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PENCILS OF QUADRICS: OLD AND NEW

C. FEVOLA - Y. MANDELSHTAM - B. STURMFELS

Two-dimensional linear spaces of symmetric matrices are classified by
Segre symbols. After reviewing known facts from linear algebra and pro-
jective geometry, we address new questions motivated by algebraic statis-
tics and optimization. We compute the reciprocal curve and the maximum
likelihood degrees, and we study strata of pencils in the Grassmannian.

1. Introduction

A pencil of quadrics is a two-dimensional linear subspace L in the space Sn of
(real or complex) symmetric n×n matrices. It is a point in the Grassmannian
Gr(2,Sn), and it specifies a line PL in the projective space P(Sn)≃P(

n+1
2 )−1. The

group GL(n) acts on Sn by congruence and this induces an action on Gr(2,Sn).
We say that two pencils are isomorphic if they lie in the same GL(n)-orbit.

Fix a pencil L with basis {A,B}. The determinant det(L) = det(λA+µB)

is well-defined up to the action of GL(2) by changing basis in L. The zeros of
this binary form are a multiset of size n in the line P1, well-defined up to isomor-
phism of P1. We exclude pencils L that are singular, meaning that det(L) = 0.
The singular pencils form a subvariety Gr(2,Sn)sing in the Grassmannian. We
are interested in a natural stratification of the open set of all regular pencils:

Gr(2,Sn
)

reg
= Gr(2,Sn

)/Gr(2,Sn
)

sing.
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Each stratum is indexed by a Segre symbol σ . This is a multiset of partitions
whose parts add up to n in total. One exception: the singleton [(1,1, . . . ,1)] is
not a Segre symbol. The number S(n) of Segre symbols was already of interest
to Arthur Cayley in 1855. In [2, p. 316], he derived the generating function

∞

∑
n=1

S(n)xn
= ∏

k≥1

1
(1−xk)P(k)

−
1

1−x
= 2x2

+5x3
+13x4

+26x5
+57x6

+110x7
+⋯,

where P(k) is the number of partitions of the integer k. The two Segre symbols
for n = 2 are [1,1] and [2]. For n = 3 and n = 4 they are shown in Figure 1.

The Segre symbol σ =σ(L) of a given pencilL can be computed as follows.
Pick a basis {A,B} of L, where B is invertible, and find the Jordan canonical
form of AB−1. Each eigenvalue of AB−1 determines a partition, according to the
sizes of its Jordan blocks. Then σ is the associated multiset of partitions. It
turns out that σ does not depend on the choice of basis {A,B}. For the relevant
background in linear algebra see [4, 13, 14] and Section 2 below.

The role of Segre symbols in projective geometry can be stated as follows.

Theorem 1.1 (Weierstrass-Segre). Two pencils of quadrics in Sn are isomorphic
if and only if their Segre symbols agree and their determinants define the same
multiset of n points on the projective line P1, up to isomorphism of P1.

Example 1.2 (n = 2). All pencils L are regular. There are two GL(2)-orbits,
given by the rank of a matrix X that spans L⊥ ={X ∈S2 ∶ trace(AX)= trace(BX)=

0}. If X has rank 2 then det(L) has two distinct roots in P1 and the Segre symbol
is σ(L) = [1,1]. If X has rank 1 then it is a double root in P1 and σ(L) = [2].

We learned about Theorem 1.1 from an unpublished note by Pieter Belmans,
titled Segre symbols, which credits the 1883 PhD thesis of Corrado Segre. It
appears in the textbooks on algebraic geometry by Dolgachev [6, §8.6.1] and
Hodge-Pedoe [9, §XIII.10]. The idea goes back to at least the 1850s, in works
of Cayley [2] and Sylvester [12]. One aim of this article is to revisit this history.

We begin in Section 2 with a linear algebra perspective on Theorem 1.1, with
focus on normal forms for pencils. We denote by L−1 the set of the inverses
of all invertible matrices in L. Since we exclude singular pencils, this set is
nonempty. Its closure in P(Sn) is a projective curve, called the reciprocal curve
and denoted PL−1. In Section 3 we study the reciprocal curve PL−1 of a pencil
L ∈ Gr(2,Sn)reg. This curve is parametrized by the inverses of all invertible
matrices in L. We prove that PL−1 is a rational normal curve. We express its
degree in terms of the Segre symbol σ(L), and we determine its prime ideal.

In Section 4 we turn to maximum likelihood estimation for Gaussians. A
linear Gaussian model is a set of multivariate Gaussian probability distributions
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whose covariance or concentration matrices are linear combinations of some
fixed symmetric matrices. Hence, when restricting to two-dimensional models,
a pencil L plays two different roles in statistics, depending on whether it lives in
the space of concentration matrices (as in [11]) or in the space of covariance ma-
trices (as in [3]). This yields two numerical invariants, the ML degree mld(L)
and the reciprocal ML degree rmld(L). We compute these in Theorem 4.2.

In Section 5 we study the constructible set defined by a fixed Segre symbol:

Grσ = {L ∈Gr(2,Sn
)

reg
∶ σ(L) = σ }. (1)

Its closure Grσ is a variety. We study these varieties and their poset of inclu-
sions, seen in Figure 1. This extends the stratification of Gr(2,Rn) by matroids,
see [7]. Indeed, if L consists of diagonal matrices then the Segre symbol σ(L)

specifies the rank 2 matroid of L, up to permuting the ground set {1,2, . . . ,n}.

