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THE MAXIMUM LIKELIHOOD DEGREE OF LINEAR SPACES
OF SYMMETRIC MATRICES

C. AMÉNDOLA - L. GUSTAFSSON - K. KOHN
O. MARIGLIANO - A. SEIGAL

We study multivariate Gaussian models that are described by linear
conditions on the concentration matrix. We compute the maximum like-
lihood (ML) degrees of these models. That is, we count the critical points
of the likelihood function over a linear space of symmetric matrices. We
obtain new formulae for the ML degree, one via line geometry, and an-
other using Segre classes from intersection theory. We settle the case of
codimension one models, and characterize the degenerate case when the
ML degree is zero.

1. Introduction

We study n-dimensional multivariate Gaussian distributions with mean zero.
Every such distribution is described by the covariance matrix or, its inverse, the
concentration matrix. Both matrices lie in the cone of n× n positive definite
matrices. We consider multivariate Gaussian models as a set of concentration
matrices in the cone, and focus on linear models that are homogeneous (i.e. if
some concentration matrix is in the model, then so are its scalar multiples). The
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log-likelihood of observing sample covariance S at a concentration matrix K is

`S(K) = logdet(K)− tr(KS). (1)

The maximum likelihood (ML) degree counts the complex critical points of
the log-likelihood function, as we vary over the Zariski closure of the model.
The Zariski closure of a linear model is a linear space of symmetric matrices L
in the space Sn of n×n complex symmetric matrices. Linear spaces are well-
known to have unique minimizers of the Euclidean distance function, but the
same is not true of the log-likelihood.

The maximum likelihood degree of a Gaussian linear concentration model
was first studied in [17]. For generic linear spaces L, the ML degree equals
the degree of the reciprocal variety L−1 (defined below). This degree is non-
trivial to compute in general, and recently a connection to the space of complete
quadrics has led to more tools, including a proof of its polynomiality in the
ambient dimension n [13, 14].

However, Gaussian statistical models used in practice are seldom generic.
For example, a natural family of linear concentration models are undirected
Gaussian graphical models. In this setting, L is defined by zeros at the entries
that correspond to missing edges from a graph. Several results and conjectures
for the ML degrees of special classes of graphs can be found in [17, 18]. The
question of finding the ML degree of any pencil, that is, of a linear space of
dimension 2, has recently been answered in [9], using Segre symbols1.

In this paper we consider arbitrary linear spaces of symmetric matrices of
any dimension. Our main results include several characterizations of their ML
degree, in particular a formula based on line geometry (Theorem 2.11) and a
formula based on intersection theory (Theorem 4.2). The latter is given in terms
of Segre classes2. Section 3 is devoted to the hyperplane case. When the hy-
perplane is defined by an annihilator matrix A, we prove that its ML degree
equals the rank of A minus one (Proposition 3.4). A complete classification of
the ML degrees for all linear spaces in S3 is provided in Section 5. We study
linear spaces with ML degree 0 in Section 6 and give several equivalences for
this degenerate case to occur (Theorem 6.1).

2. Likelihood geometry

In this section we lay out our geometric set-up. We then give two approaches to
compute the ML degree of a linear space, and illustrate them on an example.

1named after Corrado Segre (1863-1924).
2named after Beniamino Segre (1903-1977).
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2.1. Geometric set-up

Let L ⊆ Sn be a linear space of symmetric matrices. Throughout this article, we
assume that L is regular, i.e. that it contains at least one matrix of full rank. We
consider the inner product on the real points in Sn given by ⟨K,Σ⟩ = tr(KΣ). We
extend the trace pairing to all complex matrices in Sn. This allows us to define
the annihilator or polar space of L:

L⊥ ∶= {Σ ∈ Sn ∣ tr(KΣ) = 0 for all K ∈ L}.

The derivative of the log-likelihood `S ∶ L →R in (1) at a real point K ∈ L is

DK(`S) ∶ LÐ→R
K̇ z→ ⟨K−1−S,K̇⟩.

Hence, the condition for K to be a critical point is given by K−1 −S ∈ L⊥. We
define the reciprocal variety L−1 to be the Zariski closure in Sn of the inverses
of the invertible matrices in L. Then the maximum likelihood degree of L ⊆ Sn

is the number of matrices, for generic S ∈ Sn, in the intersection

L−1∩(L⊥+S) . (2)

Given a matrix Σ in the intersection, the corresponding critical point in L is Σ
−1.

Remark 2.1. The reader might worry about some matrices in the intersection
being singular, since only the invertible matrices in L−1 correspond to some
K ∈ L. One might also ask whether points should be counted with multiplicity.
Later in this section (in Lemmas 2.2 and 2.3, and Proposition 2.4) we see:

1. For generic S, all intersections are at invertible matrices.

2. For generic S, the points in the intersection in (2) occur without multiplic-
ity. That is, the definition of ML degree does not depend on if we count
intersection points with or without multiplicity.

We now move the set-up to the projective space PSn. The varieties L−1

and L⊥ are both defined by homogeneous polynomials. We denote their pro-
jectivizations by L−1, L⊥. We let L⊥S denote the span of L⊥ and S, and denote
its projectivization by L⊥S . The dimension of L⊥S equals the codimension of L−1.
Hence L⊥S and L−1 meet either at deg(L−1) many points, counted with multiplic-
ity, or at infinitely many points. We consider the projection from L⊥:

πL⊥ ∶ PSn Ð→{W ∈Gr(dimL⊥+1,PSn) ∣ L⊥ ⊂W} ≅ PdimL,

S z→ L⊥S ,
(3)
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where Gr(k,PN) denotes the Grassmannian of k-dimensional subspaces of PN .
We will show in Proposition 2.4 that the ML degree is the degree of πL⊥ ∣L−1 , the
projection map πL⊥ restricted to the reciprocal variety L−1.

Lemma 2.2. Let X ⊂ PN be an irreducible variety of dimension d, and let πV ∶
PN ⇢ Pd be the projection from a linear space V ∈ Gr(N −d −1,PN). Then the
generic fiber of πV ∣X is reduced.

Proof. If the restricted map πV ∣X is not dominant, i.e. its generic fiber is empty,
the assertion is trivial. So we assume the generic fiber is finite and non-empty.

Since the map πV restricted to the singular locus of X is not dominant, the
generic fiber of πV ∣X does not contain singular points of X . Thus, the generic
fiber of πV ∣X is not reduced if and only if the generic W ∈Gr(N−d,PN) contain-
ing V intersects X non-transversely at a smooth point x ∈ X outside of V (i.e.,
x ∈W ∩Reg(X)∖V and W +TxX ≠ PN , where TxX ⊂ PN denotes the embedded
tangent space of X at x).

