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BOUNDARY VALUE PROBLEMS IN GENERAL RELATIVITY

G. CIMATTI

Certain theorems of existence, non-existence and uniqueness for boun
dary value problems modeling axial symmetric problems in general rel-
ativity are presented using the Weyl’s metric. A solution related to the
classical Poiseuille solution of non-relativistic fluid mechanics is also pre-
sented.

1. Introduction

The theory of newtonian potential is essentially a theory of elliptic boundary
value problems. On the other hand, in general relativity the coefficients of the
metric play the role of unknown potentials [7], but the corresponding boundary
value problems seems to have received little attention. Even in simple case
of absence of matter and electromagnetic fields, the Einstein equations do not
fit immediatly in any of the type in which the partial differential equations are
classified. They are nonlinear and form an over-determined system. If one
consider a bounded domain, another difficulty is to find the additional conditions
needed to single out a specific solution in order to have a well-posed problem.
This question was well present to A. Einstein see [2].

In this paper we consider, in Section 2, the simple case in which the energy-
stress tensor vanishes everywhere and we give a theorem of existence and unique-
ness for the corresponding boundary value problem stated in a bounded axial

Received on July 2, 2021
AMS 2010 Subject Classification: 83C10, 83C05
Keywords: Axial symmetric gravitational fields, existence and uniqueness of solutions, Poiseuille
solution



96 G. CIMATTI

symmetric domain when the values of the coefficients of the metric are suitably
prescribed. In Section 3 we treat the case of the energy-stress tensor corre-
sponding to a continuous distribution of fluid in absence of body forces and
fluid motion. We obtain a result of existence and non-existence of solutions.
Finally in Section 4 we find an analogue of the Poiseuille solution of classi-
cal fluid mechanics starting from the Einstein’s equations. We always consider
axial symmetric situations and use the Weyl’s metric [10]

ds2 = e2ψdt2 − e2γ−2ψdρ
2 − e2γ−2ψdz2 − e−2ψ

ρ
2dϕ

2, (1)

where the unknown “potentials” ψ and γ are assumed to be functions of ρ and z
only, i.e. ψ =ψ(ρ,z), γ = γ(ρ,z). We recall that the non-vanishing components
of the Einstein’s tensor Gik corresponding to the metric (1) are [8]

G11 = e4ψ+2γ

[
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ψρ

ρ
+ψzz

)
+ψ

2
ρ +ψ
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z + γρρ + γzz

]
(2)
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2
ρ −

γρ

ρ
−ψ

2
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ρ
, G33 =−ψ

2
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γρ

ρ
+ψ

2
z (3)

G44 =−e−2γ
ρ

2(
ψ

2
ρ +ψ

2
z + γρρ + γzz

)
. (4)

2. The case Tik = 0

Let us consider an axial symmetric bounded subset Ω of R3 with a regular
boundary Γ. We suppose Ω free of gravitational masses and of electric charges.
Outside Ω there exists a distribution of mass, also axial symmetric, which deter-
mines on Γ the values of ψ and γ in a way not depending on angular variable ϕ .
We assume the energy-stress tensor Tik to vanish in Ω. The Einstein’s equations

Gik = K Tik, K = 8π
G
c4 , G gravitational constant (5)

determine the “potentials” ψ(ρ,z) and γ(ρ,z) via the following overdetermined
system of partial differential equations [1], [9]

−2
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ψρ

ρ
+ψzz

)
+ψ

2
ρ +ψ

2
z + γρρ + γzz = 0 (6)

ψ
2
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γρ

ρ
−ψ
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z = 0 (7)

2ψρψz −
γz

ρ
= 0 (8)
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ψ
2
ρ +ψ

2
z + γρρ + γzz = 0. (9)

In this paper we prove that a specific solution of the system (6)-(9) is de-
termined in a unique way if ψ is prescribed on the boundary of the domain Ω

under consideration by a given function ψΓ (under suitable assumptions on Ω

and ψΓ) and γ is prescribed in a single point. This is not surprising since, after
inserting (9) in (6), ψ intervenes with first and second order partial derivatives
whereas γ intervenes only with first order derivatives. To prove this result use
will be made of the following

Lemma 2.1. Let Ω be an axial symmetric bounded subset of R3 referred to
coordinates (ρ,z,φ) (z the axis of symmetry) with a regular boundary Γ ∈ Cα .
Let ψΓ be a function of class C0,α(Γ) not depending on the angular variable φ .
Then the problem

ψρρ +
ψρ

ρ
+ψzz = 0 in Ω, ψ = ψΓ on Γ (10)

has one and only one solution ψ(ρ,z) ∈C2,α(Ω̄).

