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SOME ADJUNCTION PROPERTIES
OF AMPLE VECTOR BUNDLES II

HIRONOBU ISHIHARA

Let & be an ample vector bundle of rank r on a projective variety X
of dimension n with only log-terminal singularities. We classify pairs (X, &)
under the condition that 1 < r < n —1and Kx + (n — r) det & is nef
but not ample. As an application, we obtain the classification of (X, &) of
cr-sectional genus one.

Introduction.

Let X be a projective variety of dimension » with a canonical divisor Ky
and let & be an ample vector bundle of rank r on X. The study of the positivity
of Kx+ det§ is called generalized adjunction. In recent years many authors
have studied generalized adjunction (see [24], [11], [23], [26], [27] and [21] for
example) under the condition » > n — 1. Although there are some results when
r = n — 2 (see [25], [19] and [2] for example), it is generally difficult to study
K x-+ det& in the case 1 < r < n — 1. In this case, the author [14] considered
Kx + (n —r) det& instead of Kx+ det&, and proved that Ky + (n — r) det& is
nef unless (X, 8§ = (P*, ©(1)®?) when X has only log-terminal singularities.
In the present paper, as a next step, we consider the case that Kx + (n —r) det&
is nef but not ample.
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Theorem 2.1. Let X be a projective variety of dimension n with only log-
terminal singularities and let & be an ample vector bundle of rank r on X.
Ifl <r <n—1and Ky + (n — r) det§ is nef but not ample, then (X, 8) is
one of the following: :

iP5, 0(1)%2);

(i) (P°, 0(1)®3);

(i) (Q* O(1)®?), where Q* is a (possibly singular) hyperquadric in P3;

1iv) Pw(F), Opr (1) ® p*8), where F and € are vector bundles on a
smooth curve W of genus g(W) such that rankF = 4, rank§ = 2,
ci(F) + 2¢1(9) + 2¢g(W) > 2, and p : Py(F) — W is the bundle
Drojection.

We note that this theorem determines Fano varieties characterized by the
ample vector bundles of ¢,-sectional genus one. The c,-sectional genus is equal
to the sectional genus (resp. curve genus) when r = 1 (resp. r = n—1). We
refer to [13], [12] and [14] for the basic properties of ¢,-sectional genus.

1. Preliminaries.

We work over the complex number field C. Varieties are always irreducible
and reduced. Line bundles are identified with the linear equivalence classes of
Cartier divisors. The tensor products of line bundles are denoted additively,
while we use multiplicative notation for intersection products. We denote by
L®" the direct sum of r-copies of a line bundle L. The restriction Llw of L to
a variety W is written as Ly, .

For a polarized variety (X, L) of dimension n, a non-negative integer
A(X,L) := n+ L" — %X, L) is called the A-genus of (X, L). We say
that (X, L) is a scroll over a variety W if (X, L) = (Pw (&), Opg) (1)) for some
ample vector bundle & on W.

Proposition 1.1. ([6] or [5], Chap. I, 5) Let X be a projective variety of
dimension n > 3 and let L be an ample line bundle on X. If A(X, L) =0, then
(X, L) is one of the following:

@ ", o),
(i) (Q", 0(1)), where Q" is a (possibly singular) hyperquadric in P**!;
(iii) a scroll over P!;
(iv) a generalized cone over a smooth subvariety W C X with A(W, Ly) = 0.

For generalized cones we refer to [4, (0.3)] too.
The following characterization of special varieties is also useful.
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Proposition 1.2. ([9]; see also [18, (2.1)], [4, (1.3)] and [14, (2.3)].) Let X be
a projective variety of dimension n with only log-terminal singularities and let
L be an ample line bundle on X. Then we have the following:

(1) Kx + (n+ 1)L is always nef;
(ii) if Kx -+ nL is not nef, then (X, L) = (P", O(1));
(i) if Kx +nL = Oy, then (X, L) = (Q", O(1));
(iv) if Kx + (n — 1)L is not nef, then A(X, L) = 0 or (X, L) is a scroll over
a smooth curve.

We need a relative version of (1.2).

Proposition 1.3. ([1, (2.1)]; see also [3].) Let X be a projective variety with
only log-terminal singularities and let L be an ample line bundle on X. Suppose
that there exists a birational contraction morphism f : X — W of an extremal
ray R of X. Let t be the rational number such that (Kx + tL)R = 0 and let
F be an irreducible component of a non-trivial fiber of f. Then we have the
following:

(i) dim F > Lt (the integral part of T);
(i) ifdim F <t +1, then A(F,Lp) =0.