Since we assumed the map πV ∣X to be dominant, the join of X and V is the
whole ambient space PN . By Terracini’s lemma [20, Corollary 1.11], we have
that V +TxX =PN for generic x ∈X . So Y ∶= {x ∈Reg(X)∖V ∣V +TxX ≠ Pn} ⊂X
is a proper subvariety. Since we assumed X was irreducible, we have dimY <
dimX and πV ∣Y is not dominant. This means that the generic W ∈Gr(N−d,PN)
containing V does not pass through any point in Y ∖V , so it cannot intersect X
non-transversely outside of V .

Lemma 2.2 implies that the fibers of the map πL⊥ ∣L−1 are generically reduced.
That is, points in the generic fiber are present without multiplicity.

Lemma 2.3. The generic fiber of πL⊥ ∣L−1 consists only of invertible matrices.

Proof. We may assume that πL⊥ ∣L−1 is dominant since otherwise the assertion is
trivial. Hence, the generic fiber is the intersection

(L⊥S ∩L−1)∖L⊥ for generic S ∈ PSn. (4)

The singular matrices in the intersection are the fiber of L⊥S under the restriction
of πL⊥ to the locus L−1 ∩Z(det). The latter is a proper subvariety of L−1 and
thus πL⊥ ∣L−1∩Z(det) is not dominant. Hence the generic fiber of πL⊥ ∣L−1 does not
contain singular matrices.

Proposition 2.4. The ML degree of L is the degree of the restricted map πL⊥ ∣L−1 ,
i.e. the generic number of intersection points of L⊥S and L−1 that do not lie on L⊥.

Proof. Both domain and codomain of the map πL⊥ ∣L−1 have the same dimension
as L, so the map is generically finite. The degree of the map is the cardinality
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of the generic fiber (4). The fiber of L⊥S under πL⊥ ∣L−1 can be lifted to affine
space by setting the coefficient of S to be one. This affine lift is the intersection
in (2), up to multipicity and removing singular matrices. Hence the cardinality
of the fiber is equal to the ML degree, because the generic fiber is reduced, by
Lemma 2.2, and only contains invertible points, by Lemma 2.3.

We note that the degree of the projection πL⊥ ∣L−1 is sometimes used as
the definition of the ML degree, see [13, Definition 1.1], [14, Definition 2.3],
and [15, Definition 5.4]. Proposition 2.4 and Lemma 2.3 combine to show that
for generic S ∈ Sn, all intersection points of L⊥ +S and L−1 occur at invertible
matrices. Throughout the paper, we will make use of the following Lemma,
proved in [9, Lemma 4.1].

Lemma 2.5. The ML degree of a linear subspace L ⊂ Sn only depends on its
congruence class under change of basis by GLn.

2.2. A first formula

We now give a first approach to compute the ML degree of a linear space. We
recall from Proposition 2.4 that the ML degree ofL is the number of intersection
points of L⊥S and L−1 that do not lie on L⊥. The following result shows that all the
intersection points in L⊥ are non-invertible matrices. Then Lemma 2.3 implies
that the matrices we seek to exclude from the intersection L⊥S ∩L−1 are exactly
the non-invertible matrices.

Lemma 2.6. Every point in L−1∩L⊥ is a non-invertible matrix.

Proof. Assume that an invertible matrix Σ is contained inL−1∩L⊥. This implies
Σ
−1 ∈ L, and since Σ ∈ L⊥ we derive the contradiction 0 = tr(Σ

−1
Σ) = n.

Proposition 2.7. Let {A1, . . . ,Ac} be a basis for L⊥ ⊂ Sn, and define

AL = {Σ ∈ Sn ∣ tr(Ai ⋅adj(Σ)) = 0 for i = 1, . . . ,c}.

Then the ML degree of L is the number of invertible matrices in the intersection
AL∩(L⊥+S) for generic S ∈ Sn.

Proof. We have L−1 ⊆AL, since tr(Ai ⋅adj(K−1)) = 0 for K ∈L, but the inclusion
may be strict. However, all points in the difference AL∖L−1 are non-invertible
matrices. Indeed, if we have some invertible Σ ∈AL, then the defining equations
of AL imply that tr(Ai ⋅Σ−1) vanishes, i.e. Σ

−1 ∈ L. For generic S, none of the
critical points of the likelihood occur at singular matrices, by Lemma 2.3, hence
this includes all critical points of the likelihood.
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The inclusion L−1 ⊆ AL will always be strict if the dimension of L is small
enough. This is because all defining equations ofAL vanish when rk(Σ) ≤ n−2.
Hence if the corank-two matrices are not in L−1, then these lie in the difference
AL ∖L−1. The advantage of the larger intersection in Proposition 2.7 over the
smaller intersection in (2) is that we have defining equations for both sides. This
enables us to obtain the following.

Proposition 2.8. Let {A1, . . . ,Ac} be a basis for L⊥ ⊂ Sn. Then the ML degree
of L is the number of invertible matrices ∑i tiAi + S that are critical points of
`(t1, . . . ,tc) ∶= det(∑i tiAi+S).

Proof. We have the identity tr(Ai ⋅adj(∑ j t jA j +S)) = d
dti

(det(∑ j t jA j +S)) . So
the invertible critical points count the invertible matrices in the intersection of
AL and L⊥+S. Then we conclude using Proposition 2.7.

We note that this proposition has a natural connection to the problem of
maximizing the determinant along a spectrahedron, which computes the MLE
in the real setting, see [17].

Example 2.9. Let L = {K ∈ S3 ∣ κ11 = κ22 = 0}. A basis of L⊥ is given by
A1 = [1 0 0

0 0 0
0 0 0

] and A2 = [0 0 0
0 1 0
0 0 0

] . The ML degree of L is the number of invertible
matrices S+ t1A1+ t2A2 that are critical points of `(t1,t2) = det(S+ t1A1+ t2A2) =
s33t1t2+ t1(s22s33− s2

23)+ t2(s11s33− s2
13)+det(S). We obtain the conditions

s33t2+(s22s33− s2
23) = 0 s33t1+(s11s33− s2

13) = 0.

This system has a unique solution for (t1,t2) for generic S. The last step is
to verify that the critical point is at an invertible matrix. We substitute our
expressions for t1 and t2 into s33`(t1,t2) and obtain for generic S the expression
s33 det(S)−(s22s33− s2

23)(s11s33− s2
13) ≠ 0. Hence the model has ML degree 1.

2.3. A line geometry formula

In this subsection we give a formula for the ML degree of L based on the Grass-
mannian Gr(1,PSn).

Lemma 2.10. Let L ⊂ Sn be a linear subspace, and fix S ∈ PSn generic. The ML
degree of L is the number of pairs (Σ,Γ) ∈ L−1×L⊥ such that Σ ≠ Γ and S is on
the line ` ∈Gr(1,PSn) spanned by Σ and Γ.

