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EQUATIONS AND MULTIDEGREES FOR INVERSE
SYMMETRIC MATRIX PAIRS

Y. CID-RUIZ

We compute the equations and multidegrees of the biprojective variety
that parametrizes pairs of symmetric matrices that are inverse to each
other. As a consequence of our work, we provide an alternative proof for
a result of Manivel, Michałek, Monin, Seynnaeve and Vodička that settles
a previous conjecture of Sturmfels and Uhler regarding the polynomiality
of maximum likelihood degree.

1. Introduction

The purpose of this paper is to study the biprojective variety that parametrizes
pairs of symmetric matrices that are inverse to each other. Let Sn be the space
of symmetric n× n matrices over the complex numbers C. Let Pm−1 be the
projectivization Pm−1 = P(Sn) of Sn, where m =

(n+1
2

)
. We are interested in the

biprojective variety Γ⊂ Pm−1×Pm−1 given as follows

Γ :=
{
(M,M−1) |M ∈ P(Sn) and det(M) 6= 0

}
⊂ Pm−1×Pm−1;

i.e., the closure of all possible pairs of an invertible symmetric matrix and its
inverse.
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Our main results are determining the equations and multidegrees of the
biprojective variety Γ. Before presenting them, we establish some notation.
Let X = (Xi, j)1≤i, j≤n and Y = (Yi, j)1≤i, j≤n be generic symmetric matrices; i.e.,
Xi, j and Yi, j are new variables over C. Let R be the standard graded polynomial
ring R = C[Xi, j], and S be the standard bigraded polynomial ring S = C[Xi, j,Yi, j]
where bideg(Xi, j) = (1,0) and bideg(Yi, j) = (0,1).

Let J⊂ S be ideal of the defining equations of Γ.
As dim(Γ) = m− 1, for each i, j ∈ N with i + j = m− 1, one considers

the multidegree degi, j(Γ) of Γ of type (i, j). Geometrically, degi, j(Γ) equals the
number of points in the intersection of Γ with the product L×M⊂Pm−1×Pm−1,
where L⊂ Pm−1 and M ⊂ Pm−1 are general linear subspaces of dimension m−
1− i and m− 1− j, respectively. Following the notation of [18, §8.5], we say
that the multidegree polynomial of Γ is given by

C(Γ; t1, t2) := ∑
i+ j=m−1

degi, j(Γ) tm−1−i
1 tm−1− j

2 ∈ N[t1, t2]

(also, see [2, Theorem A], [1, Remark 2.9]).
A fundamental idea in our approach is to reduce the study of Γ to instead

considering the biprojective variety of pairs of symmetric matrices with product
zero. Let Σ ⊂ Pm−1×Pm−1 be the biprojective variety parametrized by pairs
of symmetric matrices with product zero; i.e., by pairs of symmetric matrices
(M,N) ∈ Pm−1×Pm−1 such that MN = 0. The ideal of defining equations of Σ

is clearly given by
I1(XY ),

where I1(XY ) denotes the ideal generated by the 1× 1-minors (i.e, the entries)
of the matrix XY . Similarly, since dim(Σ) = m− 2, we define the multidegree
polynomial

C(Σ; t1, t2) := ∑
i+ j=m−2

degi, j(Σ) tm−1−i
1 tm−1− j

2 ∈ N[t1, t2]

of Σ.

The theorem below provides the defining equations of Γ. It also shows that
the study of C(Γ; t1, t2) can be substituted to considering C(Σ; t1, t2) instead. Our
proof depends on translating our questions in terms of Rees algebras and on
using the results of Kotsev [12] (also, see [4, 19, 21]).

Theorem A. Under the above notations, the following statements hold:

(i) J is a prime ideal given by

J = I1 (XY −bIdn) =

(
∑

n
k=1 Xi,kYk, j, 1≤ i 6= j ≤ n

∑
n
k=1 Xi,kYk,i−∑

n
k=1 X j,kYk, j, 1≤ i, j ≤ n

)
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where b = (XY )1,1 = ∑
n
l=1 X1,kYk,1 ∈ S and Idn denotes the n× n identity

matrix.

(ii) We have the following equality relating multidegree polynomials

tm
1 + tm

2 +C(Σ; t1, t2) = (t1 + t2) · C(Γ; t1, t2).

