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ON CHARACTERIZATIONS OF DUNKL-SEMICLASSICAL
ORTHOGONAL POLYNOMIALS

M. SGHAIER - S. HAMDI

In this paper, the Dunkl-semiclassical orthogonal polynomials will be
studied as a generalization of the Dunkl-classical ones. We obtain some
characterizations for such polynomials. Moreover, an example of non-
symmetric Dunkl-semiclassical orthogonal polynomials is given.

1. Introduction and preliminaries

The family of classical orthogonal polynomial constitutes the most important
families of orthogonal polynomials which motives several authors to determine
the characterizations of this kind of polynomials with respect to different oper-
ators.

Recently, the theory of classical orthogonal polynomial has been extended
to the Dunkl operator [10]. Y.Ben Cheikh and M.Gaid [2] were the first to in-
vestigate characterization results and the classification of the Dunkl-classical
symmetric orthogonal polynomials while they showed that the unique Dunkl-
classical symmetric polynomials are the generalized Hermite polynomials and
the generalized Gegenbauer polynomials. Short time ago , several authors ,see
[3], [17] and among others, gave some characterization to the Dunkl-classical
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symmetric form and next, in 2014, Bouras and al. generalized this characteriza-
tion to the non symmetric case and they also gave some new characterizations
,refer to [1] and [6], and in 2017, B.Bouras and Y.Habbachi [5] showed that
there exists a unique non symmetric Dunkl-classical orthogonal polynomials.

A generalization of the family of classical orthogonal polynomials leads to
semi-classical orthogonal polynomials. In fact, classical orthogonal polynomi-
als are semi-classical of class zero (see [12], [13], [15], [16]). The aim of this
paper is to generalize the results obtained by Bouras and al [1], [6] to the Dunkl-
semi classical form where the symmetric case is treated by Sghaier [18] in 2017.

This paper consists of three sections. In Section 1, we deal with the gen-
eral features and ingredients necessary for the sequel. In section 2, we es-
tablish four characterizations of Dunkl semi classical orthogonal polynomials.
We characterize these sequences by a Dunkl-distributional equation of Pearson
type determined by its associated form. We show also that Dunkl-semiclassical
polynomial sequences can be characterized by a linear second order differential-
difference equation. The third characterization is a first order linear difference
equation with polynomial coefficients satisfied by the corresponding Stieltjes
function and the last one is the so-called structure relation that the Dunkl-
semiclassical polynomial sequences satisfy. Lastly, in section 3, we construct
an example of Dunkl non symmetric semi-classical form of order one, which
proved that the set of this last type of polynomials is not empty.

We state now some preliminary results needed for the sequel. Let P be the
linear space of complex polynomials and let P ′ be its algebraic dual space. We
denote by

〈
u, f

〉
the duality bracket for u ∈ P ′ and f ∈ P . In particular, we

denote by (u)n :=
〈
u,xn

〉
, n ≥ 0, the moments of u.

Let us recall the definitions of some useful operations on P ′.

Definition 1.1. Let u ∈ P ′, a ∈ C∗, c ∈ C and g ∈ P . We define:
• the homothetic hau of the form (linear functional) u〈

hau, f
〉
=
〈
u,ha f

〉
=
〈
u, f (ax)

〉
, f ∈ P;

• the left multiplication of the form u by the polynomial g, denoted by gu,
such that 〈

gu, f
〉
=
〈
u,g f

〉
, f ∈ P;

• the derivative of the form u, denoted by Du, such that〈
Du, f

〉
=−

〈
u, f ′

〉
, f ∈ P;

• the Dirac mass at the point c, denoted by δc, which is the element of P ′

such that 〈
δc, f

〉
= f (c), f ∈ P;



DUNKL-SEMICLASSICAL POLYNOMIALS 69

• and the division of the form u by (x− c), denoted by (x− c)−1u:〈
(x− c)−1u, f

〉
=
〈
u,θc f

〉
,

where (
θc f

)
(x) = ( f (x)− f (c))/(x− c), f ∈ P.

Then, it is straightforward to prove that for a∈C∗, c∈C, f ∈ P and u∈ P ′,
we have (see [6],[5])

h−1( f u) = h−1 f h−1u, h−1(h−1(u)) = u. (1)

f (hau) = ha
(
(ha f )u

)
. (2)

h−1(hau) = ha(h−1u). (3)

h−1δ0 = δ0, x−1
δ0 =−δ

′
0. (4)

(x− c)−1(x− c)u = u− (u)0δ0, u ∈ P ′, c ∈ C. (5)

x−1(x−1(x2u)) = u− (u)0δ0 +(u)1δ
′
0, u ∈ P ′. (6)

.
For f ∈ P and u ∈ P ′, the product u f is the polynomial

(u f )(x) =
〈
u,

x f (x)−ζ f (ζ )
x−ζ

〉
.

The Stieltjes function of u ∈ P ′ is defined by

S(u)(z) =− ∑
n≥0

(u)n

zn+1 . (7)

We have the following formulas [6]

S(δ ′
0)(z) =

1
z2 . (8)

S( f u)(z) = f (z)S(u)(z)+(uθ0 f )(z), f ∈ P. (9)

A form u is called regular if there exists a sequence of polynomials {Pn}n≥0
(degPn ≤ n) such that [8]〈

u,PnPm
〉
= pnδnm, pn ̸= 0, n ≥ 0 ,

where δnm is the Kronecker symbol [11]. Then, degPn = n, n ≥ 0 and we can al-
ways suppose each Pn is monic. In such a case, the sequence {Pn}n≥0 is unique.
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It is said to be the sequence of monic orthogonal polynomials (MOPS) with
respect to u. In the sequel, we take all regular forms u normalized i.e. (u)0 = 1.

There exist a complex sequence {βn}n≥0 and a non zero complex sequence
{γn}n≥1 such that the MOPS {Pn}n≥0 fulfils the following three-term recurrence
relation [8]

P0(x) = 1, P1(x) = x−β0,

Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0.
(10)

If we replace β0 by β0 +λ in (10) then we obtain a new MOPS denoted
{Pn(.;−λ )}n≥0 and is called co-recursive sequence of {Pn}n≥0.

A form u is said symmetric if and only if (u)2n+1 = 0, n≥ 0, or, equivalently,
in (10) βn = 0, n ≥ 0.

Let {Pn}n≥0 be a MOPS with respect to the form u and let {un}n≥0 be its
dual sequence, un ∈ P ′ defined by [11]〈

un,Pm
〉

:= δn,m, n, m ≥ 0.

Then, for any v ∈ P ′ satisfies
〈
v,Pi

〉
= 0 for i ≥ l, l ≥ 1, we have

v =
l−1

∑
i=0

λiui, where λi =
〈
v,Pi

〉
, i = 0,1,2, .... (11)

In particular, u = u0. Furthermore,

ui =
Pi〈

u,P2
i

〉u, i ≥ 0.