Proof. The ML degree of L is the number of matrices in the intersection of
L−1 ∩L⊥S that are not in L⊥, see Proposition 2.4. A point Σ in the intersection
L−1 ∩L⊥S , but not in L⊥, can be written as a linear combination of some Γ ∈ L⊥
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and S, where the coefficient of S is non-zero. That is, the point Σ is on a line
` ∈Gr(1,PSn) spanned by Γ ≠ Σ and S. Hence the ML degree counts the Σ ∈ L−1

that lie on a line spanned by S and some Γ ∈L⊥ distinct from Σ. This is equivalent
to the assertion.

Figure 1: A diagram to show the construction of lines ` spanned by (Σ,Γ) ∈
L−1×L⊥, containing some S ∈ PSn. The ML degree of L is the total number of
intersections of L−1 with the linear space L⊥S .

We consider the Schubert variety of lines passing through S:

GS ∶= {` ∈Gr(1,PSn) ∣ S ∈ `} .

We are interested in lines ` ∈ GS that are spanned by Σ ∈ L−1 and Γ ∈ L⊥, by
Lemma 2.10. For this, we introduce the variety J in Gr(1,PSn):

J ∶= {` ∈Gr(1,PSn) ∣ ∃(Σ,Γ) ∈ L−1×L⊥ ∶ Σ ≠ Γ,Σ ∈ `,Γ ∈ `}.

Note that the union of the lines ` in J is the join of L−1 and L⊥ in PSn.

Theorem 2.11. Let L ⊂ Sn be a linear subspace of codimension at least two,
and let S ∈ PSn be generic. Then the ML degree of L is ∣J ∩GS∣.

We prove Theorem 2.11 by first counting the number of parametrizations of
a general line ` ∈ J . This number is the degree of the following projection.

γ ∶ {(Σ,Γ,`) ∈ L−1×L⊥×Gr(1,PSn) ∣ Σ ≠ Γ, Σ ∈ `, Γ ∈ `}Ð→J ,
(Σ,Γ,`) z→ `.

(5)

Lemma 2.12. Let L ⊂ Sn have codimension at least two and non-zero ML de-
gree. Then γ is a birational map.

Proof. Since the ML degree is non-zero, a general S ∈PSn lies on a line spanned
by some Σ ∈ L−1 and Γ ∈ L⊥. That is, the join of L−1 and L⊥ fills the ambient
space PSn, see also Theorem 6.1(iii). In particular, L−1 is not a cone over L⊥
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(otherwise their join would be L−1), so the map γ is generically finite. Since L⊥

is a linear space, the degree of γ counts the intersections of a generic line ` ∈ J
with L−1.

We consider a generic line ` ∈ J . The span of the line with L⊥ gives the
linear space L⊥S where S is a generic point. Since the codimension of the model
L is at least two, the linear space L⊥S strictly contains `. The reciprocal variety
L−1 intersects L⊥S ∖L⊥ at finitely many points, where their number is the ML
degree of L, by Proposition 2.4. Since the line ` is generic, it passes through
exactly one of the points. Otherwise, if ` is spanned by Σ ∈ L−1 and Γ ∈ L⊥, we
can perturb the point Γ on L⊥ (which has positive dimension by our assumption
on the codimension of L) to obtain a new line that only meets L−1 at Σ.

Proof of Theorem 2.11. We saw in Lemma 2.10 that the ML degree is, for gene-
ric S, the number of pairs (Σ,Γ) ∈ L−1×L⊥ with Σ ≠ Γ and S on the line spanned
by Σ and Γ. Hence, the ML degree is zero if and only if J ∩GS = ∅.

It remains to consider those L with non-zero ML degree. In particular, L−1

is not a cone over L⊥. This implies that the variety J has both dimension and
codimension dimPSn−1 inside the Grassmannian Gr(1,PSn). The Schubert
variety GS has the same (co)dimension. Hence the intersection J ∩GS is finite
for generic S, for instance as a consequence of [7, Theorem 1.7]. A line ` in this
intersection is spanned by a unique pair (Σ,Γ) ∈ L−1 ×L⊥ due to Lemma 2.12
and the genericity of S. Hence, the assertion follows from Lemma 2.10.

In the next section we discuss hyperplanes, where we see that the degree
of the projection γ can exceed one, and in fact deg(γ) equals the ML degree.
We conclude this section by revisiting Example 2.9; we use Theorem 2.11 to
compute its ML degree.

Example 2.13. We consider L = {K ∈ S3 ∣ κ11 = κ22 = 0}. The ML degree is the
number of lines ` ∈ Γ∩GS for generic S, by Theorem 2.11. We fix a generic S,
with entries si j, and show that there is only one line `, spanned by Σ ∈ L−1 and
Γ ∈ L⊥, with S ∈ `. We first express Σ in terms of S. Since matrices in L⊥ are
supported only on the (1,1) and (2,2) entries, we have σi j = si j for all entries
except possibly σ11 and σ22. But Σ

−1 ∈ L means σiiσ33−σ
2
i3 = 0 for i = 1,2. Since

s33 ≠ 0 by genericity of S, we recover all entries of Σ uniquely from S. The line
spanned by Σ and generic S meets the linear space L⊥ at the unique point Γ.

3. Hyperplanes

In this section, we find the ML degree of hyperplanes in Sn via two methods:
by finding defining equations of L−1, and by the line geometry formula from
Section 2.3. We also compute the ML degree of hyperplanes in the space of
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diagonal matrices via these two methods. We confirm that our results agree with
formulae for the ML degree of a diagonal linear model via matroids, see [17,
Section 3].

We saw in Section 2.3 that hyperplanes are excluded from the statement of
Theorem 2.11: for hyperplanes, the projection map γ need not be birational. In
fact, here we see that deg(γ) is equal to the ML degree.

Proposition 3.1. Let L ⊂ Sn be a hyperplane with non-zero ML degree. Then
the ML degree of L is the degree of the projection γ in (5).

Proof. The ML degree is the number of intersection points of a generic line
` passing through the point L⊥ with L−1 ∖L⊥, by Proposition 2.4. Since this
number is non-zero by assumption, the line ` is a generic point on J . Hence,
the degree of γ is also the cardinality of the intersection of ` with L−1∖L⊥.

Remark 3.2. When L ⊂ Sn is a hyperplane with non-zero ML degree, L⊥ is
a point and J ∩GS consists of the unique line spanned by L⊥ and the generic
point S. Hence, for any regular linear subspaceL⊂Sn, Theorem 2.11 and Propo-
sition 3.1 combine to show that the ML degree of L is

∣J ∩GS∣ ⋅deg(γ), (6)

for generic S, using the convention 0 ⋅∞ = 0. Indeed, the ML-degree is zero if
and only if J ∩GS = ∅. In the case of non-zero ML degree, ∣J ∩GS∣ = 1 if L is a
hyperplane, otherwise deg(γ) = 1 by Lemma 2.12.