2. Theorem and its proof.

Theorem 2.1. Let X be a projective varie‘ty of dimension n with only log-
terminal singularities and let & be an ample vector bundle of rank r on X.
If1 <r <n—1and Kx + (n — r) det& is nef but not ample, then (X, 8) is
one of the following:

i (P° 0(1)%?);

(i) (P°, O(1)®);

(i) (Q* O(1)®2), where Q* is a (possibly singular) hyperquadric in P;

(iv) Pw(F), Opir (1) ® p*%), where F and § are vector bundles on a
smooth curve W of genus g(W) such that rank¥ = 4, rank ¢ = 2,
c1(F) + 2¢1(89) +2g(W) > 2, and p : Py(F) — W is the bundle
projection.

Remark 2.1.1. First we note that the above case (iv) really exists. Let W be
a smooth curve of positive genus and let ¥ (resp. §) be a semistable vector
bundle of rank 4 (resp. 2) on W with ¢} (F) +2¢1(9) > 0. We set X := Py (F)
and & := Opr)(1) ® p*§, where p : Py (F) — W is the bundle projection.
Then & is ample by an argument similar to that in [8, (2.6)]. We see that Ky +2
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det& = p*(Ky+ detF +2 det¥) is nef but not ample since deg(Ky + det F+2
det §) > 0. Thus (X, &) is an example of (2.1; iv) with g(W) > 0. We easily
see that (P! x P*, O(1, 1)®2) is an example of (2.1; iv) with g(W) =0.

Corollary 2.2. Let X be a projective variety of dimension n with only log-
terminal singularities and let & be an ample vector bundle of rank r on X. If
l <r <n—1and Kx + (n —r) deté = Oy, then (X, 8 = (P%, 9(1)%?),
P>, 0()®) or (Q*, O(1)#?),

Proof. We see that (X, &) is one of the four cases in (2.1). The case
(iv) is excluded since Ky + (n — r)det6 = p*(Ky+ detF + 2det§) and
deg(Kw+detF + 2det§) > 0. o

Proof of Theorem 2.1. Let (X, &) be a pair with the condition of (2.1). Then
There exists an extremal ray R of X such that (Kx + (n — r)det&®)R = 0.
Let p : X — W be the contraction morphism of R. We set ¥ := Px(8),
L := Opg (1) and denote by p : ¥ — X the bundle projection. We note that
the relative Picard number p(Y/W) = 2 and —Ky = rL — P (K x+deté) is
(p o p)-ample. Then there exist an extremal ray R’ of ¥, which is different from
the extremal ray that corresponds to p, and the relative contraction morphism
f Y — Z of R over W that makes the following comutative diagram:

Py(6) = Y — = 7

X_p~>W.

(2.3) We set E := {y € Y| f is not an isomorphism at y}. With the length
estimate in [15, Theorem 1], we can take a rational curve C C E which belongs
to R’ such that

—~Ky - C <2(dim E — dim f(E));

moreover, we have this inequality strict if f is birational. Since p|p : F — X
is a finite morphism for every fiber F of f|z : E — f(E), we see that
dim £ — dim f(E) < n, hence —Ky - C < 2n. _
29 On the other hand, since p*(Kx 4 (n — r)det) - C = 0 and
1 <7 <n~1;we have z

—Ky-C

(rL — p*(Kx + det §))C
r-LC +(n—r—1)(p*det §)C
r-LC+(n<r—1r
r(LC—1)4+(n—r)r

2(LC —1)4+2(n-2),

vV I v
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hence LC < 3 by (2.3).

(2.5) Case LC = 3.

By (2.3) and (2.4), we get =Ky - C =2n,r = 2, (p* det6)C =2 and f
is of fiber type. We set A := L — p* deté. Then AC = 1, hence A is f-ample
and Ar is ample for a general fiber ' of f. Since (Ky + 2nA)C = 0, we see
that Kp + 2n - Ap = Op, which is impossible because of (1.2).

(2.6) Case LC = 2.

By (2.4), we get —Ky - C > 2n — 2, hence (Ky + (n — 1)L)C < 0.

(2.6.1) If f is birational, then —Ky - C < 2(dim E—dim f(E)) = 2n by
(2.3), hence dim F = n for some irreducible component ¥ of a fiber of f. By”
(1.3), we get A(F, L) = 0. Then there exists a rational curve C’ C F such
that Lr - C’ = 1 because of (1.1). By replacing C with C’, we may consider
this case as the case LC = 1.