For any complex number µ , the Dunkl difference operator Tµ is defined by
[10]

(Tµ f )(x) = f ′(x)+2µ(H−1 f )(x), (H−1 f )(x) =
f (x)− f (−x)

2x
, f ∈ P.

Note that T0 is reduced to the derivative operator D. Thus, henceforth, we will
assume that µ ̸= 0. The transposed tTµ

of Tµ is tTµ
=−Tµ . Thus we have〈

Tµu, f
〉
=−

〈
u,Tµ f

〉
, u ∈ P ′, f ∈ P.

In particular, this yields
〈
Tµu,xn

〉
=−µn

〈
u,xn−1

〉
=−µn(u)n−1, n ≥ 0, where

(u)−1 = 0 and µn = n+µ(1− (−1)n), n ≥ 0.
One can see easily that

Tµu = Du+2µH−1u,
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where 〈
H−1u, f

〉
=−

〈
u,H−1 f

〉
.

Furthermore, we have the following formulas [6]

Tµδ0 = (1+2µ)δ ′
0. (12)

Tµ(hau) = a−1ha(Tµu), u ∈ P ′, a ∈ C\{0}. (13)

Tµ( f g) = f (x)(Tµg)(x)+g(x)(Tµ f )(x)−4µx(H−1 f )(x)(H−1g)(x), f ,g ∈ P.
(14)

Tµ( f u) = fTµu+Tµ f .u+2µH−1 f (h−1u−u). (15)

Tµ( f u) = fTµu+ f ′u+2µH−1 f h−1u. (16)

S(Tµu)(z) = T−µS(u)(z). (17)

Let now a MOPS {Pn}n≥0 and let

P[1]
n (x,µ) =

TµPn+1(x)
µn+1

, µ ̸=−n− 1
2
, n ≥ 0. (18)

Let us introduce the definition of Tµ -classical form.

Definition 1.2. An MOPS {Pn}n≥0 is called Tµ -classical if {P[1]
n (.,µ)}n≥0 is

also an MOPS. In this case, the form u associated to {Pn}n≥0 is called Tµ -
classical form.

Example 1.3. Let us denote two examples of Tµ -classical polynomials.

1. Symmetric case [2]: The generalized Gegenbauer polynomails.
The explicit expression of generalized Gegenbauer polynomials is given
by

S
(α,µ− 1

2 )
n (x) = (−1)n γµ(n)Γ(α +µ + 1

2 )

2nΓ(n+α +µ + 1
2 )

[ n
2 ]

∑
k=0

(−1)kΓ(n− k+α +µ + 1
2 )

k!γµ(n−2k)Γ(α +µ + 1
2 )

(2x)n−2k,

n ≥ 0. where γµ is defined by

γµ(2n) =
22nn!Γ(n+µ + 1

2)

Γ(µ + 1
2)

and γµ(2n+1) =
22n+1n!Γ(n+µ + 3

2)

Γ(µ + 1
2)

.

The set {S(α,µ− 1
2 )

n }n≥0 is an MOPS with respect to the regular form
G(α,µ− 1

2 ) defined as (see[8] [9])

G(α,µ− 1
2 ) = |x|2µ(1− x2)α , −1 < x < 1.
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This form is Tµ -classical and satisfies

Tµ((x2 −1)G(α,µ− 1
2 )) = 2(α +1)xG(α,µ− 1

2 ).

If we apply Tµ to S(α,µ− 1
2 )

n , we obtain

Tµ(S
(α,µ− 1

2 )
n ) = µnS(α+1,µ− 1

2 )
n−1 . (19)

The MOPS {S(α,µ− 1
2 )

n }n≥0 satisfies the three-term recurrence relation (10)
with [4]

β̂n = 0, γ̂n+1 =
(n+1+εn)(n+1+2α+εn)

4(n+α+µ+ 1
2 )(n+α+µ+ 3

2 )
, n ≥ 0,

εn = 2µ
1+(−1)n

2 , n ≥ 0.
(20)

2. Non-symmetric case: The perturbed generalized Gegenbauer form.

Bouras and al. [7] showed that the unique non-symmetric Tµ -classical
form is the perturbed generalized Gegenbauer form. As an example, take
[6]

v = λ (x−1)−1G(α,µ− 1
2 )+δ1, (21)

where α ̸= 2µ−1
2 , µ ̸= 1

2 and λ =− 2(2µ−α)
2µ−2α−1 .

This form satisfies

Tµ

(
(x2 −1)v

)
− 1+2µ

λ +1
(x−λ −1)v = 0. (22)

The MOPS corresponding to v , which we denote by {P̃n}n≥0, satisfies
the three-term recurrence relation

P̃0(x) = 1, P̃1(x) = x−β0,

P̃n+2(x) = (x−β v
n+1)P̃n+1(x)− γv

n+1P̃n(x), n ≥ 0,
(23)

with

β
v
0 = 1+λ , β

v
n+1 = 1+av

n +
γ̂n+1

av
n
, γ

v
n+1 =−av

n(1+av
n), n ≥ 0,

where γ̂n+1 is given in (20) and av
n is given by Maroni [14]

av
n =−

S(α,µ− 1
2 )

n+1 (1;−λ )

S(α,µ− 1
2 )

n (1;−λ )
, n ≥ 0.
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Lemma 1.4. [6] If {Pn}n≥0 is Tµ -classical MOPS and 2|µ| ̸= 1, then
{P[1]

n (.,µ)}n≥0 is orthogonal with respect to K
1−4µ2 (Φu−2µh−1(Φu)) where K

is a complex number and Φ is a non-zero monic polynomial, deg(Φ)≤ 2.

We state now the definition of the quasi-orthogonality.

Definition 1.5. Let u ∈ P ′ and s a non negative integer. A MPS {Pn}n≥0 is said
to be quasi-orthogonal of order s with respect to u if〈

u,PmPn
〉
= 0, 0 ≤ m ≤ n− s−1, n ≥ s+1,
∃ r ≥ s;

〈
u,Pr−sPr

〉
̸= 0.

(24)

If
〈
u,Pr−sPr

〉
̸= 0 for any r ≥ s, then {Pn}n≥0 is said to be strictly quasi-

orthogonal of order s with respect to u.

Remark 1.6. 1. (24) is equivalents to〈
u,xmPn

〉
= 0, 0 ≤ m ≤ n− s−1, n ≥ s+1,
∃ r ≥ s;

〈
u,xr−sPr

〉
̸= 0.

(25)

2. A strictly quasi-orthogonal of order zero is orthogonal.

A Dunkl-semiclassical orthogonal polynomials defined as

Definition 1.7. Let {Pn}n≥0 be a MOPS with respect to u ∈ P ′. {Pn}n≥0 is
Dunkl-semiclassical if there exists a non negative integer s such that the MPS
{P[1]

n (.,µ)}n≥0 is quasi-orthogonal of order s. In this case, the form u associated
to {Pn}n≥0 is called Dunkl-semiclassical form.