We now compute the ML degree of a hyperplane. We write the linear equa-
tion defining the hyperplane as tr(AK) = 0, where A is a fixed complex sym-
metric matrix. We first obtain a description of the reciprocal variety L−1 for a
hyperplane L.

Lemma 3.3. Consider the hyperplane L = {K ∶ tr(AK) = 0}. The variety L−1 is
a hypersurface defined by the irreducible degree n−1 polynomial tr(A ⋅adj(K)).

Proof. The polynomial f (K) ∶= tr(A ⋅ adj(K)) defines AL = Z( f ), which con-
tains L−1. The variety L−1 is a hypersurface, since matrix inversion is a bira-
tional map. Hence L−1 is an irreducible component of AL.

To conclude, we show that the polynomial f is irreducible. Matrices in
AL ∖L−1 must be singular and, since AL is a hypersurface, the existence of
some Σ ∈AL∖L−1 implies the existence of a codimension one locus of singular
matrices, i.e. the locus Z(det). However, the determinant does not divide f (K)
since the determinant has degree n, while f has degree n−1. It remains to show
that f is not a power of a lower degree polynomial. For this, we observe that
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the diagonal entries κii of K are only present with linear exponent in f . (The off
diagonal entries may be present with higher power because we are in the space
of symmetric matrices.) For example, we can write f = κiibi(K)+ci(K), where
bi and ci do not involve the variable κii. This cannot be a power of a polynomial
g(K) unless bi(K) = 0 for all i. But we have the equality bi(K) = tr(Ai ⋅adj(Ki)),
where Ai and Ki denote the submatrices of A and K without row and column i.
Hence, the polynomial bi is zero if and only if Ai is zero. Repeating this for three
values of i shows that all entries of A must vanish, a contradiction. It remains to
consider the case n = 2. Here, f is linear, hence irreducible.

We now prove our main result of the section.

Proposition 3.4. LetL be a hyperplane in Sn defined by the equation tr(AK)= 0,
for some non-zero matrix A ∈ Sn. Then the ML degree of L is rk(A)−1.

Proof. We count points in the intersection of the hypersurface L−1 with L⊥+S.
The linear space L⊥+S is the line tA+S. Since the polynomial in Lemma 3.3 is
the defining equation of L−1, the intersection is the values of t such that

tr(A ⋅adj(S+ tA)) = 0.

The number of values of t for which this condition holds is the ML degree of L.
Moreover, by Lemma 2.2 the points are present without multiplicity for generic
S. We observe that

tr(A ⋅adj(S+ tA)) = d
dt

[det(S+ tA)] .

It therefore suffices to show that the degree of the polynomial det(S+ tA) is
r ∶= rk(A).

The ML degree is unchanged under congruence, by Lemma 2.5. We know
from [4, Equation (1.1)] that every complex symmetric matrix is congruent to a
diagonal matrix with entries (1, . . . ,1,0, . . . ,0) on the diagonal. Hence we can
assume the matrix A defining the hyperplane L has this form. This shows that
the polynomial has rank at most r in t. The coefficient of tr is the determinant
of the submatrix of S on rows r+1, . . . ,n and columns r+1, . . . ,n, if r < n, or the
coefficient is 1 if r = n. Since S is generic, the polynomial det(S+tA) has degree
r, as required.

Remark 3.5. We give an alternative proof of Proposition 3.4 using Proposi-
tion 3.1, for L with non-zero ML degree. We count the number of intersection
points of L−1 with a generic ` ∈ Gr(1,PSn) passing through A. Since the degree
of L−1 is n−1, by Lemma 3.3, there are n−1 intersection points in total, counted
with multiplicity. The intersection multiplicity at the point A is n−r, as follows.
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The homogeneous polynomial tr(A ⋅adj(sS+tA)) is divisible by sn−r, by the con-
gruence argument in the proof of Proposition 3.4. The ML degree is the number
of intersection points away from A, which is is equal to (n−1)−(n− r) = r−1.

Example 3.6. If L is defined by tr(AK) where A has rank one, the linear space
L has ML degree zero. We study ML degree zero examples in Section 6.

We consider models defined by hyperplanes in the space of diagonal matrices.

Proposition 3.7. Consider a regular linear subspace L ⊂ Sn defined by κi j = 0
for all i≠ j together with the condition tr(AK) = 0 for a non-zero diagonal matrix
A ∈ Sn. Then the ML-degree of L is rk(A)−1.

Proof. We first show that the degree of L−1 is rk(A)−1. We can change basis
under congruence action so that A is the matrix with r ∶= rk(A) ones on its di-
agonal, and all other entries zero. We let the diagonal coordinates of an n×n
matrix be given by the variables x1, . . . ,xn. Then the variety L is defined by

x1+⋯+xr = 0.

The variety L−1 is also contained in the space of diagonal matrices. It is defined
by the condition

1
x1
+⋯+ 1

xr
= 0.

We multiply by the product x1⋯xr to obtain a hypersurface V defined by an
irreducible polynomial of degree r−1. We now exclude the possibility that V
strictly contains L−1. A matrix in V ∖L−1 is non-invertible. Hence if L−1 ⊊V
then V must contain a hypersurface of non-invertible diagonal matrices, i.e. V
must contain a coordinate hyperplane. We see from its defining equation that V
does not contain a coordinate hyperplane, hence V = L−1.

We show that the ML degree ofL agrees with the degree of L−1. It suffices to
show that L−1∩L⊥ is empty, by Proposition 2.4. The variety L−1 is contained in
the diagonal matrices, and the only diagonal matrix in L⊥ is A. We conclude by
observing that A ∉ L−1, by setting x1 = . . . = xr = 1 into the equation for L−1.

Remark 3.8. We give an alternative proof of Proposition 3.7, based on The-
orem 2.11. That is, we count the lines ` spanned by (Σ,Γ) ∈ L−1 ×L⊥ passing
through a generic S. We seek the Γ ∈ L⊥ such that S−Γ ∈ L−1. The off diagonal
entries of Γ must match those of S, since L−1 is contained in the diagonal matri-
ces, so it suffices to look at diagonal entries. The diagonal entries of Γ are those
of tA for some scalar t. As before, we work up to congruence, and assume that A
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is diagonal with r ∶= rk(A) ones on the diagonal. Then the condition S−Γ ∈ L−1

gives the following degree r−1 polynomial in t:

r

∑
i=1

⎛
⎝∏j≠i

(s j − t)
⎞
⎠
,

where s j is the jth diagonal entry of S. Hence a generic S lies on r−1 lines.