Our second main result is obtaining general formulas for the multidegrees of
Γ and Σ. Here our approach depends on previous computations that were made
by Nie, Ranestad and Sturmfels [20], and by von Bothmer and Ranestad [7].
The formula we obtained is expressed in terms of a function on subsequences
of {1, . . . ,n}. Let

ψi = 2i−1, ψi, j =
j−1

∑
k=i

(
i+ j−2

k

)
when i < j,

and for any α = (α1, . . . ,αr)⊂ {1, . . . ,n} let

ψα =

{
Pf(ψαk,αl )1≤k<l≤n if r is even,
Pf(ψαk,αl )0≤k<l≤n if r is odd,

where ψα0,αk = ψαk and Pf denotes the Pfaffian. For any α ⊂ {1, . . . ,n}, the
complement {1, . . . ,n} \α is denoted by αc. By an abuse of notation we set
ψ /0 = 1.

Theorem B. Under the above notations, the following statements hold:

(i) The multidegree polynomial of Σ is determined by the equation

tm
1 + tm

2 +C(Σ; t1, t2) =
m

∑
d=0

β (n,d) tm−d
1 td

2 ,

where
β (n,d) := ∑

α⊂{1,...,n}
||α||=d

ψαψαc ;

in the last sum α runs over all strictly increasing subsequences of {1, . . . ,n},
including the case α = /0, and ||α|| denotes the sum of the entries of α .

(ii) For each 0≤ d ≤ m−1, we have the equality

degm−1−d,d(Γ) =
d

∑
j=0

(−1) j
β (n,d− j).
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Our last interest is on the maximum likelihood degree (ML-degree) of the
general linear concentration model (see [22], [17] for more details). Let L be a
general linear subspace of dimension d in Sn, and denote by L−1 the (d− 1)-
dimensional projective subvariety of Pm−1 = P(Sn) obtained by inverting the
matrices in L. From [22, Theorem 1], the ML-degree of the general linear
concentration model, denoted as φ(n,d), is equal to the degree of the projective
variety L−1. From the way Γ is defined, it then follows that

φ(n,d) = degm−d,d−1(Γ). (1)

So, the computation of the invariants φ(n,d) can be reduced to determining the
multidegrees of Γ (which we did in Theorem B).

Finally, by using Theorem B and a result of Manivel, Michałek, Monin,
Seynnaeve and Vodička regarding the polynomiality in n of the function ψ{1,...,n}\α
(see Theorem 4.1), we obtain an alternative proof to a previous conjecture of
Sturmfels and Uhler (see [22, p. 611]).

Corollary C (Manivel-Michałek-Monin-Seynnaeve-Vodička; [14, Theorem 1.3]).
For each d ≥ 1, the function φ(n,d) coincides with a polynomial of degree d−1
in n.

The basic outline of this paper is as follows. In Section 2, we compute the
defining equations of Γ. In Section 3, we determine the multidegrees of Γ and
Σ. In Section 4, we show the polynomiality of φ(n,d).

2. The defining equations of Γ

During this section, we compute the defining equations of the variety Γ. The
following setup is used throughout the rest of this paper.

Setup 2.1. Let X = (Xi, j)1≤i, j≤n and Y = (Yi, j)1≤i, j≤n be generic symmetric ma-
trices over C. Let R be the standard graded polynomial ring R=C[Xi, j], and S be
the standard bigraded polynomial ring S =C[Xi, j,Yi, j] where bideg(Xi, j) = (1,0)
and bideg(Yi, j) = (0,1). Let I = In−1(X) be the ideal of (n−1)×(n−1)-minors
of X . Let t be a new indeterminate. The Rees algebraR(I) :=

⊕
∞
n=0 Intn ⊂ R[t]

of I can be presented as a quotient of S by using the map

Ψ : S −→ R(I)⊂ R[t]

Yi, j 7→ Zi, jt,

where Zi, j ∈ R is the signed minor obtained by deleting i-th row and the j-th
column. We set bideg(t) = (−n+1,1), which implies that Ψ is bihomogeneous
of degree zero, and soR(I) has a natural structure of bigraded S-algebra.
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Our point of departure comes from the following simple remarks.

Remark 2.2. For any matrix M ∈ Sn, we denote its adjoint matrix as M+. For
any M ∈ Sn with det(M) 6= 0, since M−1 = 1

det(M)M
+, it follows that M−1 and

M+ represent the same point in Pm−1 = P(Sn). Thus, we have that Γ can be
equivalently described as

Γ =
{
(M,M+) |M ∈ P(Sn) and det(M) 6= 0

}
⊂ Pm−1×Pm−1.

Denote by F : Pm−1 99K Pm−1 the rational map determined by signed minors
Zi, j, that is,

F : Pm−1 99K Pm−1, (X1,1 : X1,2 : · · · : Xn,n) 7→ (Z1,1 : Z1,2 : · · · : Zn,n).