(2.6.2) If f isof fiber type and (Ky+(n—1)L)C < O,then Kp+(n—1)Lg
is not nef for a general fiber F of f. From (2.3) and (1.2), we see that dim
F =n—1orn,andthen A(F, Lr) =0or (F, Lr)is ascroll over a curve. As
in (2.6.1), both cases are considered as the case LC = 1.

(2.6.3) If f is of fiber type and (Ky + (n — 1)L)C = O, then r =
(p*det&)C = 2 by (2.4). Since Kr + (n — 1)L = Op for a general fiber
F of f,by (1.2), (F,Lp) = (P*2,0(1)), (Q"',0(1)),ordim F =n (ie. f
is a Del Pezzo fibration). The former two cases can be considered as the case
LC =1 as before. We show that the last case does not occur in the following.

Since W = p(p(F)) is a point, we have Kx + (n — 2)det€ = Ox. Then a
general member X’ of det|&] is irreducible and reduced with only log-terminal
singularities by [22, (2.2)]. We set Y’ := p~1(X’) and & := &|x. We have
Y =Py (&), Ly = (9]1;»(@!)(1), Kx + (n — 3)det§ = Oy and

Ky +(n—2)Ly = (n — 4)(Ly — (ply)*det&).

Since LC = (p* det§)C, we infer that f|y: : Y’ — Z is also a Del Pezzo
fibration. By repeating this procedure, we may assume that n = 4. Then
Ky + 3L = f*B for some B € Pic Z. Since Ky = —2L — p* deté, for a
fiber | = P! of p, we have f|;*B = L; = Op (1). We note that Z = P! since
Z = f(l). Then we getdeg B = F -1 = 1. It follows that p|p : F —> X is
a finite mo}phism of degree 1, hence p|p is an isomorphism by Zariski’s Main
Theorem/ Then we see that Ky 4+ 3A = Oy for some ample line bundle A on
X and this is a contradiction since Ky + 2 det€ = Oy.

(2.7) Case LC = 1.

By (2.4), we get —Ky - C > 2n — 4 > n, hence (Ky +nL)C < 0.

(2.7.1) If f is birational, let F be an irreducible component of a non-trivial
fiber of f. Since dim F < n by (2.3), we get (Ky + nL)C > 0 from (1.3),



166 HIRONOBU ISHIHARA

hence (Ky+nL)C =0,din F =n=4andr =2 by (2.4). Then we infer that
FN Sing Y = @ or dim (FN Sing Y) = 3 from an argument that is similar to the
proof of [1, (3.1)]. In the former case, X is smooth since Sing ¥ = p‘l(Sing
X) and plp : F — Xis surjective. Since W = p(p(F)) is a point, we see
that Kx 4 2det& = O and this case does not occur because of [13, (1.7)]. The
latter case does not occur either since codim(Sing X) > 2.

(2.7.2) If f is of fiber type and (Ky + nL)C < 0, then Kr + nLp is not
nef for a general fiber F of f. Since dim F <n,weget (F, Lr) = (P", 9(1))
by (1.2). Let U be a smooth open subset of Z such that f~!(z) = P" for
every z € U. Weset V := f~(U); then fly : V — U is a smooth
morphism. It follows that V is smooth and X is also smooth. Then we get
(X, &) = (P°, 0(1)%?) or (PS5, O(1)®3) by the proof of [13, 1.7n].

(2.7.3) If f is of fiber type and (Ky -+ nL)C = 0, then n = 4 and
r = 2 by (24). Since Kr + 4Ly = O for a general fiber F of f, we get
(F, Lp) = (P?, 0(1)) or (Q*, O(1)) by (1.2). We note that every fiber of f is
not contained in Sing ¥ = p~!(Sing X) because codim(Sing X) > 2.

In the case that (F, Lp) = (P3, O(1)), there are only a finite number of
4-dimensional fibers of f since dim ¥ = 5. By taking a general slicing of
f 1Y = Zasin [2, (2.4)], we get a surjective morphism f’ : ¥’ — Z’ such
that Z’ is a smooth curve and a general fiber of f’ is P3. Then (Y, Ly) =
(P2 (F"), Opcg+ (1)) for some vector bundle ¥’ on Z’ by the proof of [4, (1.4)].
It follows that ¥’ is smooth. Since ¥ is a Cartier divisor on ¥ , we see that Y is
smooth along Y, hence X is smooth. From [25, Prop. 1.1’] we infer that dim
W =1and (X, 8 = (Py(F), Op) (1) ® p*§) for some vector bundles F and
Yon W. Since Ky + 2det§ = p*(Ky+detF + 2 det9) is nef, we have

0 < (Kx + 2det&)* = 2g(W) — 2 + ¢|(F) + 2¢,(8).