Example 1.8. An example of symmetric Tµ -semi classical form denoted by
Sghaier [18] as:

w =− 2λ

2α +1
H(α)+(1+

2λ

2α +1
)δ0, λ ̸=

{
0,
−2α +1

2
}
,

where H(α) is the generalized Hermite form [2]. The form w is symmetric
Tµ -semiclassical and satisfies

Tµ(x2w)+(2x2 −2(α −µ +1)x)w = 0.
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2. Some characterizations of Dunkl-semiclassical polynomials

In this section, we state some results of Dunkl-semiclassical orthogonal polyno-
mials that are extensions of the characterizations of Dunkl classical orthogonal
polynomials which have been stated by Bouras and al (see [6],[1]). In the sequel
of the text, we assume that 2|µ| ̸= 1.

We begin by the main result of this paper which give a Dunkl-distributional
equation of Pearson type determined by any regular semi-classical form and
a linear second order differential-difference equation of its associated Dunkl-
semiclassical orthogonal polynomial sequences.

Theorem 2.1. Let {Pn}n≥0 be a MOPS with respect to a regular form u. The
following statements are equivalent

(1) The sequence {Pn}n≥0 is Dunkl-semiclassical.

(2) There exists a non negative integers s, p, an integer r ≥ s, three polynomi-
als Φ (monic), Φ̃, degΦ= degΦ̃≤ s+2 and Ψ, 1≤ degΨ≤ s+1, a com-
plex number K and a sequence of non zero complex number {λn,i}n≥s,i≥1
such that

xΦ(x)u = h−1(xΦ̃(x)u) (26)

and

K
1−4µ2 (Φ(x)+2µΦ̃(x))T 2

µ (Pn−s+1(x))−Ψ(x)Tµ(Pn−s+1(x))

− 2µK
1−2µ

(Φ(x)+ Φ̃(x))H−1(Tµ(Pn−s+1(x))) =−µn−s+1

p

∑
i=1

λn,iPi,

(27)

with condition

Ψ(s+1)(0)
(s+1)!

+
K

1−4µ2
Φ(s+2)(0)
(s+2)!

(4µ
2[r− s]− (r− s))+

2µK
1−4µ2

Φ̃(s+2)(0)
(s+2)!

(
[r− s]− (r− s)

)
̸= 0,

(28)

where

[r− s] =
1− (−1)r−s

2
.

(3) There exist non negative integers s, p, an integer r ≥ s, polynomials Φ

(monic), B and Ψ with deg(Φ) ≤ s + 2, deg(B) = deg(Φ) + 1 and
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deg(Ψ) = p, 1 ≤ p ≤ s+1, fulfilling

Ψ(s+1)(0)
(s+1)!

+
K

1−4µ2
Φ(s+2)(0)
(s+2)!

(4µ
2[r− s]− (r− s))+

2µK
1−4µ2

B(s+3)(0)
(s+3)!

(
[r− s]− (r− s)

)
̸= 0,

(29)

such that the regular form u associated to {Pn}n≥0 satisfies

Tµ

(
Φu−2µh−1(Φu)

)
+

1−4µ2

K
Ψu = 0 (30)

xΦ(x)u = h−1(B(x)u). (31)

(4) There exist a complex number K and three polynomials Φ (monic), Φ̃ and
Ψ with deg(Φ) = deg(Φ̃)≤ s+2 and deg(Ψ) = p, 1≤ p≤ s+1, fulfilling
(26) and (28) such that the associated regular form u satisfies

Tµ

(
(Φ+2µΦ̃)u

)
−2µ(1+2µ)

〈
u,Φ+ Φ̃

〉
δ
′
0 +

1−4µ2

K
Ψu = 0. (32)

Proof. ▶ (1)⇒ (2). By hypothesis, there exists a non negative integer s such
that the MPS {P[1]

n (.,µ)}n≥0 is quasi-orthogonal of order s. Denote by w(µ) the
form associated to {P[1]

n (.,µ)}n≥0.
For all n ≥ s, we have〈

Tµ

(
P[1]

n−s(.,µ)w(µ)
)
,Pm+1

〉
=−µm+1

〈
w(µ),P[1]

n−sP
[1]
m
〉
, m ≥ 0.

According of (24),〈
w(µ),P[1]

n−s(.,µ)P
[1]
m (.,µ)

〉
= 0, m ≥ n+1.

Since w(µ) non null form (because of the existence of r ≥ s such that〈
w(µ),P[1]

r−s(.,µ)P
[1]
r (.,µ)

〉
̸= 0), there exists an integer p, 1 ≤ p ≤ n+1, such

that〈
w(µ),P[1]

n−s(.,µ)P
[1]
p−1(.,µ)

〉
̸= 0,

〈
w(µ),P[1]

n−s(.,µ)P
[1]
m (.,µ)

〉
= 0, ∀ m ≥ p.

Therefore,〈
Tµ

(
P[1]

n−s(.,µ)(.,µ)w(µ)
)
,Pp

〉
̸= 0,

〈
Tµ

(
P[1]

n−s(.,µ)w(µ)
)
,Pm

〉
= 0, m≥ p+1.
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So, the orthogonality of {Pn}n≥0 leads to

Tµ

(
P[1]

n−s(.,µ)w(µ)
)
=−

p

∑
i=1

µi

〈
w(µ),P[1]

n−s(.,µ)P
[1]
i−1(.,µ)

〉〈
u,P2

i

〉 Piu.

Put λn,i = µi

〈
w(µ),P[1]

n−s(.,µ)P
[1]
i−1(.,µ)

〉〈
u,P2

i

〉 . Then,

P[1]
n−s(.,µ)Tµw(µ)+Tµ(P

[1]
n−s(.,µ))w(µ)

+2µH−1P[1]
n−s(.,µ)

(
h−1w(µ)−w(µ)

)
=−

p

∑
i=1

λn,iPiu, n ≥ s.
(33)

For n = s and n = s+1, the equation (33) becomes

Tµw(µ) =−
p

∑
i=1

λs,iPiu. (34)

P[1]
1 (.,µ)Tµw(µ)+w(µ)+2µh−1w(µ) =−

p

∑
i=1

λs+1,iPiu. (35)

Substitution of (34) into (35) gives

w(µ)+2µh−1w(µ) = KΦu, (36)

where

KΦ = P[1]
1 (.,µ)

p

∑
i=1

λs,iPi −
p

∑
i=1

λs+1,iPi. (37)

K is a normalization factor. Applying h−1 to (37), we get

h−1(w(µ))+2µw(µ) = h−1(KΦu). (38)

Elimination of h−1(w(µ)) between (36) and (38) gives

w(µ) =
K

1−4µ2 (Φu−2µh−1(Φu)). (39)

Applying Tµ to the last equation and according to (34) we get

Tµ(Φu−2µh−1(Φu))+
1−4µ2

K
Ψu = 0,

where

Ψ =
p

∑
i=1

λs,iPi. (40)
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Now, take n = s+2 in (33), we get

P[1]
2 (.,µ)Tµw(µ)+TµP[1]

2 (.,µ)w(µ)+2µH−1P[1]
2 (.,µ)(h−1w(µ)−w(µ))

=−
p

∑
i=1

λs+2,iPiu.