Proof. The problem (10) is a “piece” of the problem for the laplacian

∆ψ̃ = 0 in Ω, ψ̃ = ψΓ on Γ (11)

which is simply the Dirichlet’s problem. By standard results, see e.g. [3],
problem (11) has one and only one solution ψ̃ ∈ C2,α(Ω̄). On the other hand,
ψ̃(ρ,z,φ +K) is also a solution of problem (11) in view of the axial symmetry
of Ω and ψΓ. Hence by uniqueness ψ̃(ρ,z,φ +K) = ψ̃(ρ,z,φ). Therefore ψ̃

does not depend on φ and thus it is the unique C2,α(Ω̄)-solution of problem
(10).

Using Lemma 2.1 we can prove that problem (6)-(9) with the stated addi-
tional conditions on ψ and γ has one and only one solution.

We prove in fact in the next Lemma a more general result.

Lemma 2.2. Let Γ be of class Cα . Assume the sections of Ω with an ar-
bitrary half-plane containing the z-axis be simply connected. Let the func-
tion ρh(ρ,z) + ig(ρ,z) of the complex variable ρ + iz be analytic. Assume
ψΓ ∈ Cα(Γ) and γ0 ∈ R1. Then the overdetermined system of P.D.E.
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ψρ

ρ
+ψzz

)
+ψ

2
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2
z + γρρ + γzz = 0 (12)

ψ
2
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γρ

ρ
−ψ

2
z = g (13)
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2ψρψz −
γz

ρ
= h (14)

ψ
2
ρ +ψ

2
z + γρρ + γzz = 0 (15)

with the conditions

ψ = ψΓ on Γ (16)

γ = γ0 in an arbitrary point of Ω (17)

has one and only one solution ψ(ρ,z) ∈C2,α(Ω̄) and γ(ρ,z) ∈C2,α(Ω̄).

Proof. Let ψ(ρ,z) be the unique solution of problem (10) given by Lemma 2.1
and let us consider the first order system

γρ = F(ρ,z), γz = G(ρ,z) (18)

with the condition

γ
(
ρ0,z0

)
= γ0, (19)

where F(ρ,z) = ρ
(
ψ2

ρ −ψ2
z +g

)
, G(ρ,z) = 2ρ

(
ψρψz +h

)
. We have

Gρ −Fz = 2ρψz
(
ψρρ +

ψρ

ρ
+ψzz

)
+
(
ρh)ρ −

(
ρg

)
z.

Since ρh+ iρg is analytic we conclude that Gρ = Fz by (10). Therefore, the
system (18) is integrable and with the condition (19) its solution is unique. It
remains to prove that

ψ
2
ρ +ψ

2
z + γρρ + γzz = 0. (20)

From (18) we have

γρρ + γzz = ψ
2
ρ −ψ

2
z +2ρψρψρρ +2ρψρψzz +

(
g+ρgρ +ρhz

)
.

On the other hand, ρh+ iρg is analytic, hence

γρρ + γzz = ψ
2
ρ −ψ

2
z +2ρψρψρρ +2ρψρψzz. (21)

Substituting (21) in (20) we have, by (10),

ψ
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(
ψρρ +

ψρ

ρ
+ψzz

)
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Therefore, (ψ(ρ,z),γ(ρ,z)) is a solution of the problem (12)-(17). On the other
hand, this solution is also unique. For, let (ψ∗,γ∗) be a second solution. By
difference from (6) and (9) we obtain

ψ
∗
ρρ +

ψ∗
ρ

ρ
+ψ

∗
zz = 0 in Ω, ψ

∗ = ψΓ on Γ.

Thus ψ and ψ∗ are both solutions of a problem for which there is uniqueness.
Hence ψ = ψ∗. Since F(ρ,z) = F∗(ρ,z), G(ρ,z) = G∗(ρ,z) and γ(ρ0,z0) =
γ∗(ρ0,z0), we also have γ(ρ,z) = γ∗(ρ,z). We conclude that the problem (12)-
(17) has one and only one solution.