Example 1.3 (n = 3). There are five strata Grσ in the Grassmannian Gr(2,S3):

symbol codim degrees P Q variety in P2

[1,1,1] 0 (2,2,3) ax2+by2+cz2 x2+y2+z2 four reduced points
[2,1] 1 (2,1,2) 2axy+y2+bz2 2xy+ z2 one double point, two others
[3] 2 (2,0,1) 2axz+ay2+2yz 2xz+y2 one triple point, one other

[(1,1),1] 2 (1,1,1) ax2+ay2+bz2 x2+y2+z2 two double points
[(2,1)] 3 (1,0,0) 2axy+y2+az2 2xy+ z2 quadruple point

For each Segre symbol σ , we display codim(Grσ), the triple of degrees
(deg(L−1),mld(L),rmld(L)), the basis {P,Q} from Section 2, and its variety
in P2. Here, x,y,z are coordinates on P2, and a,b,c are distinct nonzero reals.
This accounts for all regular pencils. A pencil is singular if P and Q share a
linear factor. One such L is spanned by xy and xz. This defines a line and a point
in P2. We conclude that Gr(2,S3)sing is an irreducible variety of dimension 4.

2. Canonical Representatives

We identify symmetric n×n matrices A with quadratic forms xAxT in unknowns
x = (x1, . . . ,xn). We fix the field to be C. The (

n+1
2 )-dimensional vector space

Sn is equipped with the trace inner product (A,B) ↦ trace(AB). The group
GL(n) acts on quadratic forms by linear changes of coordinates, via x↦ xg.
This corresponds to the action of GL(n) on symmetric matrices by congruence:

GL(n)×Sn
→ Sn , (g,A) ↦ gAgT .

Let L =C{A,B} be a regular pencil in Gr(2,Sn), with det(B) /= 0. The poly-
nomial ring C[λ ] in one variable λ is a principal ideal domain. The cokernel of
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the matrix A−λB is a module over this PID. Consider its elementary divisors

(λ −α1)
e1 , (λ −α2)

e2 , . . . , (λ −αs)
es . (2)

Here e1, . . . ,es are positive integers whose sum equals n. The list (2) is un-
ordered and its product is det(L) = ±det(A−λB). The complex numbers αi are
the eigenvalues of the pair (A,B). They form a multiset of cardinality n in P1.

Suppose there are r distinct eigenvalues αi. We have r ≤ s≤ n. The exponents
ei corresponding to one fixed eigenvalue form a partition. This gives a multiset
of r partitions, with s parts in total, where the sum of all parts is n. This multiset
of partitions is the Segre symbol σ = σ(L). It is thus visible in (2). We now
paraphrase Theorem 1.1 using the elementary divisors of the matrix A−λB.

Corollary 2.1. Consider two quadrics xAxT and xBxT with det(B) /= 0. There
exists a change of coordinates x↦ xg which transforms them to xCxT and xDxT

if and only if the matrices A−λB and C−λD have the same elementary divisors.

Proof. For a textbook proof of this classical fact see [9, Theorem 1, p. 278].

Corollary 2.1 is used to construct a canonical form for pencils. For e ∈N and
α ∈C, we define a pair of symmetric e×e matrices by filling their antidiagonals:

Pe(α) =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 α

0 0 ⋯ α 1
⋮ ⋮ ⋰ ⋰ ⋮

0 α 1 ⋮ 0
α 1 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎠

and Qe =

⎛
⎜
⎜
⎜
⎜
⎝

0 ⋯ 0 0 1
0 ⋯ 0 1 0
0 ⋯ 1 0 0
⋮ ⋰ ⋮ ⋮ ⋮

1 ⋯ 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

. (3)

The e×e matrix Pe(α)−λQe has only one elementary divisor, namely (λ −α)e.
Let us now start with the list in (2). For each elementary divisor (λ −αi)

ei

we form the ei×ei matrices in (3), and we aggregate these blocks as follows:

P =

⎛
⎜
⎜
⎝

Pe1(α1) 0 ⋯ 0
0 Pe2(α2) ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Pes(αs)

⎞
⎟
⎟
⎠

and Q =

⎛
⎜
⎜
⎝

Qe1 0 ⋯ 0
0 Qe2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Qes

⎞
⎟
⎟
⎠

. (4)

The matrices A−λB and P−λQ have the same elementary divisors. Hence,
by Corollary 2.1, the pair (xAxT ,xBxT ) is isomorphic to (xPxT ,xQxT ) under
the action by GL(n). As in Example 1.3, every regular pencil L ∈ Gr(2,Sn)

has a normal form C{P,Q}, where the matrices P and Q are defined by the
unordered list (2). Given any Segre symbol σ , its canonical representative is
L = C{P,Q} where α1, . . . ,αr are parameters. In what follows, we often use
index-free notation for unknowns, like x = (x,y,z) and (α1,α2,α3) = (a,b,c).
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Example 2.2 (n = 5). Let σ = [(2,1),2]. The list of elementary divisors equals

(λ −a)2, (λ −a), (λ −b)2.

