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TWO CRITERIA FOR TRANSCENDENTAL SEQUENCES

JAROSLAV HANCL

The concept of a trasnscendental sequence is defined in this contribution
by means of the related transcendental series. The main results are two
criteria for when certain sequences are transcendental. Several applications
are presented.

1. Introduction.

It has been approximately half a century since Roth in [8] proved a
very strong criterion for transcendental numbers. Several mathematicians have
improved this result (for instance, see [2] or [7]). There are many theorems
for transcendental series but most of them depend on arithmetical properties.
An exception is the result of Duverney in [3] which proves several interesting
criteria concerning transcendental numbers or Corvaja and Zannier [1]. “Also
the result of Erdos in [4]” proves a criterion concerning the Liouville series. If
we want to find a criterion for transcendental series which depends only on the
speed of convergence and does not depend on divisibility and so on, it seems
reasonable to introduce the so-called transcendental sequences.

Definition 1.1. Let {an}.g":1 be a sequence of positive real numbers. If for every

sequence {c,)°°, of positive integers the number ) .- | a_,lc‘,' is transcendental
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then the sequence {a,}°°, is called transcendental. Otherwise the sequence
{an}22 | is called algebraic.

We can formulate the definition of transcendental and algebraic sequences
in the following way. If there is a sequence {ca)o2 | of positive integers such that
Yool z lc is an algebraic number then the sequence {an};2, is called algebraic.
Otherwise the sequence {a,};° , is called transcendental.

The inspiration for this definition can be found in Erdds [4] or Erdos and

Graham [5]. They defined the irrational sequences in the following way.

Definition 1.2. Ler {a,}%°, be a sequence of positive integers. If for every se-
quence {c,}22 | of positive mtegers the sum of the series Y oo _10_ is irrational
then the sequence {an}52, is irrational.

Erdds in [4] proved that the sequence {22 | —1 is 1rrat10nal On the other
side the sequence {n!}%° | is not irrational. )
Recently I proved in [6] the following theorem.

Theorem 1.1. Let « and B be two positive numbers such that o > B and let
{a" Yoo be a sequence where a, and b, are positive integers. If

ay > 20+

and
b, < 2B+A"

hold for every large positive integer n, then the sequence {”” 1h2.| is transcen-
dental.

The present paper generalizes this result in Theorem 2.1. below. If we
weaken one assumption and strenghten the other in Theorem 2.1, then we obtain
Theorem 2.2. The proofs of these theorems are similar. They are both based on
Roth’s criterion for transcendental numbers (see [8], for instance).

2. Transcendental sequences.

Theorem 2.1. Let €, y and c be three positive real numbers satisfying y >

26>Oand1>c>%§%%f) Let {a,}72 | and {b,})°., be two sequences of

positive integers, with {a,}° | nondecreasing, such that

(D hmsupa“*” > 1,

n—00
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2 a, > n'*e,

and

3 b, < a2~ U0z @)

hold for every sufficiently large positive integer n. Then the sequence {Z—: oIS

transcendental.

Lemma 2.1. Let €4, 8 and 8, be three positive real numbers such that (3 +
8y)1Té < 3 + 8. Suppose that {a,}2., is a nondecreasing sequence of positive
integers such that there exist infinitely many positive integers i and j with
a; > 207 and a; < 2/, Let k be a sufficiently large positive integer such
that a, > 28+9" 5 kC+"™ yy i lor m be the greatest positive integer less
then k such that a,, < 2™. Then there is a positive integer t = t(k, €4, 8, 63) not
greater than k such that ' ‘

@, <omB+8y) Thed
n

Proof of Lemma 2.1. Denote by M the number of a, such that a, <
2mG+8) et Py (j = 0,1,2,...,k) be the number of a, such that a, €
(238 omGH+a ™y apdlet Q; = j— P~ M (j =0, 1,..., k). It follows
that Qg = —M, Q; is aninteger,and Q;41 — Q; <1(j =0, 1, ..., k). From
the definition of Q,, and the fact that 2mG+5" ™ o JkGH+8) ¥ 2G+)" 4
we obtain that Q; = k — P, — M > 1. It follows that there is a least positive in-
teger t > M suchthat Q, =t — P, — M = 1. Thus Q,_; = 0 and there is no a,
such that a, € (2mG+8)'™"*4 omG+8)""4 1y addition, forevery v = 1,2, ...,¢
the number of @, such that a, € (2mG+8)™"4 om3+8)* 1 is legs then v (oth-
erwise the number ¢ will not be the least in the sence defined above) and the
number of @, such that @, € (2mG+)' omG+8)™ 4 js equal to t — M — 1. It
follows that

M

M e=Me [ s

1-+ke - ke, . t+ke,
ay 52:11(3+32) 4 n=1 a”e(2m(3+82) 4 ’2/:1(3 +89) 4 ]

t—1 t—1
1—[ omB+8) e Hzm(3+az>"+“4 -
n=M+1 n=0
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Grsp) Hhea a5, ykeq n I+keg
e 0 THsy (B+82)

k]

S0 (4) holds.