Therefore, we obtain that Γ coincides with

Γ = graph(F) ⊂ Pm−1×Pm−1,

the closure of the graph of the rational map F .

Remark 2.3. Notice that I = In−1(X) by construction is the base ideal of the
rational map F – the ideal generated by a linear system defining the rational
map. So, it is a basic result that the Rees algebra R(I) coincides with the biho-
mogeneous coordinate ring of the closure of the graph ofF . By Remark 2.2, the
bihomogeneous coordinate ring of Γ is given by the Rees algebraR(I). Hence,
in geometrical terms, we have the identification

Γ = BiProj(R(I))⊂ Pm−1×Pm−1.

In more algebraic terms: the ideal J⊂ S considered in the Introduction coincides
with the defining equations of the Rees algebra, that is, J = Ker(Ψ). For the
relations between rational maps and Rees algebras, see, e.g., [3, Section 3].

In general the Rees algebra is a very difficult object to study, but, under
the present conditions we shall see that it coincides with the symmetric algebra
Sym(I) of I (i.e., the ideal I is of linear type). So, the main idea is to bypass the
Rees algebra and consider the symmetric algebra instead.

From a graded presentation of I

F1
ϕ−→ F0

(Z1,1,Z1,2,...,Zn,n)−−−−−−−−−→ I→ 0,

the symmetric algebra Sym(I) automatically gets the presentation

Sym(I) ∼= S/I1
(
[Yi, j] ·ϕ

)
(2)
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and obtains a natural structure of bigraded S-algebra (for more details on the
symmetric algebra, see, e.g., [5, §A2.3]). In general, we have a canonical exact
sequence of bigraded S-modules relating both algebras

0→K→ Sym(I)→R(I)→ 0,

where K equals the R-torsion of Sym(I) (see [16]). However, in the present
case, we shall see that Sym(I) =R(I).

We are now ready to compute the defining equations of Γ.

Proof of Theorem A (i). Due to Remark 2.3, it suffices to compute the defining
equations of the Rees algebraR(I). From [12, Theorem A] we have that I is of
linear type, i.e., the canonical map

Sym(I)�R(I)

is an isomorphism. So, J coincides with the ideal of defining equations of
Sym(I). By using [11] or [6] we obtain an explicit R-free resolution for the
ideal I which is of the form 0→ J3 → J2

ϕ−→ J1 → R→ R/I → 0. From the
presentation ϕ of I, we obtain the ideal

J= I1
(
[Yi, j] ·ϕ

)
of defining equations of the symmetric algebra (see (2) above). Therefore,
R(I) = Sym(I) is a bigraded S-algebra presented by the quotient

R(I) = Sym(I)∼= S/J,

and from the description of ϕ (the syzygies of I) given in [11] or [6] we obtain

J=

(
∑

n
k=1 Xi,kYk, j, 1≤ i 6= j ≤ n

∑
n
k=1 Xi,kYk,i−∑

n
k=1 X j,kYk, j, 1≤ i, j ≤ n

)
.

Finally, it is clear that J= I1 (XY −bIdn).

3. Computation of the multidegrees of Γ

In this section, we concentrate on computing the multidegrees of Γ. The idea is
to reduce this computation to instead compute the multidegrees of Σ and then to
use previous results obtained in [20] and [7].

For each r1,r2 ∈ N, we define the following ideal

J(r1,r2) := I1(XY )+ Ir1+1(X)+ Ir2+1(Y ) ⊂ S.
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The following proposition yields a primary decomposition of the ideal I1(XY )
in terms of the ideals J(r1,r2). Its proof is easily obtained by using results from
[12]. Similarly, the properties of I1(XY ) described below are known in a more
geometric language (see [10, Proposition 16] and the references given therein).

Proposition 3.1. The following statements hold:

(i) If r1 + r2 ≤ n, then J(r1,r2) is a prime ideal.

(ii) The ideal I1(XY ) is equidimensional of dimension m =
(n+1

2

)
and radical

with primary decomposition

I1(XY ) =
n⋂

r=0

J(r,n− r).

Proof. (i) From [12, Proposition 4.5], we have that B(r1,r2) = S/J(r1,r2) is a
domain, so the result is clear.

(ii) By [12, Lemma 4.6], we know that the canonical map

S
I1(XY )

→
n

∏
r=0

S
J(r,n− r)

is injective. So, it is clear that I1(XY ) =
⋂n

r=0 J(r,n− r). The dimension of
the Rees algebra is equal to dim(R(I)) = dim(R) + 1 = m+ 1 (see, e.g., [8,
Theorem 5.1.4]). By (5), S/I1(XY ) ∼= R(I)/bR(I), and so Krull’s Principal
Ideal Theorem (see, e.g., [15, Theorem 13.5]) yields that

dim(S/J(r,n− r)) = dim(R(I))−1 = m

for each 0≤ r ≤ n. Therefore, the result follows.