Our canonical representative (4) for this class of pencils L is the matrix pair

P =

⎛
⎜
⎜
⎜
⎜
⎝

0 a 0 0 0
a 1 0 0 0
0 0 a 0 0
0 0 0 0 b
0 0 0 b 1

⎞
⎟
⎟
⎟
⎟
⎠

and Q =

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

.

The quadrics P = 2axy+ y2 + az2 + 2buv+ v2 and Q = 2xy+ z2 + 2uv define a
degenerate del Pezzo surface of degree four in P4. This surface has two singular
points, (0 ∶ 0 ∶ 0 ∶ 1 ∶ 0) and (1 ∶ 0 ∶ 0 ∶ 0 ∶ 0); their multiplicities are one and three.

Remark 2.3. To appreciate Theorem 1.1 and Corollary 2.1, it helps to distin-
guish the two geometric figures associated with a pencil of quadrics, and how
the groups GL(2) and GL(n) act on these. First, there is the configuration of n
points in P1 defined by det(L). This configuration undergoes projective trans-
formations via GL(2) but it is left invariant by GL(n). Second, there is the
codimension 2 variety in Pn−1 defined by the intersection of the two quadrics
in L. This variety undergoes projective transformations via GL(n) but it is left
invariant by GL(2). Hence, combining Theorem 1.1 and Corollary 2.1, we want
these two geometric figures to be invariant when looking at isomorphic pencils,
and this is possible by acting on pencils with the two groups GL(2) and GL(n).

In this section, pencils L =C{A,B} are studied by linear algebra over a PID.
We use the relationship between elementary divisors and invariant factors. One
can compute these with the Smith normal form algorithm over C[λ ]. We apply
this to a specific torsion module, namely the cokernel of our matrix A−λB.

Fix n and a Segre symbol σ = [σ1, . . . ,σr], where each entry is now a weakly
decreasing vector σi = (σi1,σi2, . . . ,σin) of nonnegative integers. With this con-
vention, the Segre symbol σ = [σ1,σ2] in Example 2.2, with n = 5,s = 3,r = 2,
has σ1 = (2,1,0) and σ2 = (2,0,0). Write α1, . . . ,αr ∈ C for the distinct roots
of det(A−λB). Then the elementary divisors are (λ −αi)

σi j for i = 1, . . . ,r and
j = 1, . . . ,n. Only s of these are different from 1. The invariant factors are

d j ∶=
r

∏
i=1

(λ −αi)
σi j for j = 1, . . . ,n.

Note that dn ∣dn−1 ∣⋯ ∣d2 ∣d1. The number of nontrivial invariant factors is the
maximum number of parts among the r partitions σi. For instance, in Example
2.2, the invariant factors are d1 = (λ −a)2(λ −b)2, d2 = λ −a, d3 = d4 = d5 = 1.
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The ideal of k× k minors of A−λB is generated by the greatest common
divisor Dk of these minors. The theory of modules over a PID tells us that

Dk ∶=
k

∏
j=1

dn+1− j =
r

∏
i=1

(λ −αi)
σi,n−k+1+⋯+σi,n−1+σi,n . (5)

The Segre symbol of a pencil L = C{A,B} is determined by the ideal of
k× k minors of A−λB for k = 1, . . . ,n. In practice, we use the Smith normal
form of A−λB. In the Introduction we proposed a different method, namely
the Jordan canonical form of AB−1. This computation uses only linear algebra
over C, unlike the Smith normal form. To see that the Jordan canonical form
of AB−1 reveals the Segre symbol, consider the transformation from (A,B) to
(P,Q) in Corollary 2.1. This preserves the conjugacy class of AB−1. Therefore,
AB−1 and PQ−1 have the same Jordan canonical form. We see in (4) that Q is
a permutation matrix, and hence so is Q−1. Furthermore, P is already in Jordan
canonical form, after permuting rows and columns, and σ is clearly visible in P.

3. The Reciprocal Curve

For any regular pencil L, we are interested in the reciprocal curve PL−1. We
write deg(L−1) for the degree of this curve in P(Sn). In Example 1.3, we have
deg(L−1) = 2 in three cases, so PL−1 is a plane conic. In the other two cases,
PL−1 is a line in P5. Here are the homogeneous prime ideals of these curves:

Segre symbol Ideal of the reciprocal curve PL−1 mingens
[1,1,1] ⟨x12,x13,x23,(c−b)x11x22+(a−c)x11x33+(b−a)x22x33⟩ (3,1)
[2,1] ⟨x13 , x22 , x23 , x2

12+(c−a)x11x33−2x12x33 ⟩ (3,1)
[3] ⟨x23 , x33 , x13−2x22 , x2

12−x11x22 ⟩ (3,1)
[(1,1),1] ⟨x12 , x13 , x23 , x11−x22 ⟩ (4,0)
[(2,1)] ⟨x13 , x22 , x23 , x12−2x33 ⟩ (4,0)

The column “mingens” gives the numbers of linear and quadratic generators.