In Lemma 2.2 the physically relevant case of interest to us occurs when
g = 0 and h = 0.

Remark 1. The above method may probably be applied to other static problems
not only to axially symmetric ones.

3. The boundary value problem in presence of a fluid

In this Section we assume again to be in the axial symmetric situation of Section
2 with the metric (1). The domain Ω is supposed to be filled with an incompress-
ible viscous fluid. The energy-stress tensor reads ([4] page 512)

Tik =−pgik +(p+ ε)uiuk − cη
(
ui;k +uk;i −uiuluk;l −ukului;k

)
, (22)

where ui is the covariant four-velocity, p denotes the pressure, η is the viscos-
ity and ε the energy density which is assumed here to be a given constant. We
consider first an hydrostatic case in which the physical velocity v = (vρ ,vz,vϕ)
is assumed to vanish. Correspondingly the covariant four-velocity is given, re-
calling the metric (1), by

ui =
(
eψ ,0,0,0

)
. (23)

We want to determine ψ , γ and p assuming the additional conditions used for
the system (6)-(9). The non-vanishing components of the covariant derivative
ui; j are

u2;1 =−ψρeψ , u3;1 =−ψzeψ

and those of the energy-stress tensor Tik are given by

T11 =−pe2ψ +(ε+ p)e2ψ , T22 = pe2γ−2ψ , T33 = pe2γ−2ψ , T44 = pe−2ψ
ρ

2.
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The Einstein’s equations (5) become, by (2)-(4),

e4ψ−2γ
[
ψ

2
ρ +ψ

2
z + γρρ + γzz −2

(
ψρρ +

ψρ

ρ
+ψzz

)]
= K

[(
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)
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]
(24)

ψ
2
ρ −ψ

2
z −
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ρ
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γρ

ρ
−ψ

2
ρ +ψ

2
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2ψrψz −
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ρ
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−e−2γ
ρ

2(
ψ

2
ρ +ψ

2
z + γρρ + γzz

)
= K pe−2ψ

ρ
2. (28)

By adding (25) and (26) we infer

p = 0.

Hence the system (24)-(28) can be rewritten as

ψ
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ρ +ψ
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z + γρρ + γzz −2

(
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ρ
+ψzz
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ψ

2
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2
z
)
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ψ
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ρ +ψ

2
z + γρρ + γzz = 0. (32)

From (29) and (32) we obtain

−2
(
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ρ
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= Kε e2γ−2ψ . (33)

Let F(ρ,z) = ρ
(
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ρ −ψ2
z
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Hence, by (33) we obtain

Fz −Gρ = 2Kεe2γ−2ψ
ρψz.
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Therefore, the system (30), (31) i.e.

γρ = F(ρ,z), γz = G(ρ,z)

is not integrable if ε ̸= 0 and the system (24)-(28) cannot have solutions in this
case1. On the other hand, if ε = 0 the system (29)-(32) becomes

ψ
2
ρ +ψ

2
z + γρρ + γzz −2

(
ψρρ +

ψρ

ρ
+ψzz

)
= 0

γρ = ρ
(
ψ

2
ρ −ψ

2
z
)

γz = 2ρψρψz

ψ
2
ρ +ψ

2
z + γρρ + γzz = 0.

Thus we are formally in the situation of Section 2 and the corresponding results
of existence and uniqueness apply.

4. A Poiseuille-like solution in general relativity

The space outside an indefinite cylinder of radius R is filled with an incompress-
ible viscous fluid2. Body forces are absent and the cylinder is supposed to move
with a constant velocity vR in the z-direction. If we assume

vρ = 0, vz = v(ρ), vϕ = 0 (34)

the Navier-Stockes equations reduce to the single equation, see [5],

v′′+
v′

ρ
= 0. (35)

The non-slip condition gives

v(R) = vR. (36)

In view of (36) we have, solving (35)

v(ρ) =C logρ + vR −C logR.

1This implies that the condition ε ̸= 0 is incompatible with the assumption (23) of absence of
fluid motion

2The axis of the cylinder is the z-axis of the cylindrical coordinates system
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Assuming the velocity to remain bounded we obtain the exceedingly simple
solution

v(ρ) = vR.