We note that the same ML degree of rk(A) − 1 appears in both Proposi-
tions 3.4 and 3.7. However, the two occurrences of rk(A)−1 come from differ-
ent parts of the multiplicative formula for the ML degree in (6). For a hyper-
plane, there is a unique line for each S but rk(A)−1 parametrizations of each
line. In comparison, for a hyperplane in the diagonal matrices, each S lies on
rk(A)−1 lines, each with a unique parametrization.

We now describe how Proposition 3.7 follows from more general results: a
Gröbner basis for L−1 from [16], and a formula for the ML degree of L from
the characteristic polynomial of its associated matroid, see [8, Theorem 2.1(a)].
We identify the space of diagonal n× n matrices with Cn, and view a linear
space of diagonal matrices as L ⊆ Cn. The inverse variety L−1 is then also
contained in the diagonal matrices. The inverse L−1 does not intersect the polar
space L⊥, see [17, Corollary 3.3]. Hence the ML degree of L is deg(L−1), by
Proposition 2.4.

ML degrees were connected to matroids in [17, Section 3]. A brief introduc-
tion to matroids is given in [3]. A matroid M is pair (E,I), where E is a finite
set, and I a collection of subsets of E, called its independent sets, which sat-
isfy certain axioms. A matroid can also be defined by its circuits, other subsets
C ⊆ E that satisfy certain other axioms. We briefly describe how to associate a
matroid M to a linear space L⊆Cn. We take E = [n]. The matroid M has circuits
given by minimal subsets C ⊆ [n] such that a linear combination of {xc ∶ c ∈C}
vanishes on L. That is, the circuits of L are the supports of minimal support
vectors in L⊥, see [17, Theorem 3.2]. For example, if L consists of all vectors
orthogonal to e1+⋯+er, then M has just one circuit, {1, . . . ,r}.

Assume the linear combination of {xc ∶ c ∈C} that vanishes onL is∑c∈C acxc.
Following [16], we define the polynomial

fC ∶= ∑
c∈C

ac
⎛
⎝ ∏

c′∈C/{c}
xc′

⎞
⎠
.

The polynomials fC, as C ranges over circuits of M, gives a universal Gröbner
basis for the ideal defining L−1, see [16, Theorem 4]. In the special case where
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the linear combination is x1 +⋯+ xr, the polynomial fC is constructed in the
proof of Proposition 3.7.

If L is a hyperplane in the diagonal matrices then, up to congruence, it is
defined by the vanishing of x1+⋯+xr, where r is the rank of the diagonal matrix
in L⊥. The result [16, Theorem 4] implies that L−1 is described by the vanishing
of ∑r

i=1 (∏1≤ j≤r, j≠i x j). This polynomial has degree r − 1, hence deg(L−1) is
r − 1, and the ML degree of L is also r − 1. Together with Remark 3.8, this
gives a third proof of Proposition 3.7. We conclude this section with a fourth
proof, obtained by specializing a formula for the ML degree in terms of the
characteristic polynomial of its associated matroid, see [8, Theorem 2.1(a)].

The characteristic polynomial of the matroid M is:

χM(λ) ∶= ∑
S⊆[n]

(−1)∣S∣λ r(M)−r(S),

where r(M) is the rank of M, the size of its maximal independent sets, and r(S)
is the rank of the submatroid on S. A subset is independent in the submatroid
on S if it is independent in M and contained in S. The constant term χM(0) is
then the number of subsets of [n] whose restriction has the same rank as M.
We have deg(L−1) = ∣χM(0)∣, see [8, Theorem 2.1(a)]. The invariant χM(0) is
sometimes called the Möbius invariant of the matroid M, and denoted µ(M); it
is mistakenly referred to as the beta invariant in [17].

We evaluate χM(0) when L is a hyperplane in the diagonal matrices. As
above, we work up to congruence and assume L has normal vector e1+⋯+er.
The rank of M is n−1, hence a subset S ⊂ [n] can only be a submatroid of the
same rank if ∣S∣ ≥ n− 1. There is one choice with ∣S∣ = n. It remains to count
the S of size n−1. There can be no circuits in the submatroid, so we must have
removed one of the first r coordinates. Hence there are r choices. We obtain
χM(0) = (−1)m−1(r−1). Hence ∣χM(0)∣ = r−1.

4. An intersection theory formula

In this section we give a formula for computing the ML degree that does not
involve calculations with generic matrices S, unlike the ones so far.

Intersection theory is used throughout algebraic geometry to obtain answers
to many kinds of counting problems. Of central importance is the Chow ring of
a smooth variety, a graded ring whose elements can be thought of as generalized
subvarieties organized by their dimension. The graded parts of the Chow ring
are called the Chow groups. For instance, the Chow ring of PN is the polyno-
mial ring Z[ζ ]/ζ N+1, where an element of the form kζ

j represents a generic
codimension- j subvariety of degree k. Multiplication in the Chow ring corre-
sponds to taking scheme-theoretic intersections of subvarieties.
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Let X1 and X2 be irreducible subvarieties in PN of complementary dimen-
sion. We consider the diagonal ∆ ≅PN of PN ×PN and let X1∩X2 =∆∩(X1×X2).
Let β be the dimension of X1 ∩X2 and CH j(X1 ∩X2) its j-th Chow group for
j = 0, . . . ,β . The j-th Segre class of X1∩X2 in X1×X2 is denoted

s j(X1∩X2,X1×X2) ∈CH j(X1∩X2),

and defined in [10, Ch. 7, §4.2]. We let σ
j(X1∩X2,X1×X2) denote the degree

of the jth Segre class, taken by the inclusion of X1∩X2 in the diagonal ∆ ≅ PN .
The function segre(Z,V) in the Macaulay2 [11] package SegreClasses can
be used to compute the Segre classes of a subscheme Z of a scheme V that lives
in a product of projective spaces [12]. The following lemma describes how to
multiply classes of varieties in terms of Segre classes.

Lemma 4.1. Let X1 and X2 be irreducible varieties in PN of complementary
dimension. Let β be the dimension of the intersection X1 ∩X2. We have the
following equality in the 0-th Chow group of X1∩X2:

X1 ⋅X2 =
β

∑
j=0

(N +1
j

)s j(X1∩X2,X1×X2) ⋅ζ j. (7)

Proof. Both sides of (7) are additive over connected components, as follows.
We have X1 ⋅X2 = ∑C(X1 ⋅X2)C, where the sum runs over the connected com-
ponents of X1 ∩X2. The additivity on the right hand side follows from the fact
that Segre classes are additive over connected components: if Z ⊂ V decom-
poses as Z1∪̇Z2 then s j(Z,V) = s j(Z1,V) + s j(Z2,V). Hence we may assume
that Z = X1∩X2 is connected.