Example 3.1 (n = 4). Two quadrics P and Q in P3 meet in a quartic curve. There
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are 13 cases, one for each Segre symbol. Here, x,y,z,u are coordinates on P3.

symbol codims degrees mingens quadrics P,Q variety in P3

[1,1,1,1] 0,0,0 (3,3,5) (6,3) ax2
+by2

+cz2
+du2

x2+y2+z2+u2 elliptic curve

[2,1,1] 1,1,1 (3,2,4) (6,3) 2axy+y2
+cz2

+du2

2xy+z2+u2 nodal curve

[(1,1),1,1] 3,2,2 (2,2,3) (7,1) a(x2
+y2
)+cz2

+du2

x2+y2+z2+u2 two conics meet twice

[3,1] 2,2,2 (3,1,3) (6,3) 2axz+ay2
+2yz+du2

2xz+y2+u2 cuspidal curve

[2,2] 2,2,2 (3,1,3) (6,3) 2axy+y2
+2bzu+u2

2xy+2zu twisted cubic with secant

[(2,1),1] 4,3,3 (2,1,2) (7,1) 2axy+y2
+az2

+du2

2xy+z2+u2 two tangent conics

[4] 3,3,3 (3,0,2) (6,3) 2axu+2ayz+2yu+z2

2xu+2yz twisted cubic with tangent

[2,(1,1)] 4,3,3 (2,1,2) (7,1) 2axy+y2
+c(z2

+u2
)

2xy+z2+u2 conic meets two lines

[(3,1)] 5,4,4 (2,0,1) (7,1) 2axz+ay2
+2yz+au2

2xz+y2+u2 conic and two lines concur

[(1,1),(1,1)] 6,4,4 (1,1,1) (8,0) a(x2
+y2
)+c(z2

+u2
)

x2+y2+z2+u2 quadrangle of lines

[(1,1,1),1] 8,5,5 (1,1,1) (8,0) a(x2
+y2

+z2
)+du2

x2+y2+z2+u2 double conic

[(2,2)] 7,5,5 (1,0,0) (8,0) 2axy+y2
+2azu+u2

2xy+2zu double line and two lines

[(2,1,1)] 9,6,6 (1,0,0) (8,0) 2axy+y2
+a(z2

+u2
)

2xy+z2+u2 two double lines

We see that PL−1 ⊂ P9 is either a line, a plane conic, or a twisted cubic curve.
This is explained by the next theorem, which is our main result in Section 3.

Theorem 3.2. LetL be a regular pencil in Sn with Segre symbol σ = [σ1, . . . ,σr].
Then PL−1 is a rational normal curve of degree d in P(Sn), where d =∑r

i=1 σi1−1
is one less than the sum of the first parts of the partitions in σ . The ideal of PL−1

is generated by (
n+1

2 )−d−1 linear forms and (
d
2) quadrics in (

n+1
2 ) unknowns.

Proof. The curve PL−1 is parametrized by (
n+1

2 ) rational functions in one un-
known λ , namely the entries in the inverse of matrix P−λQ in Section 2. We
scale each entry by Dn = ±det(P−λQ) to get a polynomial parametrization by
the adjoint of P−λQ. This is an n×n matrix whose entries are the (n−1)×(n−1)
minors of P−λQ. These are polynomials of degree ≤ n−1 in λ , which are di-
visible by the invariant factor Dn−1. Note that Dn−1 has degree ∑r

i=1∑
n
j=2 σi j in

λ . Subtracting this from the expected degree n−1, we obtain d =∑
r
i=1 σi1 −1.

We remove the factor Dn−1 from each entry of the adjoint. The resulting matrix
(Dn/Dn−1) ⋅ (P−λQ)−1 also parametrizes PL−1. The entries of that matrix are
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polynomials in λ of degree ≤ d. As a key step, we will show that these span the
(d+1)-dimensional space C[λ ]≤d of all polynomials in λ of degree ≤ d.

The inverse of P−λQ is a block matrix, where the blocks are the inverses of
the e×e matrices Pe(α)−λQe in (3), one for each elementary divisor. A com-
putation shows that the entry of (Pe(α)−λQe)

−1 in row i and column j is

−(λ −α)
i+ j−e−2 if i+ j ≤ e+1 and 0 if i+ j ≥ e+2. (6)

It follows that the distinct nonzero entries in the n×n matrix (P−λQ)−1 are

±(λ −αi)
−k where 1 ≤ k ≤ σi1 and 1 ≤ i ≤ r. (7)

The common denominator of these d + 1 = ∑
r
i=1 σi1 rational functions in λ is

equal to Dn/Dn−1 =∏i=1(λ −αi)
σi1 . Multiplying by that common denominator,

we obtain d +1 polynomials in λ of degree ≤ d. Lemma 3.3 below tells us that
these polynomials are linearly independent. Hence they span C[λ ]≤d ≃Cd+1.

The proof of Theorem 3.2 now concludes as follows. By recording which
entries of (P−λQ)−1 are zero, and which pairs of entries are equal, we obtain
(

n+1
2 )−d−1 independent linear forms that vanish on PL−1. We know that there

exist linear forms ui in the matrix entries which evaluate to λ
i for i= 0,1,2, . . . ,d.

The (
d
2) quadrics that vanish on PL−1 are the 2×2 minors of the 2×d matrix

(
u0 u1 u2 ⋯ ud−1
u1 u2 u3 ⋯ ud

) . (8)

We have thus constructed an isomorphism between our curve PL−1 and the
rational normal curve {(1 ∶ λ ∶ ⋯ ∶ λ d)}, whose prime ideal is given by (8).

Notice that the final part of the proof gives an algorithm for computing gen-
erators of the homogeneous prime ideal that defines the reciprocal curve.