We now recall how to define the multidegree polynomial C(R(I); t1, t2) of
R(I) by using the Hilbert series of R(I) (see [18, §8.5]). We can write the
Hilbert series

HilbR(I)(t1, t2) := ∑
v1,v2∈N

dimC
(
[R(I)]v1,v2

)
tv1
1 tv2

2 ∈ N[[t1, t2]]

in the following way

HilbR(I)(t1, t2) =
K (R(I); t1, t2)

(1− t1)m(1− t2)m ,

where K (R(I); t1, t2) is called the K-polynomial of R(I) (for instance, by just
computing a bigraded free S-resolution ofR(I)). Then, we define

C(R(I); t1, t2) := sum of the terms of K(R(I);1−t1,1−t2) of degree =m−1.
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Additionally, we remark that m−1 is the minimal degree of the terms of

K (R(I);1− t1,1− t2) .

In a similar way, we define the multidegree polynomials

C
(
S/I1(XY ); t1, t2

)
and C

(
S/J(r,n− r); t1, t2

)
for each 0≤ r ≤ n.

The multidegrees of the particular cases S/J(0,n) and S/J(n,0) are easily
handled by the following remark.

Remark 3.2. Since J(0,n) = I1(X) = (Xi, j) and J(n,0) = I1(Y ) = (Yi, j), it fol-
lows from the definition of multidegrees that

C
(
S/J(0,n); t1, t2

)
= tm

1 and C
(
S/J(n,0); t1, t2

)
= tm

2 .

For notational purposes, we denote by N := (Xi, j)∩ (Yi, j) ⊂ S the irrele-
vant ideal in the current biprojective setting. We have the following equivalent
descriptions of Γ and Σ in terms of the BiProj construction

Γ = BiProj(R(I)) =
{

P ∈ Spec(R(I)) | P is bihomogeneous and P 6⊇NR(I)
}

(3)
and

Σ = BiProj(T ) =
{

P ∈ Spec(T ) | P is bihomogeneous and P 6⊇NT
}
, (4)

where T = S/I1(XY ). For more details on the BiProj construction, the reader is
referred to [9, §1].

Next, we have a remark showing that the multidegree polynomial of Γ as in-
troduced before coincides with the multidegree polynomial of the Rees algebra
R(I).

Remark 3.3. Due to (3), the fact that
(
0 :R(I) N

∞
)
= 0 and [1, Remark 2.9], it

follows that
C (Γ; t1, t2) = C (R(I); t1, t2) .

On the other hand, the following remark shows that the multidegree polyno-
mials of Σ and S/I1(XY ) do not agree. Indeed, the minimal primes J(0,n) and
J(n,0) of I1(XY ) are irrelevant from a geometric point of view, and so they are
taken into account in the multidegree polynomial of I1(XY ) but not in the one
of Σ.
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Remark 3.4. For ease of notation, set T = S/I1(XY ). Directly from (4), we get
that

Σ = BiProj(T ) = BiProj
(

T
(0 :T N∞)

)
= BiProj

(
S⋂n−1

r=1 J(r,n− r)

)
.

Let T ′ = S/
⋂n−1

r=1 J(r,n− r). Thus, since (0 :T ′ N∞) = 0, [1, Remark 2.9] yields
the equality C (Σ; t1, t2) = C (T ′; t1, t2) . Therefore, from Proposition 3.1, Re-
mark 3.2 and the additivity of multidegrees (see [18, Theorem 8.53]) we obtain
the equality

C (S/I1(XY ); t1, t2) = tm
1 + tm

2 +C (Σ; t1, t2) .

The next result provides an important relation between the multidegrees of
Γ and Σ.

Proof of Theorem A (ii). First, we note the following trivial equality

J+bS = I1 (XY −bIdn)+bS = I1(XY ).

As R(I) ∼= S/J is clearly a domain and bideg(b) = (1,1), we obtain the short
exact sequence

0→R(I)(−1,−1) ·b−→R(I)→ S/I1(XY )→ 0 (5)

and that dim(S/I1(XY )) = dim(R(I))−1. Consequently, we get the following
equality relating Hilbert series

HilbS/I1(XY )(t1, t2) = (1− t1t2) ·HilbR(I)(t1, t2).