Proof of Theorem 2.1. Let {en}y2 be a sequence of positive integers. If we
order the sequence {a,¢,}2°, so that it is nondecreasing, then the new sequence
and the new sequence {ba}2., will satisfy conditions (1)-(3) also. So it suffices
to prove that the series g = 3 2 | Z— is a transcendental number where {an}2,
is a nondecreasing sequence of positive integers. To prove this we find a positive

integer n for every §; > 0 such that

n

(5) ([Ta)* i buvi s

a .
j=1 j=1 "t

where €, > 0 and does not depend on 7. From this and Roth’s theorem (see
[81, for example) we obtain that the number B is transcendental. Let ¢, = Tj-_e_
Let § and 8, be two positive real numbers such that y > 8 > 8 > 2¢ and
1> c> 0808 logBil) | logB420) po e (1) we obtain

log (3+9) log, (3+9) log,3+7)
3 (3+]6)" . (_';_Tl—)—lT (3_41)11
(6) lim sup ay, = lim sup(an‘ ISR = 0o,
n—00 n—>00

Now the proof falls into two parts. First assume that
(7 a, > 2"

for every sufficiently large n. From (6) we obtain

1

1
n+1 k
o0 > max qf?
k=1,2 n

for infinitely many n. This implies

L (248 ) 3+

]
+1 - .
(8) Apiy1 > (k rlngx ak(3+s)k)(3+5)n > ( max aka%)A) = _
Fhdes n k=1,2,....n

n ! ' n
(H( max ak(3+5)")(3+3)/)2+5 ~ ( aj)2+5‘
el k=1,2,...,n
j:

j=1
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0 €] 0

Now let €3 = %(5_—% 4+ €1). Then €3 > €. From this, (3), and (7) we obtain
j an-}-j 1
< Z = Z l—€| =

o0
©) 2.
n+j — Qnij Ay

j=1 j=1 n=1
1 1
Z = T > T <

n+j<log, ayyy “ntj n+j>log, apyy “ntj

log, an41 1
=t D -y

S
=
F
~

i1 n+j=>log, anyi
log, ay41 n 1
<
1—¢; 1—¢ 1—€3
Apt1 Ayt niy

for sufficiently large n. Put €; = 41(2 + 5)(2"%3 — €1). Then ¢, > 0. From this,
(8) and (9) we obtain

(]’]apz*@ZLi < (Ha )he 5 =

=1 Gnti Api1

n n : n
(H aj)2+52(1_[ aj)(2+5)(e3—1) — (H aj)2+62+(63—1)(2+8) _

j=1 j=1 j=1

n
(H aj)—§<2+a><5£—a~e1).
j=1

Therefore (5) follows for infinitely many sufficiently large 7.

Now assume
(10) a, < 2"

for infinitely many n. From (6) we obtain that there is a positive integer k such
that

(11) a > 20+

Let m be the greatest positive integer less than k such that (10) holds. Let

2( I%%% — 1). Then €4, > 0 and we have

logy (3+8)

(12) (3+ 82)1*% = (3 4 8,) 1T 1D
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=/GB+8B+68) < B+ <3+6.

From Lemma 2.1 we obtain that there is a positive integer ¢ = ¢(k, €4, 8, 82)
such that k > ¢ and

(13) [T an =<2maCH™

k
an Szm(3+62)'+ €4

Let ¢g = %(1 — €1). Then we have

b b
n n
(14) D —+ }j o
Qn . an
g, > 2B+ e ap>a, >2mG+5) T 6>n>k :6 <n

First we estimate the first two summands on the right-hand side of equation (14).
From (3), (11), and (12) we obtain

1 1
(15) Z _+ Z an Z 1-€1+ Z al—s. =

ke G k n €
> a, Z20+H A aS2n>k ayza,z2m ' @ zn>k

I~¢)

LG, o

A ap™m < k2~ (I—emB+e)tha | o
(k + 1)2_(1'E|)m(3+52)t+ke4.