Following [10, 9.1], we take Y =PN ×PN , let X =∆ be the diagonal of Y , and
let V = X1×X2. The normal bundle N of ∆ in Y is the tangent bundle of PN , so
c(N) = (1+ζ)N+1, where c denotes the total Chern class [10, Example 3.2.11].
Now, [10, Prop. 9.1.1] gives

(X1 ⋅X2)Z = (∆ ⋅V)Z = {(1+ζ)N+1 ⋅ s(Z,V)}0, (8)

where s(Z,V) = ∑β

j=0 s j(Z,V) is the total Segre class and {⋯}0 denotes the
terms that belong to CH0. Collecting these terms, we obtain the formula (7).

Theorem 4.2. Let N = dimPSn. The ML degree of a regular subspace L ⊂ Sn is

degL−1−
β

∑
j=0

(N
j
)σ

j(L−1∩L�,L−1×L⊥). (9)
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Proof. We apply Lemma 4.1 with X1 = L−1 and X2 = L⊥S embedded in PSn ≅ PN .
By Proposition 2.4, the class L−1 ⋅L⊥S decomposes as the sum of a class supported
in L−1∩L� and a class supported in the finite set E of critical points of the log-
likelihood. Since deg(L−1 ⋅L⊥S) = degL−1, taking degrees in (7) gives

degL−1 =
β

∑
j=0

(N +1
j

)σ
j(L−1∩L⊥,L−1×L⊥S)+∑

P∈E
σ

0(P,L−1×L⊥S).

The latter term is the ML degree of L because σ
0(P,L−1×L⊥S) is the multiplicity

of L−1 ×L⊥S along P [10, 4.3], which is one for all P ∈ E since S is generic (by
Lemma 2.2 and the fact that each P is smooth on L−1). The former term is the
degree zero part of the class (1+ζ)N+1 ⋅ s(L−1∩L⊥,L−1×L⊥S) as in (8).

The projection L⊥S ∖{S} → L⊥ away from S identifies L⊥S ∖{S} as the hyper-
plane bundle OL⊥(1). By [10, Example 4.2.7] we have

s(L−1∩L⊥,L−1×L⊥) = c(O(1)) ⋅ s(L−1∩L⊥,L−1×(L⊥S ∖{S}))
= (1+ζ) ⋅ s(L−1∩L⊥,L−1×L⊥S),

where the second equality follows from c(O(1)) = 1 + ζ and [10, Proposi-
tion 4.2]. Thus we have the following equality of terms in CH0

{(1+ζ)N+1 ⋅ s(L−1∩L⊥,L−1×L⊥S)}0 = {(1+ζ)N ⋅ s(L−1∩L⊥,L−1×L⊥)}0.

Expanding the right hand side, we obtain the term that is subtracted in (9).

Formula (9) simplifies when the intersection L−1∩L⊥ is finite and only con-
tains smooth points of the reciprocal variety L−1. The following immediate
corollary is used in [6] to compute the ML degrees of all three-dimensional
subspaces of S3 (also listed in Section 5.3).

Corollary 4.3. Let L ⊂ Sn be a linear space such that the intersection L−1∩L⊥

is finite and consists only of smooth points of L−1. Then the ML degree of L is

degL−1−deg(L−1∩L⊥),

where the second term is the scheme-theoretic degree of the intersection L−1∩L⊥

(i.e., the constant coefficient of its Hilbert polynomial).

Example 4.4. Let L⊂ S3 be a four-dimensional subspace whose polar space L⊥
is a regular pencil spanned by a rank-one and a rank-two matrix. This pencil has
Segre symbol [(11)1] (see Section 5.4). Up to congruence, the pencil is spanned
by [1 0 0

0 1 0
0 0 0

] and [0 0 0
0 0 0
0 0 1

]. We compute the ML degree of L using our intersection
theory formula in Theorem 4.2. A Macaulay2 computation reveals that the
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reciprocal variety L−1 has degree 4. Next, we apply the function segre(Z,V)

for V = L−1×L⊥ and Z = ∆∩V to obtain

segre(Z,V) = 2H5
1 H5

2 ,

where H1 and H2 are the hyperplane classes in the Chow rings of the factors of
P5×P5. This corresponds to the Segre class 2ζ

5 in the Chow ring of the diagonal
∆ ≅ P5. Hence, σ

0(Z,V) = 2 and σ
j(Z,V) = 0 for all j > 0, so Theorem 4.2 tells

us that the ML degree of L is degL−1 −σ
0(Z,V) = 4−2 = 2. We include this

computation in our supplementary code [2].
However, we cannot apply the simplified version of the formula in Corol-

lary 4.3, even though L−1 ∩L⊥ is a single point. This is because the point is
singular on the reciprocal variety L−1. In fact, L−1 is singular along two lines
and two isolated points. The two lines intersect exactly at the point L−1∩L⊥. The
scheme-theoretic degree of the intersection L−1 ∩L⊥ is in fact 1, which shows
that the formula in Corollary 4.3 does not hold in this case.

Example 4.5. We revisit the four-dimensional linear space L ⊂ S3 in Examples
2.9 and 2.13. Its polar space L⊥ is a singular pencil with Segre symbol [11;;1]
(see Section 5.4). Up to congruence, L is the only linear subspace of S3 with
non-zero ML degree such that the intersection L−1∩L⊥ is not finite.

In fact, the reciprocal variety L−1 is singular along a plane that contains the
line L⊥. The singular plane contains two other embedded lines that meet L⊥ in
two points. Using our Segre classes approach, we can determine how much this
singular structure contributes to the degree of L−1.

Let V = L−1×L⊥ and Z = ∆∩V . The function segre(Z,V) yields the Segre
class −7ζ

5+2ζ
4 in the Chow ring of ∆ ≅ P5. Hence, σ

0(Z,V) = −7, σ
1(Z,V) =

2, and σ
j(Z,V) = 0 for all j > 1. Applying Theorem 4.2, we see that the ML

degree of L is degL−1−σ
0(Z,V)−5σ

1(Z,V) = 4+7−10 = 1. The details of this
computation can be found in our supplementary code [2].

Remark 4.6. In fact, we first encountered the formula (9) in [20] where it is
used to determine if the join of two projective varieties has the expected dimen-
sion. Our multiplicative formula (6) for the ML degree is exactly the degree
of the class appearing in [20, Proposition 2.2(i)] (using the substitution r↦ 2,
X1↦ L−1, X2↦ L⊥, n↦ N −1, m↦ n+ r−2 = N −1). In the proof of [20, Theo-
rem 2.4] it is shown that that degree is given by our formula (9). This gives an
alternative argument for Theorem 4.2.

