∈ L⊥ | XM = 0}, considered



LSSMS WITH NON-MAXIMAL ML-DEGREE 477

as a subset of Sn−u, has dimension at least
(n−u+1

2

)
−k. Consider the locus Dv−1

of matrices of rank at most v−1 in Sn−u, which has codimension
(n−u−v+2

2

)
. We

conclude that the dimension of AX ∩Dv−1 is at least
(n−u+1

2

)
−
(n−u−v+2

2

)
− k,

which by (8) is at least(
n−u+1

2

)
−
(

n−u− v+2
2

)
−
(

v+1
2

)
= (v−1)(n−u− v)−1. (9)

Set v′ = v−1, and δ = n−u−v. If dim(AX ∩Dv−1) = 0, then we have (9) < 1,
which holds if and only if either v = 1 or (v,δ ) = (2,1). In the first case, we
would have k = 1 by (8). In the second case, we have n− u = 3 and k = 3 by
(8), because otherwise, if v = 2 ≥ k, then we have a strict inequality in (8), so
dim(AX ∩Dv−1)≥ 1. Both of the cases are treated in Lemma 6.2.

Now assume dim(AX ∩Dv−1) ≥ 1, so we have a non-zero matrix in the in-
tersection AX ∩Dv′ . As in the proof of Lemma 6.1, this implies that L is con-
tained in Chk−codim(Dn−v′ )

(Dn−v′). If we have
(v′+1

2

)
< k, then L is in Badk,n by

(the proof of) Lemma 6.1. If, on the other hand, we have
(v′+1

2

)
≥ k, then we

can do the same computation as before using v′ instead of v. Therefore, we
can continue this until we find an integer v′′ < v such that L is contained in
Chk−codim(Dn−v′′ )

(Dn−v′′), and
(v′′+1

2

)
< k.

Proposition 6.4. NMk,n is contained in Badk,n.

Proof. As explained above, it suffices to show that L is contained in Badk,n.
By Lemma 6.3 we can assume that we have u+ v = n, and by Lemma 6.1 we
can assume

(v+1
2

)
≥ k. If there is no s such that k =

(n−s+1
2

)
, it follows from

[8, Theorem 3] that the set Ck,n equals Badk,n. Since NMk,n is contained in
Ck,n (Corollary 4.7), we conclude that in that case, L is contained in Badk,n.
Therefore, from now on we assume that there is an s such that k =

(n−s+1
2

)
.

Combining this with (8), we find v≥ n− s. We distinguish two cases.
Case 1: Assume that there is a matrix B1 in L, which is linearly independent

of X , and such that its lower-right v× v block consists of only zeroes. Then we
can choose B2, . . . ,Bk−1 such that L is spanned by X ,B1,B2, . . . ,Bk−1. We now
show that L ∈ Badk,n by a similar construction as in the proof of Lemma 6.2.
We write Bi for the lower-right v× v block of Bi, for i ∈ {1, . . . ,k− 1}. Recall
that the dimension of the determinantal variety Dn−s−1 of matrices with rank at
most n− s−1 in Sv is (

v+1
2

)
−
(

v−n+ s+2
2

)
. (10)

We want to show that (10) is strictly larger than k−2. This is true if and only if
we have

(v+1
2

)
+2 >

(t+1
2

)
+
(v−t+2

2

)
, where t = n− s. After rewriting this, one
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can see that this is equivalent to t(v− t)+1 > v− t. But this holds, since v≥ t
and t ≥ 1 (otherwise k would be 0). We conclude that the dimension of Dn−s−1
in Sv is strictly larger than k−2.

Thus, the set of matrices in Dn−s−1 that are in the polar space of B2, . . . ,Bk−1
is at least one-dimensional; so we can pick a matrix N in that set. As in the proof
of Lemma 6.2, we let N be the matrix in Sn whose lower-right v×v block equals
N, and that has zeroes everywhere else. Since B1 = 0, we have N ∈ L⊥. Again,
we can choose an M ∈ Sn of rank n− rank(N) such that MN = 0, and whose
upper-left u×u block is the identity matrix Iu. Now let Lε be the space spanned
by Xε =X +ε(M−X) and B1, . . . ,Bk−1. For sufficiently small ε 6= 0, the rank of
Xε is rank(M). By construction, we obtain XεN = 0 and Lε ⊂N⊥, and therefore
Lε is contained in the coisotropic variety in Gr(k,Sn) associated to Drank(M).
Since the rank of M is at least s+1, it either falls in the Pataki range or exceeds
it, and thus the latter coisotropic variety is contained in Badk,n (as in the proof
of Lemma 6.2). We conclude that L= limε→0Lε is contained in Badk,n.