Taking into account (34) and (39), we get

− 2µK
1−4µ2 (Tµ(P

[1]
2 (.,µ))− (1+2µ)H−1P[1]

2 (.,µ))h−1(Φu) =
(
P[1]

2 (.,µ)
p

∑
i=1

λs,iPi

− K
1−4µ2 ΦTµ(P

[1]
2 (.,µ))+

2µK
1−2µ

ΦH−1P[1]
2 (.,µ)−

p

∑
i=1

λs+2,iPi
)
u. (41)

Since Tµ(P
[1]
2 (.,µ))−(1+2µ)H−1P[1]

2 (.,µ)= 2x, the application of the operator
h−1 to (41) gives

xΦu = h−1(Bu), (42)

where

B(x) =
1−4µ2

4µK

(
P[1]

2 (.,µ)
p

∑
i=1

λs,iPi −
K

1−4µ2 ΦTµ(P
[1]
2 (.,µ))+

2µK
1−2µ

ΦH−1P[1]
2 (.,µ)−

p

∑
i=1

Piλs+2,i

)
.

(43)

(Which proved (1)⇒ (3)).
To prove (27), applying the operator h−1 to (42) and taking into account (1)

we get
−xΦ(−x)h−1u = B(x)u. (44)

Elimination of h−1u between (42) and (44) gives

−x2
Φ(x)Φ(−x)u = B(x)B(−x)u.

Hence,
−x2

Φ(x)Φ(−x) = B(x)B(−x).

So, deg(B) = deg(Φ)+1 and B(0) = 0. Therefore, we can write

B(x) = xΦ̃(x), (45)

with Φ̃ is a polynomial such that degΦ̃ = degΦ.
Substitution of (45) in (42), we get (26).

On the other hand, owing to (42), the multiplication of (39) by x given

xw(µ) =
K

1−4µ2 (xΦ(x)+2µB(x))u. (46)
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On account again of (42) and by application of the operator h−1 to (46), we get

xh−1w(µ) =− K
1−4µ2 (B(x)+2µxΦ(x))u. (47)

From (34), (46) and (47), the multiplication of (33) by x get

K
1−4µ2 (xΦ(x)+2µB(x))Tµ(P

[1]
n−s(.,µ))− xΨ(x)P[1]

n−s(.,µ)

− 2µK
1−2µ

(xΦ(x)+B(x))H−1P[1]
n−s(.,µ) =−

p

∑
i=1

λn,ixPi, (48)

with Ψ as in (40). i.e.,

K
1−4µ2 (xΦ(x)+2µB(x))T 2

µ (Pn−s+1(x))− xΨ(x)Tµ(Pn−s+1(x))

− 2µK
1−2µ

(xΦ(x)+B(x))H−1(Tµ(Pn−s+1(x))) =−µn−s+1

p

∑
i=1

λn,ixPi, n ≥ s.

(49)

Using (45) and after simplification by x in the last equation we obtain (27) .
▶ (2)⇒ (3). From (27), we have

K
1−4µ2 (Φ(x)+2µΦ̃(x))Tµ(P

[1]
n−s(.,µ))−Ψ(x)P[1]

n−s(.,µ)

− 2µK
1−2µ

(Φ(x)+ Φ̃(x))H−1P[1]
n−s(.,µ) =−

p

∑
i=1

λn,iPi. (50)

Since
p

∑
i=1

λn,i
〈
u,Pi

〉
= 0 for all n ≥ s,

0 =

〈
u, K

1−4µ2 (Φ(x)+2µΦ̃(x))Tµ(P
[1]
n−s(.,µ))

−Ψ(x)P[1]
n−s(.,µ)−

2µK
1−2µ

(Φ(x)+ Φ̃(x))H−1P[1]
n−s(.,µ)

〉
=−

〈 K
1−4µ2Tµ

(
(Φ(x)+2µΦ̃(x))u

)
+Ψ(x)u−

2µK
1−2µ

H−1

(
(Φ(x)+ Φ̃(x))u

)
,P[1]

n−s(.,µ)
〉
, n ≥ s.

(51)

By the fact that {P[1]
n (.,µ)}n≥0 is a basis sequence, we get

K
1−4µ2Tµ

(
(Φ(x)+2µΦ̃(x))u

)
+Ψ(x)u−

2µK
1−2µ

H−1

(
(Φ(x)+2µΦ̃(x))u

)
= 0.

(52)
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On the other hand, applying the operator h−1 to (26) and multiplying the result
by x−1, we obtain

Φ̃(x)u =−h−1(Φ(x)u)+
〈
u,Φ(x)+ Φ̃(x)

〉
δ0. (53)

Substituting (53) into (52) and taking into account (12) and the fact that H−1δ0 =
δ ′

0 and H−1(v−h−1v) = 0, v ∈ P ′, we get (30).
Finally, if we put B(x) = xΦ̃(x), one can see easily that (26) is equivalent to (31)
and condition (28) is equivalent to (29). This completes the proof.

▶ (3)⇒ (1). Put

v =
K

1−4µ2 (Φu−2µh−1(Φu)) (54)

Let us prove that the MPS {P[1]
n (.,µ)}n≥0 is quasi-orthogonal of order s with

respect to v.
By (16), we have

µn+1
〈
v,PmP[1]

n (.,µ)
〉
=−

〈
Tµ(Pmv),Pn+1

〉
=−

〈
PmTµv+P′

mv+2µH−1Pmh−1v,Pn+1
〉
.

But, by hypothesis
Tµv =−Ψu, (55)

with Ψ is a polynomial of degree p, 1 ≤ p ≤ s+1. Then,

µn+1
〈
v,PmP[1]

n (.,µ)
〉
=
〈
PmΨu−P′

mv−2µH−1Pmh−1v,Pn+1
〉
.

For m ≤ n− s−1, n ≥ s+1. By the fact that {Pn}n≥0 is orthogonal with respect
to u, we obtain

µn+1
〈
v,PmP[1]

n (.,µ)
〉
=−

〈
v,P′

m(x)Pn+1(x)+2µH−1Pm(x)Pn+1(−x)
〉
.

Taking into account (54), the orthogonality of {Pn}n≥0 with respect to u and the
fact that deg(Φ)≤ s+2, we get

µn+1
〈v,PmP[1]

n (.,µ)〉 =− 2µK
(1−4µ2)

〈u,Φ(x)Pn+1(−x)(P′
m(−x)−H−1Pm(−x))〉.