We now turn our attention to a statistically meaningful example. Formula
4.2 allows us to give an explanation for the ML degree of the smallest Gaussian
graphical model with ML degree greater than 1, namely, the model associated
to the undirected 4-cycle in Figure 2.
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1 2

34

Figure 2: The undirected 4-cycle.

Example 4.7. The linear space corresponding to the Gaussian 4-cycle model
is L = {K ∈ S4 ∣ κ13 = κ24 = 0}, since the edges 1−3 and 2−4 are missing from
the graph (see Figure 2). The polar space L⊥ is a regular pencil that intersects
the reciprocal variety L−1 at two points. Both points are singular on L−1 and
a Macaulay2 computation using the function segre(Z,V), where V = L−1 ×
L⊥ and Z = ∆∩V , reveals that each point contributes 2 to the 0-th Segre class:
σ

0(Z,V) = 2+2 = 4. Formula 4.2 then computes the ML degree to be equal to
degL−1−σ

0(Z,V) = 9−(2+2) = 5.

We believe that understanding the intersection theory behind larger n-cycles
could shed light on a 2008 conjecture concerning their ML degree: it is conjec-
tured in [5, Section 7.4] that the ML degree of Ln is (n−3)2n−2+1, where Ln is
the linear space associated to the Gaussian n-cycle model.

The intersection L−1
4 ∩L⊥4 from the 4-cycle example above is a monomial

scheme, i.e. its defining ideal is generated by monomials. When investigat-
ing the 5-cycle, we see that the same is true for the intersection L−1

5 ∩L⊥5 . We
conjecture that the intersection L−1

n ∩L⊥n is a monomial scheme for all n.
The computations in Example 4.7 quickly become prohibitive for larger n

with the function segre. However, there is an alternative geometric way of in-
terpreting and computing Segre classes of monomial schemes due to Aluffi [1].
This approach expresses Segre classes of regular crossings monomial schemes
as integrals over polytopal Newton regions. These integrals can be efficiently
computed by triangulating the Newton regions. Unfortunately, this method does
not apply as is to our 4-cycle example since the singularities described in Ex-
ample 4.7 interfere with the regular crossings assumption. We expect a general-
ization of the technique in [1] to be a promising way to make progress towards
the conjecture in [5].

5. Full classification for n = 3

We compute the ML degree of every regular subspace in S3. Here are the results
listed by dimension.
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1) Lines. A linear space spanned by a full-rank matrix has ML degree one.

2) Planes. There are five congruence classes of 2-dimensional regular linear
spaces in S3. The ML degrees are listed in [9, Example 1.3] by Segre symbol.

[1 1 1] [2 1] [(1 1) 1] [3] [(2 1)]
degL−1 2 2 1 2 1
mld(L) 2 1 1 0 0

3) 3-Planes. There are 13 types of 3-dimensional regular linear spaces in S3

described in [19]. Their ML degrees are computed in [6, Table 1]:

A B B∗ C D D∗ E E∗ F F∗ G G∗ H
degL−1 4 3 4 3 2 4 1 4 2 2 1 2 1
mld(L) 4 3 3 2 2 2 1 1 0 1 0 0 0

4) 4-Planes. The congruence classes of 4-dimensional linear spaces are in
one-to-one correspondence with the congruence classes of 2-dimensional linear
spaces by polarity (via the trace pairing). Hence there are 8 such congruence
classes according to their polar Segre symbol. Using the representatives in [19,
Table 0], we compute their ML degrees in Macaulay2:

[111] [21] [(11)1] [3] [(21)] [;1;] [11;;1] [2;;1]
degL−1 4 4 4 4 4 1 4 1
mld(L) 4 3 2 2 1 1 1 0

These computations are included in our supplementary code [2].

5) Hyperplanes. The ML degree of a hyperplane {K ∈ S3 ∣ tr(AK) = 0} is
rk(A)− 1, by Proposition 3.4.

6. Maximum likelihood degree zero

Let L be a regular linear space of symmetric matrices. As seen in Section 2.1,
the ML degree is the number of invertible matrices in the intersection L−1∩L⊥S
for a generic matrix S ∈ Sn. The case of ML degree is zero is very special.
It implies that none of the matrices in L are positive definite, see Corollary
6.2. Hence L does not define a statistical model. Geometrically, L belongs
to a special type of degenerate linear spaces, and must satisfy the following
equivalent conditions.
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Theorem 6.1. Let L ⊂ Sn be a regular subspace. The following are equivalent:
(i) The ML degree of L is zero.
(ii) The restriction πL⊥ ∣L−1 of the projection in (3) is not dominant.
(iii) The join of L−1 and L⊥ is not the whole ambient space PSn.
(iv) A generic K ∈ L satisfies (KL⊥K)∩L ≠ {0}.
(v) For every pair of bases {Ai}c

i=1 of L⊥ and {Bk}d
k=1 of L, we have the

vanishing of the polynomial det(M) ∈C[s1, . . . ,sd], where the matrix M has

Mi j =
d

∑
k,l=1

sksl ⋅ tr(AiBkA jBl) ∈C[s1, . . . ,sd].

Proof. The first two conditions are equivalent by Proposition 2.4. For condi-
tions (ii) and (iii), we abbreviate πL� to π . We have

π(join(L−1,L�)) = π(L−1) and join(L−1,L⊥) = π
−1

π(L−1).

The first relation shows that (ii) implies (iii). The second relation shows the
converse. For the equivalence of (iii) and (iv), observe that join(L−1,L⊥) ≠ PSn

if and only if L−1+L⊥ ≠ Sn. A generic point Σ ∈ L−1 +L⊥ is of the form Σ =
K−1+Σ

′ where K ∈ L is an invertible matrix and Σ
′ ∈ L⊥. By Terracini’s lemma

[20, Corollary 1.11], TΣ(L−1 +L⊥) = TK−1L−1 +TΣ′L⊥. By matrix calculus,
we see that TK−1L−1 = K−1LK−1. Hence, (iii) is equivalent to TΣ(L−1 +L⊥) =
K−1LK−1+L⊥ being contained in a hyperplane, which means that the intersec-
tion K−1LK−1∩L⊥ is non-zero. This is equivalent to condition (iv).

For the equivalence of (iv) and (v), write K =∑k skBk for a generic K ∈ L and
Σ = ∑ j t jA j for Σ ∈ L⊥. We see that condition (iv) is equivalent to the following
linear system of equations having a non-zero solution t for generic s:

tr
⎛
⎝

Ai(∑
k

skBk)
⎛
⎝∑j

t jA j
⎞
⎠
(∑

l
slBl)

⎞
⎠
= 0, i = 1, . . . ,c. (10)

Define the c×c×d×d tensor T by Ti jkl = tr(AiBlA jBk). Then (10) means

∑
j

⎛
⎝∑k,l

skslTi jkl
⎞
⎠

t j = 0, i = 1, . . . ,c.