Lemma 3.3. A finite set of distinct rational functions (λ −α j)
−si j , each a nega-

tive power of one of the expressions λ −α1, . . . ,λ −αr, is linearly independent.

Proof. We use induction on r. The base case is r = 1. We claim that (λ −

α)−s1 , . . . , (λ −α)−sn are linearly independent when 0 < s1 <⋯ < sn. Suppose

k1(λ −α)
−s1 + ⋯ +kn(λ −α)

−sn = 0 for some k1, . . . ,kn ∈C.

Clearing denominators, we obtain k1(λ −α)sn−s1 +⋯+kn = 0. Setting λ = α we
find kn = 0. Repeating this computation n times, we conclude k1 = k2 =⋯= kn = 0.

For the induction step from r−1 to r, we consider distinct negative powers

(λ −α1)
−s1,1 , (λ −α1)

−s1,2 , . . . , (λ −α1)
−s1,n1 ,

⋮ ⋮ ⋮

(λ −αr)
−sr,1 , (λ −αr)

−sr,2 , . . . , (λ −αr)
−sr,nr ,

(9)
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where 0≤ si, j < si, j+1 for i= 1, ...,r and j = 1, ...,ni. Consider a linear combination
of (9) with coefficients k1,1, . . . ,kr,nr . Multiplying by (λ −αr)

sr,nr and setting
λ = αr, we find kr,nr = 0. Repeating with (λ −αr)

sr,i for i = nr−1,nr−2, . . . ,1, we
get kr,1 =⋯ = kr,nr = 0. By the induction hypothesis, the first r−1 rows of (9) are
linearly independent. This proves that all ki, j are zero. Lemma 3.3 follows.

The last paragraph in the proof of Theorem 3.2 gives an algorithm for com-
puting generators of the ideal of PL−1. We show this for our running example.

Example 3.4. Let σ = [(2,1),2] as in Example 2.2. We have d = σ11+σ21−1 =
3, so PL−1 is a twisted cubic curve in P14. The inverse of P−λQ satisfies the
(

6
2)− 3− 1 = 11 linear forms x13,x14,x15,x22,x23,x24,x25,x34,x35,x55, x12 − x33.

The quadratic ideal generators are u0u2−u2
1, u0u3−u1u2 and u1u3−u2

2, where

u0 = (a−b)x11 − 2x12 + (a−b)x44 + 2x45 ,
u1 = (a2−ab)x11−(a+b)x12+(ab−b2)x44+(a+b)x45 ,
u2 = (a3−a2b)x11 − 2abx12 + (ab2−b3)x44 + 2abx45 ,
u3 = (a4−a3b)x11+(a3−3a2b)x12+(ab3−b4)x44+(3ab2−b3)x45.

Note that x11 = −(λ −a)−2, x12 = (λ −a)−1, x44 = −(λ −b)−2, x45 = (λ −b)−1.

4. Maximum Likelihood Degrees

Let Sn
≻0 denote the open convex cone of positive definite real symmetric n×n

matrices. For any fixed S ∈Sn, we consider the following log-likelihood function:

`S ∶ Sn
≻0 → R , M ↦ log(det(M))− trace(SM). (10)

We seek to compute the critical points of `S restricted to a smooth subvariety of
Sn. Here, by a critical point we mean a nonsingular matrix M in the subvariety
whose normal space contains the gradient vector of `S at M. This is an algebraic
problem because the (

n+1
2 ) partial derivatives of `S are rational functions.

The determinant and the trace of a square matrix are invariant under conju-
gation. This implies the following identity for all invertible n×n matrices g:

`g−1S(g−1)T (gT Mg) = log(det(gT Mg))−trace(g−1SMg) = `S(M)+const. (11)

Let L be a linear subspace of Sn, and fix a generic matrix S ∈ Sn. The ML
degree mld(L) is the number of complex critical points of `S on L. The recip-
rocal ML degree rmld(L) of L is the number of complex critical points of `S on
L−1. Both ML degrees do not depend on the choice of S, as long as S is generic.
The ML degrees are invariant under the action of GL(n) by congruence on Sn:
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Lemma 4.1. The ML degree and the reciprocal ML degree of a subspace L ⊂
Sn are determined by its congruence class. In particular, this holds for two-
dimensional subspaces L, i.e. for pencils of quadrics.

Proof. Fix g and L. If the matrix S is generic in Sn then so is g−1S(g−1)T . The
image of L under congruence by gT consists of all matrices gT Mg where M ∈L.
By (11), the likelihood function of S on L agrees with that of g−1S(g−1)T on
gTLg, up to an additive constant. The two functions have the same number
of critical points, so the subspaces L and gTLg have the same ML degree. The
same argument works ifL is replaced by any nonlinear variety, such asL−1.

We now focus on pencils (m = 2), and we state our main result in Section 4.

Theorem 4.2. Let L be a pencil with Segre symbol σ = [σ1, . . . ,σr]. Then

mld(L) = r−1 and rmld(L) =
r

∑
i=1

σi1+ r−3 = deg(L−1
)+mld(L)−1. (12)

For generic subspaces L, with Segre symbol σ = [1, . . . ,1], this implies

mld(L) = deg(L−1
) = n−1 and rmld(L) = 2n−3. (13)

The left formula in (13) appears in [11, Section 2.2]. The right formula in (13)
is due to Coons, Marigliano and Ruddy [3]. We here generalize these results to
arbitrary pencils L. The proof of Theorem 4.2 appears at the end of this section.