It is easy to see that P′
m(−x)−H−1Pm(−x) = xQ(x), where Q is a polynomial

of degree less than or equal to m−2. So

µn+1
〈
v,PmP[1]

n (.,µ)
〉
=− 2µK

(1−4µ2)

〈
u,xΦ(x)Q(x)Pn+1(−x)

〉
.
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Using (31), we get

µn+1
〈
v,PmP[1]

n (.,µ)
〉
=− 2µK

(1−4µ2)

〈
u,B(x)Q(−x)Pn+1(x)

〉
.

Since deg(B)≤ s+3, according to the orthogonality of {Pn}n≥0 with respect to
u, we get 〈

v,PmP[1]
n (.,µ)

〉
= 0.

Suppose now that for all r ≥ s we have〈
v,Pr−sP

[1]
r (.,µ)

〉
= 0.

By following

− 1
µr+1

〈
Pr−sTµv+P′

r−sv+2µH−1Pr−sh−1v,Pr+1
〉
= 0. (56)

Using (55) and the orthogonality of {Pn}n≥0 with respect to u, we get

〈
Pr−sTµv,Pr+1

〉
=−Ψ(s+1)(0)

(s+1)!
pr+1, (57)

where pr+1 =
〈
u,P2

r+1
〉
.

From (54), we obtain〈
P′

r−sv,Pr+1
〉
=

K
1−4µ2

(
Φ(s+2)(0)
(s+2)!

(r− s)pr+1 −2µ
〈
u,Φ(x)P′

r−s(−x)Pr+1(−x)
〉)

,
(58)

and〈
2µH−1Pr−sh−1v,Pr+1

〉
=

2µK
1−4µ2

(〈
u,Φ(x)H−1Pr−s(−x)Pr+1(−x)

〉
−2µ

Φ(s+2)(0)
(s+2)!

[r− s]pr+1

)
.

(59)

Substitution of (57), (58) and (59) into (56) gives(
Ψ(s+1)(0)
(s+1)!

+
Φ(s+2)(0)
(s+2)!

K
1−4µ2 (4µ

2[r− s]− (r− s))
)

pr+1

µr+1

− 2µK
µr+1(1−4µ2)

〈
u,Φ(x)

(
H−1Pr−s(−x)−P′

r−s(−x))Pr+1(−x)
〉
= 0. (60)
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Putting H−1Pr−s(−x)−P′
r−s(−x) = xQ(x), where Q is a polynomial of degree

r− s−2 and of leading coefficient (−1)r−s−1([r− s]− (r− s)). Using (31) we
obtain (for r ≥ s)〈

u,Φ(x)(H−1Pr−s(−x)−P′
r−s(−x))Pr+1(−x)

〉
=

−B(s+3)(0)
(s+3)!

(
[r− s]− (r− s)

)
pr+1.

Then, (60) becomes(
Ψ(s+1)(0)
(s+1)!

+
K

1−4µ2
Φ(s+2)(0)
(s+2)!

(
4µ

2[r− s]− (r− s)
)

+
2µK

1−4µ2
B(s+3)(0)
(s+3)!

(
[r− s]− (r− s)

)) pr+1

µr+1
= 0,

which contradicts (29). Then, there exists a r ≥ s such that
〈
v,Pr−sPr

〉
̸= 0 and

by following P[1]
n (.,µ) is quasi-orthogonal of order s with respect to v.

.
▶ (3)⇔ (4). By virtue of (45) and (5), (31) becomes

Φ(x)u =−h−1((Φ̃)u)+
〈
u,Φ+ Φ̃

〉
δ0.

Applying operator h−1 to the last equation and taking into account the fact that
h−1δ0 = δ0, we obtain

h−1(Φ(x)u) =−Φ̃u+
〈
u,Φ+ Φ̃

〉
δ0. (61)

Hence, according of (12) and (61), we can easily deduce the equivalence be-
tween (30) and (32).

Remark 2.2. 1. According of (30) and (40), we have

0 =
〈 K

1−4µ2Tµ

(
Φu−2µh−1(Φu)

)
+

p

∑
i=1

λs,iPiu,P1
〉

=−K
〈
u,Φ

〉
+λs,1

〈
u,P1

〉
=−K(as+2(u)s+2 +as+1(u)s+1 + ...+a1(u)1 +a0)+1+2µ.

So,

K =
1+2µ

as+2(u)s+2 +as+1(u)s+1 + ...+a1(u)1 +a0
.

2. Notice that, in the above proof, if we take s = 0, we get all equations and
relations achieved in [6] and [11].
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Corollary 2.3. Let u be a regular form. Then u is Tµ -semi classical if and only
if there exist three polynomials Φ (monic),Φ̃, deg(Φ) = deg(Φ̃)≤ s+2 and Ψ,
deg(Ψ) = p, 1 ≤ p ≤ s+1, fulfilling (26) and (28) such that

〈
u,Ψ

〉
= 0,

〈
u,Φ

〉
=

〈
u,xΨ

〉
K

(62)

and

x2Tµ

(
(Φ+2µΦ̃)u

)
+

1−4µ2

K
x2

Ψu = 0. (63)

Proof. Suppose that the regular form u is Tµ -semi classical. Then, (32) holds
and gives immediately (62). On the other hand, by multiplication of (32) by x2,
we get (63).

Conversely, multiplying (63) by x−1 two times and taking into account (6)
and (62), we get (32).

Notice that in the symmetric case, Sghaier [18] has characterized all Tµ -
semi classical forms by Tµ -discributional equation of Pearson type. In the fol-
lowing proposition, we will also give the characterization of symmetric Tµ -semi
classical forms by Tµ -second order differential-difference equation which is im-
mediately from Theorem 2.1.

Proposition 2.4. Let {Pn}n≥0 be a symmetric MOPS with respect to a regular
form u. The following statement are equivalent

(1) The sequence {Pn}n≥0 is Dunkl-semiclassical.

(2) There exist a non negative integer s, two polynomials Φ (monic), degΦ ≤
s+2 and Ψ, 1 ≤ degΨ ≤ s+1, a complex number K and a sequence of
non zero complex number {λn,i}n≥s,i≥1 such that

K
1−4µ2 (Φ(x)−2µΦ(−x))T 2

µ (Pn−s(x))−Ψ(x)Tµ(Pn−s(x))

− 2µK
1−2µ

(Φ(x)−Φ(−x))H−1(Tµ(Pn−s(x))) =−µn−s+1

p

∑
i=1

λn,iPi,

(64)

with condition

Ψ(s+1)(0)
(s+1)!

+
K

1−4µ2
Φ(s+2)(0)
(s+2)!

(4µ
2[r− s]− (r− s))+

2µK
1−4µ2

2(−1)s+2Φ(s+2)(0)
(s+3)!

(
[r− s]− (r− s)

)
̸= 0.

(65)
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Proof. Since {Pn}n≥0 is Dunkl-symmetric MOPS, u = h−1u. By following

xΦ(x) = h−1(−xΦ(−x)u), Φ ∈ P.