This is a linear system of equations in the t j which has a non-zero solution for
generic s if and only if det(M) = 0, where Mi j(s) =∑k,l skslTi jkl . This proves the
equivalence of (iv) and (v).

Corollary 6.2. A linear space L of real symmetric matrices with ML degree 0
has empty intersection with the interior of the positive definite cone.
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Proof. If L contains a positive definite matrix K, then a generic such matrix
satisfies (KL⊥K) ∩L ≠ {0} by Theorem 6.1(iv). After a change of basis un-
der congruence we may assume that K is the identity. We get L⊥ ∩L ≠ {0}, a
contradiction.

This shows that any linear space of ML degree 0 only intersects the positive
semi-definite cone at the rank deficient matrices. This result is consistent with
what is known about the MLE for linear concentration models ([17, Corollary
2.2]), namely that the MLE, if it exists, is the unique maximizer of the determi-
nant over the spectrahedron defined by the fiber of the linear sufficient statistics
map intersected with Sn. It could be tempting to think that the ML degree 0
linear spaces are exactly those that only intersect the PD cone at the boundary.
The following is a counter-example.

Example 6.3. Consider the one-dimensional linear space L spanned by [1 0
0 −1] .

The reciprocal variety L−1 is equal to L, while L⊥ consists of matrices [a b
b a] .

We see that L−1 +L⊥ fills the space of 2×2 symmetric matrices. Hence L has
strictly positive ML degree (in fact, ML degree one), but it only intersects the
PD cone at zero.

We now describe a geometrically interesting subclass of models with ML
degree zero.

Remark 6.4. A sufficient condition for a linear space L to have ML degree
zero is if the reciprocal variety L−1 and the annihilator L⊥ lie in a common
hyperplane, by Theorem 6.1(iii). In other words,

there exists K ∈ L such that L ⊆ ({K}⊥)−1. (11)

Note that K must be rank deficient: If K ∈ L had full rank, then K−1 ∈ L−1.
But then L−1 ⊆K⊥ implies K−1 ∈K⊥, and hence tr(KK−1) = 0, a contradiction.

Lemma 6.5. For a regular subspace L ⊂ Sn, condition (11) is equivalent to:

there exists K ∈ L such that det(P+ tK) = det(P)

for all P ∈ L and all t ∈C.

Proof. Set B0 = K and extend to a basis {Bi}d
i=0 for L. For all (t0, . . . ,td) with

∑i tiBi invertible, condition (11) says

0 = tr(B0 adj(
d

∑
i=0

tiBi)) =
d

dt0
det(∑

i
tiBi).

Hence the polynomial det(∑i tiBi) does not depend on t0.



THE ML DEGREE OF LINEAR SPACES OF SYMMETRIC MATRICES 555

Example 6.6. Let L⊥ be the singular pencil spanned by [0 1 0
1 0 0
0 0 0

] and [0 0 0
0 1 0
0 0 0

].

Since a generic element of L has the form [
t0 0 t1
0 0 t2
t1 t2 t3

], we see that

AL = {[
−t2

2 t1t2 0
t1t2 t0t3−t2

1 −t0t2
0 −t0t2 0

] ∣ t0,t1,t2,t3 ∈C} .

This shows thatL−1 andL⊥ are contained in a common linear space of codimen-
sion 2. Hence, L has ML degree zero by Remark 6.4. In fact, up to congruence,
this is the only 4-dimensional subspace on S3 with ML degree zero (see Sec-
tion 5.4: the pencil L⊥ has Segre symbol [2;;1]).

Another way to see that L has ML degree zero is the following. The deter-
minant of a generic element of L is −t0t2

2 . Since it does not depend on t1, we

can take K = [0 0 1
0 0 0
1 0 0

] in Lemma 6.5. The same reasoning with t3 also applies.

The same techniques can be used to study the 3-dimensional subspaces L ⊂
S3 listed in Section 5.3.

Example 6.7. Let L= {[
t0 0 t2
0 t1 t2
t2 t2 0

] ∣ ti ∈C}. It is a 3-dimensional subspace of S3 of

type F (see Section 5.3). The determinant is −(t0+ t1)t2
2 . While the determinant

depends on all three variables, the linear forms appearing in it are orthogonal to
t0− t1. Setting K = [1 0 0

0 −1 0
0 0 0

] in Lemma 6.5 shows that L has ML degree zero.

For all regular linear subspacesL of S3 with ML degree zero (see Section 5),
it is in fact true that L−1 and L⊥ are contained in a common hyperplane; with
the following exception (up to congruence).

Example 6.8. The hyperplane L = A⊥ with A = [1 0 0
0 0 0
0 0 0

] has ML degree zero by

Proposition 3.4. Its reciprocal hypersurface L−1 =P{[
σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

] ∣σ22σ33−σ
2
23 =

0} is a quadric cone whose vertex set (≅ P2) contains the point L⊥. Hence, L−1

and L⊥ are not contained in a common hyperplane, but their join is L−1, so the
ML degree of L is zero by Theorem 6.1(iii).

Equivalently, we can compute the 1×1 matrix M in Theorem 6.1(v). For
every matrix B ∈ L, we have ABA = 0, which shows that M is zero.

In the space of 4×4 symmetric matrices, there are more geometrically in-
teresting regular subspaces with ML degree zero. We conclude this paper with
a class of codimension-two subspaces L, where L−1 and L⊥ are not contained in
a common hyperplane.



556 AMÉNDOLA - GUSTAFSSON - KOHN - MARIGLIANO - SEIGAL

Example 6.9. Let L⊥ be a tangent line to the variety of rank-one matrices in
PS4. After a change of coordinates, we may assume that

L⊥ = span{[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] ,[
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]} .

The reciprocal variety is a cubic cone whose vertex set (≅ P4) contains L⊥:

L−1 = {Σ ∈ PS4 ∣ σ33σ44−σ
2
34 = 0, σ23σ44−σ24σ34 = 0, σ23σ34−σ33σ24 = 0}.
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Birkhäuser Basel, 2008.

[6] Stefan Dye - Kathlén Kohn - Felix Rydell - Rainer Sinn, Maximum Likelihood
Estimation for Nets of Conics, ArXiv:2011.08989, 2020.

[7] David Eisenbud - Joe Harris, 3264 and All That: A Second Course in Algebraic
Geometry, Cambridge University Press, 2016.

[8] Christopher Eur - Tara Fife - José Alejandro Samper - Tim Seynnaeve, Re-
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