Case 2: Now we assume that L does not contain a matrix that is both lin-
early independent of X and has its lower-right v× v block consisting of only
zeroes. We show that this implies that Y is not contained in the total transform
ΓL(X), contradicting the fact that Y was chosen in ΓL(X) at the beginning of
this section.

As before, the elements in ΓL(X) are the adjugates of all perturbations of X .
For a vector b = (b1, . . . ,bk−1) in C[[ε]]k−1, we write bi = bi0 +bi1ε + · · · and

Xb := X + ε

k−1

∑
i=1

biBi = X + εX1 + ε
2X2 + . . . ,

where X j := ∑
k−1
i=1 bi, j−1Bi ∈ L. By our Case-2 assumption, we have for all j

that either X j is a multiple of X or X j 6= 0. If Xb is a multiple of X , the lowest
degree term of its adjugate cannot yield Y . Hence, we may assume that Xb is
not a multiple of X , which implies Xb 6= 0 by the Case-2 assumption. Moreover,
since B1, . . . ,Bk−1 span a subspace of I⊥v , the lowest degree non-zero term of Xb
is also in I⊥v and thus cannot be a multiple of the identity matrix Iv. Now the
following lemma concludes the proof as it shows that the lowest degree term of
adj(Xb) cannot be equal to Y .

As above, for a matrix A, we write A for the lower (v× v)-block of A.

Lemma 6.5. Let X ′ be a matrix with entries in C[[ε]] of the form X ′ = X +

∑
∞
j=1 ε jX j such that for each j, either X j 6= 0 or X j is a multiple of X. Assume

that u+v = n and that the lowest degree term of adj(X ′) is a multiple of Y . Then
the lowest degree term of X ′ is a multiple of the identity matrix Iv.
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Proof. Let a > 0 be such that adj(X ′) = εaYa + εa+1Ya+1 + · · · and Ya 6= 0, then
by assumption we have Ya = λY for some constant λ 6= 0. Let m be the minimal
integer for which Xm is not a multiple of X ; again by assumption, it follows that
Xm 6= 0. Moreover, for all j < m we have that the matrix X j is a multiple of X ,
which implies X jA = 0 for any n×n-matrix A. It follows that we have

X ′ adj(X ′) = (X + εX1 + · · ·)(εaYa + εa+1Ya+1 + · · ·)

= (εmXm + εm+1Xm+1 + · · ·)(εaYa + εa+1Ya+1 + · · ·)
= ε

m+aXmYa + h.o.t.

For any matrix A, we have that YAY = A. Using the fact that Ya = λY we obtain

XmYa = Y XmλY 2 = λY XmY = λXm,

so the lowest degree non-zero term of X ′ adj(X ′) is εm+aλXm. As X ′ adj(X ′) =
f In for some f ∈ C[[ε]], we conclude that Xm is a multiple of Iv.

Proof of Theorem 1.2. This follows from Propositions 5.1 and 6.4.

7. Example: the case n = 3

In this section we describe in detail the set NMk,n for n = 3.
The hypersurface NM5,3 = Ch2(D1) has degree three in Gr(5,S3) ∼= P5,

consisting of all subspaces L = A⊥ where detA = 0. This matrix satisfies
trace(A · adj(A)) = 0, so A ∈ L⊥. Hence A ∈ L−1∩L⊥.

The hypersurface NM4,3∼=Ch1(D1) can be identified with NM2,3∼=Ch1(D2)
under Gr(4,S3) ∼= Gr(2,S3). The latter contains those pencils with Segre sym-
bol [2,1] [5], with canonical representation as the span of A1 =

[
0 a 0
a 1 0
0 0 b

]
,A2 =[

0 1 0
1 0 0
0 0 1

]
for a 6= b ∈ R. The matrix A1 − aA2 looks like

[
0 0 0
0 ∗ 0
0 0 ∗

]
with adjoint[ ∗ 0 0

0 0 0
0 0 0

]
∈ L−1∩L⊥.

The hypersurface NM3,3 ∼= Ch2(D2)∼= Ch0(D1). The last term is the Chow
form of the Veronese embedding of P2←↩ P5 = P(S3), or equivalently, the re-
sultant of three ternary quadrics.
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