The log-likelihood function (10) is important in statistics. The sample co-
variance matrix S encodes data points in Rn. The matrix M is the concentration
matrix. Its inverse M−1 is the covariance matrix. These represent Gaussian dis-
tributions on Rn. The subspace L encodes linear constraints, either on M or on
M−1. For the former, we get the ML degree. For the latter, we get the recipro-
cal ML degree. These degrees measure the algebraic complexity of maximum
likelihood estimation. In the language in [3, 10], mld(L) refers to the linear
concentration model, while rmld(L) refers to the linear covariance model.

If L is a statistical model, then it contains a positive definite matrix. In
symbols, L∩Sn

≻0 /= ∅. If this holds and dim(L) = 2 then L is called a d-pencil
[15]. Thus, our numbers mld(L) and rmld(L) are interesting for statistics when
L is a d-pencil. Here, we can take advantage of the following linear algebra fact.

Lemma 4.3. Every d-pencil L can be simultaneously diagonalized over R. Af-
ter a change of coordinates, L is spanned by the quadrics ∑n

i=1 aix2
i and ∑n

i=1 x2
i .

Proof. We assume n ≥ 3. A pencil is a d-pencil if and only if it has no zeros in
the real projective space Pn−1. This is the Main Theorem in [15]. It was also
proved by Calabi in [1]. The fact that pencils without real zeros in Pn−1 can be
diagonalized is [15, page 221, (PM)]. It is also Remark 2 in [1, page 846].
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Suppose there are r distinct elements in {a1, . . . ,an}. Theorem 4.2 implies:

Corollary 4.4. If L is a d-pencil then mld(L) = deg(L−1) = r−1 and rmld(L) =
2r−3, where L has r distinct eigenvalues. This holds for all subspaces L that
represent statistical models, since such an L contains positive definite matrices.

The log-likelihood function for our d-pencil L can be written as follows:

`S(x,y) =
n

∑
i=1

( log(aix+y)− si(aix+y)).

Here s1, . . . ,sn ∈R represent data. The MLE is the maximizer of `S(x,y) over the
cone {(x,y) ∈R2 ∶ aix+y > 0 for i = 1, . . . ,n}. Corollary 4.4 says that `S(x,y) has
r−1 critical points. One of them is the MLE. The reciprocal log-likelihood is

˜̀S(x,y) =
n

∑
i=1

(−log(aix+y) −
si

aix+y
). (14)

The invariant rmld(L) is the number of critical points (x∗,y∗) of this function
with∏n

i=1(aix∗+y∗) /= 0, provided s = (s1, . . . ,sn) is generic in Rn. Corollary 4.4
states that ˜̀S(x,y) has 2r−3 complex critical points. One of them is the MLE.

The following is an extension of a conjecture stated by Coons et al. [3, §6].

Conjecture 4.5. Let L be a d-pencil with r distinct eigenvalues. There exists s=
(s1, . . . ,sn) ∈Rn such that the function (14) has 2r−3 distinct real critical points.

We can prove this conjecture for small values of n by explicit computation.

Example 4.6. Fix the pencil L with n = r and (a1, . . . ,an) = (1, . . . ,n). For n ≤ 7
we found s ∈Rn such that the reciprocal log-likelihood function ˜̀s has 2n−3 dis-
tinct real critical points. For n = 7 we can take s = (− 74

39 ,
13
47 ,

61
40 ,

1
7 ,

23
18 ,−73,− 27

43).

We now return to arbitrary Segre symbols σ . While non-diagonalizable pen-
cils L do not arise in applied statistics, their likelihood geometry is interesting.

Proof of Theorem 4.2. By Lemma 4.1, we may assume that L is parametrized
by (x,y)↦ xP−yQ with P and Q as in (4). For generic S ∈ Sn, we seek the num-
ber mld(L) of critical points in C2 of the following function in two variables:

`S(x,y) = log(det(xP−yQ)) − trace(S(xP−yQ)). (15)

After multiplying by d =∏
r
i=1(αix− y), the two partial derivatives of `S(x,y)

have the form f (x,y) = λSd +C and g(x,y) = µSd +D. Here λS =−trace(SP) and
µS = trace(SQ) are constants, and the following are binary forms of degree r−1:

C =
r

∑
i=1

n

∑
j=1

σi j αi

r

∏
k=1,k≠i

(αkx−y) and D = −
r

∑
i=1

n

∑
j=1

σi j

r

∏
k=1,k≠i

(αkx−y). (16)
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The variety of critical points of `S in C2 is V( f ,g)/V(d). We adapt the
method introduced in [3] to enumerate this set. Let F(x,y,z) and G(x,y,z) de-
note the homogenizations of f and g with respect to z. Both F and G define
curves of degree r in P2. Since F and G do not share a common component, we
can apply Bézout’s Theorem to count their intersection points. This tells us that

mld(L) = r2
− I[0∶0∶1](F,G) − ∑

q∈V(F,G,z)
Iq(F,G). (17)

The negated expressions are the intersection multiplicities of F and G at the
origin and on the line at infinity. By computing these two quantities, we obtain

mld(L) = r2
−(r−1)2

− r = r−1.