Now we estimate the third summand on the right-hand side of equation (14).
From (2), (3), (11) and (12) we obtain

1 1
16 —_— < <
(16) Z an Z a}l_él 2(logy an)s — ; n(t—eN(+e)Q(logy (n'+e))e —

‘6 6
ak <n ak <n

0 k
_dx 2300824 < =308 260y _ 5—3ef3+a)*
‘6 x2(10g2 x)¥ - -

9= (1=e)m(3+8) ks
From (14), (15), and (16) we obtain
(17) ) bu o po-(—com@+sy e

an
2m(3+82 )'+k‘4 <a

Put ¢5 = %(82 2¢] —€167) = 2(2+57 €1)(2 + &7). Then €; > 0. From this,
(13), and (17) we obtain
( n an)2+62 Z é’i < 2;:—;;m(3+82)1+k64 2k2v(l_€|)m(3+52)f+k54 —

ag <2 (3+§2)'+k54 a, >2m(3+52)'+k‘4

2k2m(2—;;—(1—e1>)<3+52>'+“4 — Ty ()

3

* so (5) follows for infinitely many large n. The proof of Theorem 2.1 is complete.
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Theorem 2.2. Let A, Ay, ¢ and y be four positive real numbers satisfying
Al > Ay >0and 1> ¢ > =8 Let Lo(x) = x, Lj((x) = logq(L-(x))

log,(317) "

orevery j = 0,1, ..., and assume that s is a nonnegative integer. Let {a,

ryJ &4 n 1
and {b,};2, be two sequences of positive integers, with {a,}°°., nondecreasing,
such that
(18) limsup L; (a,) ™7 > 1,

n—o0
(19) ap > ([ L2t e,
j=0

and
(20) b, < 2425 @)

hold for every suﬁ‘iczently large positive integer n. Then the sequence | “} is
transcendental.

Proof.  As in Theorem 2.1 it suffices to prove that the series g = 3 -, Z_:,L
is a transcendental number for the nondecreasing sequence {a,}°° > | of positive
integers. To establish this we find a positive integer n for every 8; > O such that
(5) holds.

First of all let us assume

> 2"

for every sufficiently large n. Then from Theorem 2.1 we immediately obtain
that the number B is transcendental.
Now assume (10) for 1nﬁn1tely many n. Let § be a positive real number

10‘, 3 Ogo
such that 1 > ¢; > o, (§ ™~ bnon) From this and from (18) we obtain

' +)’ n
1) limsup LF (4,) = limsup L5 (4 ) = o0

n—>00 n—>00

From (21) we obtain that there is a positive integer k such that
(22) Ly(a) > 20+

and k is sufficiently large. Let m be the greatest positive integer less then k such
that (10) holds. Let §, be a positive real number such that 1 > ¢; > log, (3+8)

10g2 348

log, 3
08, (3+42)

oz, O3 — 1). Then ¢4 > 0 and we have

logs (3+38)

(23) (3 + 52)1+64 — (3 + 8 )2((‘1 |0g2(3+52)+1)
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VB+8)B+8) < (3+8)" <3+34.

Thus all the conditions of Lemma 2.1 are satisfied. Now Lemma 2.1 implies
that there is a positive integer t = ¢ (¢4, 8, §2) not greater than k such that

(24) [T @ <2msem™

a, <om(3+8y) Hres

We also have

25) Y 2

1+ke
a, zzm(3+z§2) 4

Y 2y Eiyl

an an
ap>a, > 2B+ e k<n<./a; n>./ax

First we estimate the first two summands on the right hand side of inequality
(25). From (20), (22), (23), and the fact that the function 242E @x—1 ig
decreasing for sufficiently large x we obtain

(26) > b > Z—”s

an n
r4-ke
apza, >+ e k<n<./ay

gAMLl (@) nA2L (@n)
D LD Mt
a
a>a, >2m G+ e § k<nz<./ay "
A L‘I 2m(?+82)’+k€4 A L"I a A L‘"l 348 'l+k€4
kAL C ﬁzzﬂ_,(k)<k22s(m( 2) )+ 1
2m(3+8,)" ke ay = mG+e) e ar —