Putting Φ̃(x) =−Φ(−x), we get (26) and we can easily see that (27) is equiva-
lent to (64) and the condition (28) becomes as (65). Hence, according to Theo-
rem 2.1, we obtain the desired equivalence.

Let {Pn}n≥0 be an MOPS with respect to the regular form u. Consider the
sequence {P̂n(x) = a−nPn(ax)}n≥0, a ̸= 0. One can easily see that {P̂n}n≥0 is an
MOPS with respect the regular form û defined as

û = ha−1u. (66)

Moreover, we have the following result

Proposition 2.5. If u is a Tµ -semi classical form , then û = ha−1u is also for
every a ̸= 0.

Proof. By hypotheses, there exist three polynomial Φ (monic), deg(Φ)≤ s+1,
B, deg(B) = deg(Φ)+1, and Ψ, deg(Ψ) = p, 1 ≤ p ≤ s+1 such that u satisfies
(29)-(31). From (2) and (66), we get

Ψu = Ψhaû = ha
(
(haΨ)û

)
= ad−1ha(Ψ̂û), Ψ̂(x) = a1−d

Ψ(ax), d = deg(Φ).

Similarly,

Φu = Φhaû = ha
(
(haΦ)û

)
= adha(Φ̂û), Φ̂(x) = a−d

Ψ(ax).

Then,
Ψu = ad−1ha(Ψ̂û), Φu = adha(Φ̂û). (67)

Using (3), (13) and (67), we get

Tµ

(
Φu−2µh−1(Φu)

)
= ad−1haTµ

(
Φ̂û−2µh−1(Φ̂û)

)
. (68)

Substitution of (67) and (68) in (30), we get

Tµ

(
Φ̂û−2µh−1(Φ̂û)

)
+

1−4µ2

K
Ψ̂û = 0

Using again (2) and (66), we get

Bu = Bhaû = ha(haBû) = ad+1ha(B̂û), B̂ = a−1−dB(ax).
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Substitution of the last result and (67) in (32), we obtain

xΦ̂(x)û = h−1(B̂(x)û).

Moreover, by (29), we have

Ψ̂(s+1)(0)
(s+1)!

+
K

1−4µ2
Φ̂(s+2)(0)
(s+2)!

(
4µ

2[r− s]− (r− s)
)
+

2µK
1−4µ2

B̂(s+3)(0)
(s+3)!

(
[r− s]− (r− s)

)
̸= 0.

Then the desired result.

The third important characterization of the Dunkl-semiclassical forms is
given in terms of a non-homogeneous first order linear Tµ -difference equation
that its Stieltjes series satisfies.

Proposition 2.6. The form u is Tµ -semi classical and satisfies (26), (28) and
(32) if and only if there exist three polynomials A (monic), C, D such that the
Stieltjes formal series S(u) satisfies

A(z)T−µS(u)(z) =−2µ(H−1A)(z)S(h−1u)(z)+C(z)S(u)(z)+D(z)

+2µ(2µ +1)
〈

u,A+(1−2µ)Φ̃
〉

z2 ,
(69)

and

zΦ(z)S(u)(z)− (uΦ)(z) =−zΦ̃(−z)S(h−1u)(z)+(h−1uΦ̃)(−z) (70)

with

−C(s+1)(0)
(s+1)!

+(4µ
2[r− s]− (r−2))

A(s+2)(0)
(s+2)!

+

2µ
Φ̃(s+2)(0)
(s+2)!

(1−4µ
2)[r− s] ̸= 0.

(71)

Proof. Necessity. If u is a Tµ -semi classical form, then (32) holds and from
(16), (32) becomes

(Φ+2µΦ̃)Tµu+(Φ′+2µΦ̃
′)u+2µH−1(Φ+2µΦ̃)h−1u

−2µ(1+2µ)
〈
u,Φ+ Φ̃

〉
δ
′
0 +

1−4µ2

K
Ψu = 0.
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From the linearity of S, we obtain

S((Φ+2µΦ̃)Tµu)(z)+S((Φ′+2µΦ̃′)u)(z)

+2µS(H−1(Φ+2µΦ̃)h−1u)(z)−2µ(1+2µ)
〈
u,Φ+ Φ̃

〉
S(δ ′

0)(z)

+1−4µ2

K S(Ψu)(z) = 0. ,

(72)

According to (9) and (17), we have

S((Φ+2µΦ̃)Tµu)(z) = (Φ+2µΦ̃)(z)T−µS(u)(z)+(Tµuθ0(Φ+2µΦ̃))(z),

S((Φ′+2µΦ̃
′)u)(z) = (Φ′+2µΦ̃

′)(z)S(u)(z)+(uθ0(Φ
′+2µΦ̃

′))(z),

S(H−1(Φ+2µΦ̃)h−1u)(z) = H−1(Φ+2µΦ̃)(z)S(h−1u)(z)
+((h−1u)θ0(H−1(Φ+2µΦ̃))(z),

S(Ψu)(z) = Ψ(z)S(u)(z)+(uθ0Ψ)(z).

Therefore, owing to (8), (72) gives (69) with
A(z) = Φ(z)+2µΦ̃(z)

C(z) =−
(

Φ′(z)+2µΦ̃′(z)+ 1−4µ2

K Ψ(z)
)

D(z) =−(Tµuθ0(Φ+2µΦ̃))(z)− (uθ0(Φ
′+2µΦ̃′))(z)

−2µ((h−1u)θ0(H−1(Φ+2µΦ̃))(z)− 1−4µ2

K (uθ0Ψ)(z).

(73)

Using (9), we can prove that (26) is equivalent to (70) and taking into account
(73), we can see that condition (28) can be written as (71).

Sufficiency. If u is regular such that its Stieltjes series S(u) satisfies (69) and
(71). Using (8), (9) and (17), (69) becomes

S
(
ATµu+2µ(H−1A)h−1u−Cu−2µ(2µ +1)

〈
u,A+(1−2µ)Φ̃

〉
δ ′

0
)
(z)

= (Tµuθ0A)(z)+2µ((h−1u)θ0(H−1A))(z)− (uθ0C)(z)+D(z).

Then{
S(ATµu+2µ(H−1A)h−1u−Cu−2µ(2µ +1)〈u,A+(1−2µ)Φ̃〉

δ ′
0
)(z) = 0

D(z) =−(Tµuθ0A)(z)−2µ((h−1u)θ0(H−1A))(z)+(uθ0C)(z).

Putting Φ(x) = A(x)−2µΦ̃(x) and Ψ(x) =− K
1−4µ2 (A′(x)+C(x)). So, by virtue

of (14), it is easy to see that

Tµ

(
(Φ+2µΦ̃)u

)
−2µ(1+2µ)

〈
u,Φ+ Φ̃

〉
δ
′
0 +

1−4µ2

K
Ψu = 0.
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We arrive now at a other characterization of Dunkl-semiclassical orthogonal
polynomials which is the so-called structure relation.