The proof of the second formula in (12) is analogous but the details are more
delicate. We present an outline. The log-likelihood function for L−1 equals

˜̀S(x,y) = − log(

r

∏
i=1

(αix−y)σi1+⋯+σin) −
r

∑
i=1

σi1

∑
j=1

s̃i j
x j−1

(αix−y) j ,

where the s̃i j are linear combinations of the entries in the matrix S. This is
obtained by replacing the matrix xP−yQ in (15) with its inverse. We find

˜̀Sx = −
r

∑
i=1

n

∑
j=1

σi jαi

αix−y
+

r

∑
i=1

σi1

∑
j=1

s̃i j
( j−1)x j−2(αix−y)− j x j−1

αi

(αix−y) j+1 ,

˜̀Sy =
r

∑
i=1

n

∑
j=1

σi j

αix−y
+

r

∑
i=1

σi1

∑
j=1

s̃i j
j x j−1

(αix−y) j+1 .

(18)

We claim that the number of common zeros of the two partial derivatives ˜̀Sx and
˜̀Sy in C2/V(d) is equal to ϕ + r−3 where ϕ =∑

r
i=1 σi1 = deg(L−1)+1,

Clearing denominators in (18) yields polynomials −d′C+U and −d′D+V ,
where d′ =∏r

i=1(αix−y)σi1 , the binary forms U,V have degree ϕ+r−2, and C,D
are precisely as in (16). Hence deg(d′) = ϕ and deg(C) = deg(D) = r−1. As
before, these are sums of binary forms in consecutive degrees. We use (17) to
count their zeros in P2. We find (ϕ+r−1)2−(ϕ+r−2)2−(ϕ+r) =ϕ+r−3

Example 4.7 (n = 5). Let σ = [(2,1),2] as in Example 2.2. The ML degrees are
mld(L) = 1 and rmld(L) = 3. Restricting the log-likelihood function to L gives

`S = log((ax−y)3
(bx−y)2

)+ 2s12(ax−y)+s22x+s33(ax−y)+2s45(bx−y)+s55x.

Its two partial derivatives are rational functions in x and y. Equating these to
zero, we find that `S has a unique critical point (x∗,y∗) in L. Its coordinates are

x∗ = (4(a−b)s12+5s22+2(a−b)s33−6(b−a)s45+5s55 )/∆,

y∗ = (4a(a−b)s12+(2a+3b)s22+2a(a−b)s33+6b(b−a)s45+(2a+3b)s55 )/∆,

∆ = (−s22+2(a−b)s45− s55) ⋅(2(a−b)s12+ s22+(a−b)s33+ s55).
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The restriction of the log-likelihood function to the reciprocal variety L−1 is

˜̀S(x,y) = −log((ax−y)3
(bx−y)2

) −
s11 x

(ax−y)2 +
2s12

ax−y
+

s33

ax−y
−

s44 x
(bx−y)2 +

2s45

bx−y
.

The two partial derivatives have 3 zeros, expressible in radicals in a,b,s11, . . . ,s45.

5. Strata in the Grassmannian

We now define a partial order on the set Segren of all Segre symbols for fixed n.
If σ and τ are in Segren then we say that σ is above τ if ∣σ ∣> ∣τ ∣ and τ is obtained
from σ by replacing two partitions σi,σ j by their sum, or if ∣σ ∣ = ∣τ ∣ and σ and τ

differ in precisely one partition, with index i, and τi ⊲ σi in the dominance order
on partitions. The partial order on Segren is the transitive closure of the relation
“is above”. The top element of our poset is [1,1, . . . ,1], and the bottom element
is [(2,1, . . . ,1)]. The Hasse diagrams for n = 3,4 are shown in Figure 1.

[1,1,1,1]

[2,1,1]

[(1,1),1,1] [3,1] [2,2]

[(2,1),1] [4] [2,(1,1)]

[(3,1)] [(1,1),(1,1)]

[(1,1,1),1] [(2,2)]

[(2,1,1)]

[1,1,1]

[2,1]

[3] [(1,1),1]

[(2,1)]

Figure 1: The posets of all Segre symbols for n = 3 (left) and n = 4 (right).

We wish to study the strata Grσ in (1). Recall that Grσ is the constructible
subset of Gr(2,Sn) whose points are the pencils L with σ(L) = σ . Its closure
Grσ is a subvariety of the Grassmannian Gr(2,Sn). Its defining equations can
be written either in the 1

8(n+ 2)(n+ 1)n(n− 1) Plücker coordinates, or in the
(n+1)n Stiefel coordinates which are the matrix entries in a basis {A,B} of L.

Consider the related Jordan stratification. For each σ ∈ Segren, the Jordan
stratum Joσ is the set of n×n matrices whose Jordan canonical form has pat-
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tern σ . Its closure Joσ is an affine variety in Cn×n. Its defining prime ideal
consists of homogeneous polynomials in the entries of an n×n matrix X = (xi j).

Theorem 5.1. Our poset models inclusions of both Grassmann strata and Jordan
strata. That is, σ ⪰ τ in Segren if and only if Grσ ⊇Grτ if and only if Joσ ⊇ Joτ .

The codimensions of the Jordan strata generally differ from those of the
Grassmann strata. While the Joσ are familiar from linear algebra [4], the Grσ

capture the geometry of the varieties listed on the right in Examples 1.3 and 3.1.
The codimensions are ≥ 1, unless σ = [1, . . . ,1] where both strata are dense.