We ask the following question: starting with the same assumptions (34), (36)
which solution is given by the equations of general relativity? We use the Weyl’s
metric (2) assuming ψ and γ to be functions of ρ only. In view of the one-
dimensional character of the problem, the non-vanishing components of the
Einstein tensor take on the form

G11 = e4ψ+2γ

[
ψ

′2 + γ
′′−2

(
ψ

′′+
ψ ′

ρ

)]
, G22 = ψ

′2 − γ ′

ρ

G33 =−ψ
′2 +

γ ′

ρ
, G44 =−e−2γ

ρ
2(

ψ
′2 + γ

′′).
The contravariant four-velocity

ui =
dxi

ds
=
(
e−ψ ,0,v(ρ)e−ψ ,0

)
(37)

in covariant form is

ui =
(
eψ ,0,−e2γ−3ψ ,0

)
.

Turning to the non vanishing components of the energy-stress tensor we find,
using (22),

T11 = εe2ψ , T12 = cηv2e2γ−3ψ
(
γ
′−ψ

′), T13 =−
(
ε + p

)
ve2γ−2ψ

T22 = pe2γ−2ψ , T23 = cηv′e2γ−3ψ

T33 = pe2γ−2ψ +(ε + p)e4γ−6ψv2, T44 = pρe−2ψ .

For the non identically satisfied Einstein’s equations (5) we find

e2ψ−2γ
[
ψ

′2 + γ
′′−2

(
ψ

′′+
ψ ′

ρ

)]
= εK (38)

cηv2e2γ−3ψ
(
γ
′−ψ

′)= 0 (39)

(ε + p)e2γ−2ψv = 0 (40)
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ψ
′2 − γ ′

ρ
= K pe2γ−2ψ (41)

cηv′e2γ−3ψ = 0 (42)

−ψ
′2 +

γ ′

ρ
= K

[
pe2γ−2ψ +(ε + p)e4γ−6ψv2] (43)

ψ
′2 + γ

′′ =−K pe2γ−2ψ . (44)

From (42) we have v(ρ) = vR, as in the Navier-Stockes case, if we assume the
boundary condition v(R) = vR. From (39) we obtain, if vR ̸= 0,

γ = ψ +C (45)

C a constant to be determined. By (40) we have

p =−ε.

Thus (43) becomes

−ψ
′2 +

γ ′

ρ
= K pe2γ−2ψ . (46)

Adding (46) and (41) we obtain

2K pe2γ−2ψ = 0. (47)

Hence

p = 0, ε = 0. (48)

We conclude that the problem is compatible only with a null energy density.
Moreover, (44) becomes

ψ
′2 + γ

′′ = 0. (49)

In addition (38) gives

ψ
′′+

ψ ′

ρ
= 0.

This means

ψ(ρ) = k1 logρ + k2.
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On the other hand, by (45) we have

ψ
′ = γ

′ =
k1

ρ
, γ

′′ =− k1

ρ2 .

By (49), it follows

k2
1

ρ2 =
k1

ρ2 .

Hence, either k1 = 1 or k1 = 0. If k1 = 1 we have

ψ(ρ) = logρ + k2.

The constant k2 is determined with a condition of the form ψ(R) = ψR which
gives ψ(ρ) = logρ − logR+ψR (compare for this solution [6]). Finally with a
condition like γ(R) = γR we determine the, still unknown, constant C entering
in (45). We obtain γ(ρ) = logρ − logR+ γR. We conclude that the boundary
conditions ψ(R) = ψR, γ(R) = γR and v(R) = vR make the problem well-posed
in agreement with the corresponding solution of the Navier-Stockes equations
and determine completely also the metric (1).

Observe that the equations of motion T i j
; j = 0 is in this case automatically

satisfied.

Remark 2. If, in the contest of Newtonian hydrodynamics, we state the cognate
problem of the viscous fluid motion between two coaxial cylinders of radii R2 >
R1 > 0 moving respectively with given velocities v2 and v1 in the z direction,
again in absence of body forces, the problem is well-posed and easily solved
with the non-slip conditions v(R2) = v2, v(R1) = v1 and we find easily

v(ρ) =
v2 − v1

log ρ

R1

log
ρ

R1
+ v1.

However, in the context of general relativity there is no parallel situation since
the equation (42) permits to impose only one boundary condition. This is inher-
ent to the fact that the Einstein’s equations are of the first order.
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