Proposition 2.7. Let {Pn}n≥0 be a MOPS with respect to a regular form u. The
following statement are equivalent

1. The MOPS is Tµ -semi classical.

2. There exist a complex number K and three polynomials Φ (monic), Φ̃ and
Ψ, deg(Φ) = deg(Φ̃) ≤ s+ 2, deg(Ψ) = p, 1 ≤ p ≤ s+ 1 fulfilling (28)
and (62) such that

(Φ(x)+2µΦ̃(x))Tµ(x2Pn(x)) =
n+d+1

∑
k=n−s−3

χn,kPk(x), d = deg(Φ), (74)

where
χn,k = 0, 0 ≤ n ≤ s+3, k < 0,

χn,0 =
1−4µ2

K

〈
u,x2

Ψ(x)Pn(x)
〉
, 0 ≤ n ≤ s+3 (75)

and

xΦ(x)Pn(−x) =
n+d+1

∑
k=n−s−3

θn,kPk(x) (76)

Proof. ▶ (1)⇒ (2). We always have

(Φ(x)+2µΦ̃(x))Tµ(x2Pn(x)) =
n+d+1

∑
k=0

χn,kPk(x), (77)

with d = deg(Φ)≤ s+2 and

χn,k =

〈
u,(Φ(x)+2µΦ̃(x))Tµ(x2Pn(x))Pk(x)

〉〈
u,P2

k(x)
〉 , 0 ≤ k ≤ n+d +1, n ≥ 0.

By virtue of (14), we get

χn,k
〈
u,P2

k(x)
〉
=
〈
(Φ(x)+2µΦ̃(x))u,Tµ(x2Pn(x)Pk(x))

−x2Pn(x)Tµ(Pk(x))+4µxH−1Pk(x)H−1(x2Pn(x))
〉
.

(78)

Using (63), the orthogonality of {Pn}n≥0 with respect to u and the fact that
deg(Ψ)≤ s+1, we get

〈
(Φ(x)+2µΦ̃(x))u,Tµ(x2Pn(x)Pk(x))

〉
=

1−4µ2

k

〈
u,x2

Ψ(x)Pn(x)Pk(x)
〉

= 0, k ≤ n− s−4, n ≥ s+4. (79)



DUNKL-SEMICLASSICAL POLYNOMIALS 87

Again the orthogonality of {Pn}n≥0 and the fact that deg(Φ+2µΦ̃)≤ s+2 give〈
(Φ(x)+2µΦ̃(x))u,x2Pn(x)Tµ(Pk(x))

〉
=
〈
u,x2(Φ(x)+2µΦ̃(x))Tµ(Pk(x))Pn(x)

〉
= 0, k ≤ n− s−4, n ≥ s+4. (80)

On the other hand,〈
(Φ(x)+2µΦ̃(x))u,4µxH−1Pk(x)H−1(x2Pn(x))

〉
=〈

(Φ(x)+2µΦ̃(x))u,2µx2H−1Pk(x)Pn(x)
〉

−
〈
(Φ(x)+2µΦ̃(x))u,2µx2H−1Pk(x)Pn(−x)

〉
.

One can easily see that〈
(Φ(x)+2µΦ̃(x))u,2µx2H−1Pk(x)Pn(x)

〉
= 0, k ≤ n− s−4, n ≥ s+4.

Then, from (26) and the fact that {Pn}n≥0 is orthogonal with respect to u, we
get 〈

(Φ(x)+2µΦ̃(x))u,4µxH−1Pk(x)H−1(x2Pn(x))
〉

=−
〈
(Φ(x)+2µΦ̃(x))u,2µx2H−1Pk(x)Pn(−x)

〉
=
〈
(Φ̃(x)+2µΦ(x))u,2µx2H−1Pk(−x)Pn(x)

〉
= 0, k ≤ n− s−4, n ≥ s+4. (81)

Substitution of (79), (80) and (81) into (78) gives

χn,k
〈
u,P2

k(x)
〉
= 0, k ≤ n− s−4, n ≥ s+4

Since
〈
u,P2

k(x)
〉
̸= 0, k ≥ 0, then

χn,k = 0, k ≤ n− s−4, n ≥ s+4

and (74) holds.
For 0 ≤ n ≤ s+3, (63) gives

χn,0 =−
〈
x2Tµ

(
(Φ(x)+2µΦ̃(x))u

)
,Pn(x)

〉
=

1−4µ2

K

〈
u,x2

Ψ(x)Pn(x)
〉
.

In the same way, to prove (76), we write

xΦ(x)Pn(−x) =
n+d+1

∑
k=0

θn,kPk(x),
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with

θn,k =

〈
u,xΦ(x)Pn(−x)Pk(x)

〉〈
u,P2

k(x)
〉 .

By following, we use (26), we get

θn,k
〈
u,P2

k(x)
〉
=
〈
u,xΦ(x)Pk(x)Pn(−x)

〉
=
〈
u,xΦ̃Pk(−x)Pn(x)

〉
= 0, k ≤ n− s−4.

So, (76) follows.
▶ (2)⇒ (1). For n ≥ s+4, owing to (74), we have〈
x2Tµ

(
(Φ(x)+2µΦ̃(x))u

)
,Pn(x)

〉
=−

〈
u,(Φ(x)+2µΦ̃(x))Tµ(x2Pn(x))

〉
=−

n+d+1

∑
k=n−s−3

χn,k
〈
u,Pk(x)

〉
= 0.

On account of (11), there exists a polynomial R, deg(R)≤ s+3, such that

x2Tµ

(
(Φ(x)+2µΦ̃(x))u

)
= R(x)u. (82)

Therefore, by virtue of (74) and (75), we get

〈
u,
(
R(x)+

1−4µ2

K
x2

Ψ(x)
)
Pn(x)

〉
=
〈
x2Tµ

(
(Φ(x)+2µΦ̃(x))u,Pn(x)

〉
+

1−4µ2

K

〈
u,x2

Ψ(x)Pn(x)
〉

=−χn,0 +
1−4µ2

K

〈
u,x2

Ψ(x)Pn(x)
〉

= 0, 0 ≤ n ≤ s+3.

Hence,

R(x) =−1−4µ2

K
x2

Ψ(x). (83)

Substituting (83) in (82), we obtain (63).
On the other hand, from (76), we have〈

h−1(xΦ(x)u),Pn(x)
〉
=
〈
u,xΦ(x)Pn(−x)

〉
=

n+d+1

∑
k=n−d−1

θn,k
〈
u,Pk(x)

〉
= 0, n ≥ d +2.
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Using (11), we get
h−1(xΦ(x)u) = B(x)u,

with B is a polynomial such that deg(B) = d + 1. Owing (45), we obtain (26)
which completes the proof.