Example 5.2 (n = 3). We computed the prime ideals for the Jordan strata in
C3×3, for the Plücker strata in Gr(2,S3)⊂P14, and for the Stiefel strata in P5×P5:

symbol Jordan Plücker Stiefel codims degrees
[2,1] 61 61 (6,6)1 1,1,1 6,6,[6,6]
[3] 21,31 421 (2,4)1,(3,3)1,(4,2)1 2,2,2 6,99,[6,15,6]

[(1,1),1] 320 320 (3,3)20 3,2,2 6,36,[4,4,4]
[(2,1)] 29 26 (2,2)6 4,3,3 6,56,[4,12,12,4]

The sextic in the first row is the discriminant of the characteristic polynomial of
X . We shall explain the last row, indexed by σ = [(2,1)]. The Jordan stratum
Joσ has codimension 4 and degree 6. Its ideal is generated by nine quadrics, like
x11x31−2x22x31+3x21x32+x31x33. Under the substitution X = AB−1, these trans-
form into six quadrics in Plücker coordinates, like p04 p14 + p12 p14 − p03 p15 −

p12 p23−3p02 p34+2p01 p35. Here p01, p02, . . . , p45 denote the 2×2 minors of

(
a11 a12 a13 a22 a23 a33
b11 b12 b13 b22 b23 b33

) .

The stratum Grσ has codimension 3 in Gr(2,S3) and degree 56 in the ambient
P14. The six Plücker quadrics give six polynomials of bidegree (2,2) in (A,B).
These define a variety of multidegree 4a3+12a2b+12ab2+4b3 ∈ H∗(P5×P5).

Example 5.3 (n = 4). The column “codims” in Example 3.1 gives the codimen-
sions of Jordan strata, Plücker strata and Stiefel strata. The last two agree; they
quantify the moduli of quartic curves in P3 listed on the right. We found equa-
tions of low degree for the 13 strata. For instance, Jo[4] lies on a unique quadric:

3x2
11−2x11x22−2x11x33−2x11x44+8x12x21+8x13x31+8x14x41+3x2

22
−2x22x33−2x22x44+8x23x32+8x24x42+3x2

33−2x33x44+8x34x43+3x2
44.

Proof of Theorem 5.1. For Segre symbols σ with one partition σ1, the Jordan
strata Joσ are the nilpotent orbits of Lie type An−1. Gerstenhaber’s Theorem [8]
states that inclusion of nilpotent orbit closures corresponds to the dominance
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order ⊲ among the partitions σ1. This explains the second condition in our
definition of “is above” for the poset Segren. The other condition captures the
degeneration that occurs when two eigenvalues come together. Generally, this
leads to a fusion of Jordan blocks, made manifest by adding partitions σi and
σ j. For a precise algebraic version of this argument we refer to [8, Theorem 4].

The inclusions of orbit closures are preserved under the map X ↦ AB−1 that
links Stiefel strata to Jordan strata. Furthermore, the Plücker stratification is
obtained from the Stiefel stratification by taking the quotient modulo GL(2).
This operation also preserves the combinatorics of orbit closure inclusions.

We close with formulas for the dimensions of our strata. For each partition
σi occurring in a Segre symbol σ = [σ1, . . . ,σr], we write σ

∗
i = (σ

∗
i1, . . . ,σ

∗
in) for

the conjugate partition. For instance, if n= 5 and σi = (4,1) then σ
∗
i = (2,1,1,1).

Proposition 5.4. The codimension of the Jordan strata (in Cn×n) and Grassmann
strata (in Gr(2,Sn)) are:

codim(Joσ) =
r

∑
i=1

n

∑
j=1

(σ
∗
i j)

2
− r and codim(Grσ) =

r

∑
i=1

n

∑
j=1

(
σ
∗
i j +1
2

) − r.

Proof. The dimension is the number r of distinct eigenvalues plus the dimension
of the GL(n)-orbit of the general matrix or pencil in the stratum of interest.
Thus, the codimension is the dimension of its stabilizer subgroup minus r. The
codimension for Grassmann strata agrees with the codimension for Stiefel strata,
so we may consider pairs of matrices (A,B) when determining codim(Grσ).

The stabilizer on the left is found in [4, Theorem 2.1] or [8, Proposition 8],
using the identity∑s

k=1(2k−1) = s2. The stabilizer dimension on the right is cal-
culated in [5, Corollary 2.2] for general symmetric matrix pencils. For regular
pencils, the case studied here, the Kronecker canonical form in [5, eqn. (2.4)]
only has H-components. Thus the dimension formula in [5] becomes dA,B =

dH +dHH , where dH = 0 and dHH =∑i≤i′,λi=λi′
min(hi,hi′). In our notation, this is

∑
i≤k,αi=αk

min(ei,ek) =
r

∑
i=1

n

∑
k=1

kσik =
r

∑
i=1

n

∑
k=1

σik

∑
j=1

k =
r

∑
i=1

n

∑
j=1

σ
∗

i j

∑
k=1

k =
r

∑
i=1

n

∑
j=1

(
σ
∗
i j +1
2

).

In conclusion, our proof consists of specific pointers to the articles [4, 5, 8].
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