It then follows that K(S/I1(XY ); t1, t2) = (1− t1t2) ·K(R(I); t1, t2), and the sub-
stitutions t1 7→ 1− t1, t2 7→ 1− t2 yield the equation

K(S/I1(XY );1− t1,1− t2) = (t1 + t2− t1t2) ·K(R(I);1− t1,1− t2).

By choosing the terms of minimal degree in both sides of the last equation, we
obtain

C(S/I1(XY ); t1, t2) = (t1 + t2) · C(R(I); t1, t2),

and so the result follows Remark 3.3 and Remark 3.4.

In [20] it was introduced the notion of algebraic degree of semidefinite pro-
gramming. By using [20, Theorem 10], these invariants can be seen as the
multidegrees of S/J(r,n− r) for 0 < r < n.
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Theorem 3.5 (Nie - Ranestad - Sturmfels; [20, Theorem 10]). For 0 < r < n,
we have that

C
(
S/J(n− r,r); t1, t2

)
=

m

∑
d=0

δ (d,n,r) tm−d
1 td

2 ,

where δ (d,n,r) denotes the algebraic degree of semidefinite programming.

We now present the following explicit formula for the algebraic degree of
semidefinite programming that was obtained in [7].

Theorem 3.6 (von Bothmer - Ranestad; [7, Theorem 1.1]). The algebraic de-
gree of semidefinite programming is equal to

δ (d,n,r) = ∑
α

ψαψαc ,

where the sum runs over all strictly increasing subsequences α = {α1, . . . ,αn−r}
of {1, . . . ,n} of length n−r and sum α1+ · · ·+αr = d, and αc is the complement
{1, . . . ,n}\α .

After the previous discussions, we can now compute the multidegrees of Γ.

Proof of Theorem B. (i) First, we concentrate on computing the multidegrees
of S/I1(XY ). By using the additivity of multidegrees (see [18, Theorem 8.53])
together with Proposition 3.1, we obtain the following equality

C
(
S/I1(XY )

)
=

n

∑
r=0
C
(
S/J(r,n− r); t1, t2

)
.

Hence, by combining Theorem 3.5, Remark 3.2 and Theorem 3.6 it follows that

C
(
S/I1(XY ); t1, t2

)
= tm

1 + tm
2 +

n−1

∑
r=1

m

∑
d=0

δ (d,n,r) tm−d
1 td

2

=
m

∑
d=0

 ∑
α⊂{1,...,n}
||α||=d

ψαψαc

 tm−d
1 td

2 ,

where in the last equation α runs over all strictly increasing subsequences of
{1, . . . ,n}, including the case α = /0, and ||α|| denotes the sum of the entries of
α . Notice that ψ{1,...,n} = 1 (see [13, Proposition A.15]) and that by an abuse of
notation we are setting ψ /0 = 1. Finally, by setting

β (n,d) = ∑
α⊂{1,...,n}
||α||=d

ψαψαc ,
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the result of this part follows from Remark 3.4.
(ii) Notice that Theorem A (ii) yields the equation

β (n,d) = degd,m−1−d(Γ)+degd−1,m−d(Γ).

Since the ideal J of defining equations of R(I) is symmetric under swapping
the variables Xi, j and Yi, j, it follows that degd,m−1−d(Γ) = degm−1−d,d(Γ) for all
0≤ d ≤ m−1. Accordingly, we have the equality

β (n,d) = degm−1−d,d(Γ)+degm−d,d−1(Γ).

Therefore, the equation degm−1−d,d(Γ) = ∑
d
j=0 (−1) j

β (n,d− j) is obtained it-
eratively.

4. Polynomiality of ML-degree

During this short section, we show Corollary C. Our proof is an easy conse-
quence of Theorem B and the following result.

Theorem 4.1 (Manivel-Michałek-Monin-Seynnaeve-Vodička; [14, Theorem 4.3]).
Let α = {α1, . . . ,αr} be a strictly increasing subsequence of {1, . . . ,n}. For
n≥ 0 the function

Pα(n) :=

{
ψ{1,...,n}\α if α ⊂ {1, . . . ,n}
0 otherwise

is a polynomial in n of degree ||α||= α1 + · · ·+αr.

Finally, we provide our proof for the polynomiality of φ(n,d).

Proof of Corollary C. By using Theorem B (ii) and (1) we obtain the equation

φ(n,d) = degm−d,d−1(Γ) =
d−1

∑
j=0

(−1) j
β (n,d−1− j).

Therefore, it suffices to show that

β (n,d) = ∑
α⊂{1,...,n}
||α||=d

ψαψαc

in n of degree d. Since ψα does not depend on n, the result follows directly from
Theorem 4.1.
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