We also have 0 < ¢3(8)? = ¢ (F)+2¢, (%). Then we find that ¢{ (F) +2¢,(§) +
2g(W) > 2 by an argument in the proof of [13, (1.7)], thus this is the case @iv)
of (2.1).

In the case that (F,Lp) = (Q* 0(1)), we have dim Z = 1 and
Kx + 2det& = Oy since W is a point. We have Ky + 4L = f*B for some
B e Pic Z. Since Ky = —2L — p*det§, for a fiber I = P! of p, we get
SI*B =2L; = Opi(2). Then we see that Z = P! deg B<2and F.| <2.
If F-1=2,thendeg B =1 and Ky + 4L = Oy(F). From an exact sequence
00— Oy(=F) = Oy - O — 0, we get the following exact sequence

0= pOy(=F) = p,Oy - p,0p = R'p,Oy(—F) — R'p,0y.

Then we have p,Oy = Oy, R'p, 0y = 0, p,Oy(—F) = p«(p*deté —2L) =
0, and
R'p,0y(~F) = R'p,Oy(Ky — p*Ky) = Oy
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since p : Y = Px(6) — X is a projective bundle. Hence we get an exact
sequence 0 — Ox — p.Or — Ox — 0. It follows that x(Of) =
x(psOF) = 2x(Ox), which is a contradiction. Thus F -/ = 1 and p|f :
F — X is a finite morphism of degree 1. By Zariski’s Main Theorem, p|r is
an isomorphism and det& = Og(2). We see that & is split because general fibers
F of f are disjoint sections of p. Since & is ample, we get & = COQ(I)‘B2 and
(X, &) = (Q* 0(1)%?). This completes the proof of (2.1). O

3. Application to c,-sectional genus.

Definition 3.1. ([14, (3.1)]) Let X be a normal projective variety of dimension
n and let & be an ample vector bundle of rank r < n on X. The ¢,-sectional
genus g(X, €) of a pair (X, &) is defined by the formula

28(X, 8 —2:= (Kx + (n —r)ci1(6)c1(8)" "¢, (8),

where K is a canonical divisor of X.

When r =1, g(X, 8) is equal to the sectional genus of a polarized variety
(X, &). We refer to [5] and [4] for the general property of sectional genus. When
r=n-—1, g(X, &) is equal to the curve genus of a generalized polarized variety
(X, 8. We refer to [17], [16] and [20] for the property of curve genus. When
1 < r < n— 1, basic properties of g(X, &) have been studied in [13] and [12]
in the case that X is smooth. For singular X, we have the following.

Proposition 3.2. ([14, (3.2) and (3.5)]) Let (X, &) be as in (3.1). Then g(X, &)
is an integer and non-negative when X has only log-terminal singularities;
moreover, if g(X,8) =0and 1 <r <n —1, then (X, 8 = (P*, 0(1)%?).

Remark 3.2.1. We also have classification results for (X, &) with g(X, &) =0
and either r = 1 or r = n — 1 (see, e.g., [14, (3.3) and (3.4)]).
As an application of (2.2), we obtain the following.

Theorem 3.3. Let (X, &) be as in (3.1). Suppose that X has only log-terminal
singularities, g(X,8) = land 1 <r <n — 1. Then (X, 8 = (P35, 9(1)%?),
(P5, 0(1)%%) or (Q*, 0(1)%?).

Proof. From the assumption, we see that (K x+(n—r)c;(8))c; (8)" "1, (8) =
0. Since & is ample, we get Ky 4 (n—r) det€ = Ox and the conclusion follows
by (2.2). O
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Remark 3.3.1. When g(X,8) = 1andr = 1, except scrolls over an elliptic
curve, (X, &) is a Del Pezzo variety and the classification has been obtained by
[7] and [10]. When g(X,&) = land r = n — 1, the classification of (X, &)
is given by [20] (see also [23]) in the case that X is smooth; for singular X,
however, the classification is yet to be studied.
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