_ 345 ttkeq
2—€1m(3+3) ,

where €7 = (1 + 550 ) Now we estimate the third summand on the right hand
side of inequahty (25) From (19), (20), (22), (23), and the fact that the function

G (x) s . . .
x 1242100 ) g decreasing for sufficiently large x we obtain

CI n
AL (@) pA L ([T L 2" s ™)
—_— <

en L rsY

- s ArLS (n)
Jaa g M vaen ([Tzo Lj(m)2™tten
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Z 1 < / o dx
= LS-H (n)

<
var<n ([Tizo Lj ()27 va (IToso Lj ()2 2L

1 1

< pmem(3+&) e

<
PHMFRLL WD T iR Gt T
From (25), (26), and (27) we obtain
b I+ke
28 = < 2.27mBHTE
(28) > _—

1k
2"1(3+52) + “4 Sall

Put €, = 15,. Then (24) and (28) imply

b ke €,
( I—I an)2+62. Z “n < 22+52 2 1(34-8,)! Hhea p3 2—e7m(3+57)1+k 4 _

)I+ke4 )I+ke4

ay, <mB3+8y a, > 2m3+8

2. 2(z+t52 —€7)m(3+8;) ke —020 W +,37);71(3+52)'+“

’

so (5) follows.

3. Examples and comments.

Corollary 1. Let €, y be two positive real numbers such that 1 > € and
y > 2¢. Let {a,};2, and {b,}2, be two sequences of positive integers such

that
a, > 26+7"

and
£
b, < a,*

hold for every sufficiently large positive integer n. Then the sequence {3=}°°, is
transcendental.

Proof. 'This is an immediate consequence of Theorem 2.1.

Remark 1. From Corollary 1 we immediately obtain Theorem 1.1 (see [6]
also).
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(o)

Corollary 2. Let y be a positive real number. Let {a,}°° | and {b,}2° | be two
sequences of positive integers, with {a,}°> | is nondecreasing, such that

1
limsup(log, a,) " > 1,
n—>o0

a, > nlogin,

and
b, < log, log, n

hold for every sufficiently large n. Then the sequence {%},‘j‘; | s transcendental.

Proof. This is an immediate consequence of Theorem 2.2.

Remark 2. From Theorem 2.1 and Theorem 2.2 we can derive the relationship
between conditions (1) and (2) or between conditions (18) and (19). If we, for
example, weaken condition (2) by (11), then we must strengthen condition (D
by (18). Similary condition (3) depends on (1) and (2).

Example 1. The sequences

41, 4 +2 175" +n!

1 w=1s (g +4}ﬁi1,and{45n—+n7; n=1

28 . 26
{(-3->4 ,311,{(?)5 0

are transcendental. This is an immediate consequence of Theorem 2.1.

Example 2. Letaq; = 2,

=2 vk—2k=23 ... _, _1,

a=2" 4k—n,k=ny,.. 22" 23" —p, 1,
ap = 224"2 +k—nyk=no,..., 224"2 27347 ny —1,
and so on. Then the sequences
ay ap +1 ap + /logy n
[———1}2. ([ 2y and{[ —————1}2,,
log, log, n s Jl1og,log, n + 2 b=t log, logy n + 17"~

where [[x] is the greatest integer not greater than x, are transcendental. This is
an immediate consequence of Theorem 2.2.
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Example 3. Let {G,}°2, be the linear recurrence sequence of the k-th order
such that Gy, Ga, ..., Gy, by, ..., by are positive integers and for every positive
integer n, Gpyx = Gubo+Gpy1bi+. . .+ Gpip—1b—y. If theroots «y, . . ., o of

the equation x* = by + byx + ... + by ¥V satisfy | ) [>] @p |> ... =] @ |,

and | o [> 1, and @;/e; is not a root of unity for every j = 2,3, ..., s, then
G4n+l o0 G4H+I_H o0 G5u+l 00 . .
the sequences {Ef—}rl=l’ {_GT}n=1’ and { G Jno, are transcendental. This

1 3
is an immediate consequence of Corollary 1 and the inequalities

ln(l—e) n(l+e€)

[ < Gn <|a |

which can be found in [9], for instance.

Open Problems. Itis not known if there are positive integers K and K, greater
than one such that the sequence {K; + K,}*°, is transcendental. Similarly, we
do not know if there are positive integers K| and K, greater than one such that
the sequence {K}" + K} | is algebraic.

Thank you very much to James Carter of the Department of Mathematics,
College of Charleston, for his help with the presentation of this article.
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