A regular form u fulfilling (30) and (31) satisfies an infinity of equation of
the same type. In fact, let us multiply (30) by A, where A is a non zero even
polynomial, we obtain

Tµ

(
AΦu−2µh−1(AΦu)

)
−A′

Φu+2µA′h−1(Φu)+
1−4µ2

K
AΨu = 0. (84)

Since A is an even polynomial, A′ is an odd polynomial. Then, there exists a
polynomial Ã, deg(Ã) = deg(A′)− 1, such that A′(x) = xÃ(x). So (84) be-
comes

Tµ

(
AΦu−2µh−1(AΦu)

)
+

1−4µ2

K

(
AΨ− k

1−4µ2 (A
′
Φ+2µÃB)

)
u = 0.

Moreover,
xA(x)Φ(x)u = h−1(A(x)B(x)u)

Then, for any pair (Φ,Ψ) satisfying (30) we associate the positive integer s =
max{deg(Φ)−2,deg(Ψ)−1}. Putting

h(u) := {s = max{deg(Φ)−2,deg(Ψ)−1}, (30)− (31) hold}.

This leads to the following definition:

Definition 2.8. Let u be a Tµ -semi classical regular form. The non negative
integer s defined by

s = minh(u)

is called the class of u.
The corresponding MOPS {Pn}n≥0 will be said to be of class s.

Remark 2.9. 1. If s = 0, the form u is called Tµ -classical [6].

2. Here arises the questions: Is the pair {φ ,ψ} which realizes the minimum
of h(u) is unique? If it is unique, how we know whether the integer s
associated with a pair {φ ,ψ} is the minimum of h(u)?
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3. An example of non-symmetric Dunkl-semiclassical orthogonal polyno-
mials

Let us define the form u as

u = ηx−1v+δ0, η ∈ C∗\{1+λ}, (85)

where v defined by (21). The form u is regular, except in a discrete set (see
[14]). The MOPS corresponding to u, which we denote by {Pn}n≥0, satisfies the
three-term recurrence relation (10) with

β0 = η , βn+1 = an +
γv

n+1

an
, γn+1 =−an(an −β

v
n ), (86)

where (refer to [14])

an =− P̃n+1(0;−η)

P̃n(0;−η)
, n ≥ 0. (87)

From (85), we have
xu = ηv. (88)

It is clear that (21) and (88) give

x(x−1)u = ηλG(α,µ− 1
2 ). (89)

So,
h−1(x(x−1)u) = x(x−1)u. (90)

Multiplying (90) by x
(
x+ 1+2µ

1−2µ

)
, we obtain

xΦ(x)u = h−1(B(x)u),

with

Φ(x) = x(x−1)
(

x+
1+2µ

1−2µ

)
, B(x) = x2(x−1)

(
x− 1+2µ

1−2µ

)
.

Substituting (88) into (22), we get

Tµ

(
x(x2 −1)u

)
− 1+2µ

λ +1
x(x−λ −1)u = 0.

Then, u is Dunkl-semiclassical form and verifying (30) with

Ψ(x) =− (1+2µ)2

ξ (1−2µ)(λ +1)
x(x−λ −1)
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and

K =
1+2µ

ξ
,

where

ξ = (β1 +2β
2
0 )γ1 +β

3
0 +

4µ

1−2µ
(γ1 +β

2
0 )−

1+2µ

1−2µ
β0,

β0 = η , β1 =
η2 −2(1+λ )η +1+λ

1+λ −η
, γ1 =−(1+λ −η)(1+λ −2η).

So, we should choose η so that ξ ̸= 0.
Furthermore, condition (29) is written as

1+2µ

ξ (1−2µ)

(−(1+2µ)+
(
2µ[r−1]− (r−1)

)
(λ +1)

λ +1

)
̸= 0. (91)

Prove now that {P[1]
n (.,µ)}n≥0 is quasi-orthogonal of order 1 with respect to

w(µ) =
1+2µ

ξ (1−2µ)
x(x2 −1)u.

We have

µn+1
〈
w(µ),xmP[1]

n
〉
=−

〈
Tµ(xmw(µ)),Pn+1

〉
=−

〈
xmTµw(µ)+mxm−1w(µ)+2µH−1xmh−1w(µ),Pn+1

〉
=
〈
u,xm

ΨPn+1
〉
− 1+2µ

ξ (1−2µ)

〈
u,mxm(x2 −1)Pn+1

〉
+

2µ(1+2µ)

ξ (1−2µ)

〈
u,(H−1xm)x(x−1)2Pn+1

〉
.

So, from the orthogonality of {Pn}n≥0 with respect to u and the fact that degΨ=
2, we get 〈

w(µ),xmP[1]
n
〉
= 0, ∀ 0 ≤ m ≤ n−2.

Suppose that, for all r ≥ 1,
〈
w(µ),xr−1P[1]

r (.,µ)
〉
= 0. Then,

− 1
µr+1

〈
xr−1Tµw(µ)+(xr−1)′w(µ)+2µH−1(xr−1)h−1w(µ),Pr+1

〉
= 0. (92)

Using the orthogonality of {Pn}n≥0 with respect to u, we obtain

〈
xr−1Tµw(µ),Pr+1

〉
=−

〈
u,xr−1

Ψ,Pr+1
〉
=

(1+2µ)2

ξ (1−2µ)(λ +1)
〈
u,P2

r+1
〉
,
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(xr−1)′w(µ),Pr+1

〉
=

1
λη

〈
u,(r−1)xr−1(x2 −1)Pr+1

〉
=

(1+2µ)(r−1)
ξ (1−2µ)

〈
u,P2

r+1
〉

and 〈
H−1(xr−1)h−1w(µ),Pr+1

〉
=− 1

λη

〈
u,(H−1xr−1)x(x−1)2Pr+1

〉
=−(1+2µ)[r−1]

ξ (1−2µ)

〈
u,P2

r+1
〉
.

So, (92) became〈
u,P2

r+1
〉

µr+1

(
− 1+2µ

ξ (1−2µ)

−(1+2µ)+
(
2µ[r−1]− (r−1)

)
(λ +1)

λ +1

)
= 0,

which contradicts (91). Thus {P[1]
n (.,µ)}n≥0 is quasi-orthogonal of order 1 with

respect to w(µ).

Remark 3.1. In fact, for any n ≥ 1, the polynomial P[1]
n (x,µ) can be computed

by the following algorithm. Using the relation (87) to compute an−1. Next, we
can compute β1 and γ1 from (86) and finally, from the three-term recurrence
relation, we get Pn+1(x). Then compute P[1]

n (x,µ) from (18). As an example,
for n = 1, a0 = 1+λ −η . So

β1 = 1+λ −η − λ (1+λ )

1+λ −η
, γ1 = η(1+λ −η).

Then, we get

P2(x) =
(

x− (1+λ −η)+
λ (1+λ )

1+λ −η

)
(x−η)−η(1+λ −η).

Therefore, we obtain

P[1]
1 (x,µ) = x− 1

2
(1+2µ)

(
1+λ − λ (1+λ )

1+λ −η

)
.
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