4-HARMONIC FUNCTIONS AND BEYOND

A. GRECU - M. MIHĂILESCU

The family of partial differential equations $-\Delta_4 u - \varepsilon \Delta_\infty u = 0$ ($\varepsilon > 0$) is studied in a bounded domain Ω for given boundary data. We show that for each $\varepsilon > 0$ the problem has a unique viscosity solution which is exactly the $(4 + \varepsilon)$-harmonic map with the given boundary data. We also explore the connections between the solutions of these problems and infinity harmonic and 4-harmonic maps by studying the limiting behavior of the solutions as $\varepsilon \to \infty$ and $\varepsilon \to 0^+$, respectively.

1. Introduction

1.1. Statement of the problem

Let $D \geq 1$ be an integer and let $\Omega \subset \mathbb{R}^D$ be a bounded domain with smooth boundary $\partial \Omega$. Next, let $g \in C^1(\Omega) \cap C(\overline{\Omega})$ be a given function. The main goal of this paper is to analyse the problem

$$\begin{cases}
-\Delta_4 u - \varepsilon \Delta_\infty u = 0 & \text{in } \Omega \\
u = g & \text{on } \partial \Omega,
\end{cases}$$

Received on July 5, 2021

AMS 2010 Subject Classification: 35B40, 35D30, 35D40, 49J27, 49J45.

Keywords: Γ-convergence, 4-harmonic maps, infinity harmonic maps, viscosity solutions.

Andrei Grecu has been partially supported by CNCS-UEFISCDI Grant No. PN-III-P1-1.1-TE-2019-0456.

The authors would like to thank the anonymous referee for her/his careful reading of the original manuscript and for a number of relevant comments that led to improvements in the exposition in this paper.
where $\varepsilon > 0$ is a real parameter, $\Delta_4 u := \text{div}(|\nabla u|^2 \nabla u)$ is the 4-Laplace operator and $\Delta_\infty u := \sum_{i,j=1}^{\mathcal{D}} \partial_x u \partial_x j \partial_x u \partial_x i \partial_x j$ stands for the ∞-Laplace operator.

1.2. Motivation

Under the same assumptions as in the previous section the following problem was investigated

$$
\begin{align*}
-\Delta u - \varepsilon \Delta_\infty u &= 0 \quad \text{in} \quad \Omega \\
u &= g \quad \text{on} \quad \partial \Omega,
\end{align*}
$$

(2)

see, e.g. [6], [12] or [1]. By [12] we know that problem (2) has a unique classical solution, say u_ε (which is, actually, an analytical function). Moreover, since problem (2) can be investigated in connection with the equation

$$
\begin{align*}
-\text{div}(e^{\varepsilon |\nabla u|^2} \nabla u) &= 0 \quad \text{in} \quad \Omega \\
u &= g \quad \text{on} \quad \partial \Omega,
\end{align*}
$$

(3)

the solution u_ε minimizes the Euler-Lagrange functional associated to the problem (3), namely

$$
I(u) := \int_\Omega e^{\varepsilon |\nabla u|^2} dx,
$$

over a closed and convex subset of an Orlicz-Sobolev space defined with the aid of the N-function $\Phi(t) := e^{\varepsilon t^2} - 1$ and taking into account the boundary condition (see [1] for more details). Furthermore, it was proved that u_ε converges uniformly over Ω, as $\varepsilon \to \infty$, to the unique ∞-harmonic function with g boundary data (see [7, Section 4.1] or [1, Proposition 4]), while in the case where $\varepsilon \to 0^+$, u_ε converges in $W^{1,4}(\Omega)$ to the unique harmonic function in Ω with g boundary value data (see [1, Theorem 3]).

Motivated by the studies on problem (2) here we analyse a similar problem, that is problem (1), where we replace the Laplace operator with the 4-Laplace operator. At this point a natural question which can be considered is investigating problem (1) when the 4-Laplace operator is replaced by the p-Laplace operator with $p \in (1, \infty) \setminus \{2, 4\}$. Unfortunately, the arguments provided for the cases $p \in \{2, 4\}$ seem to not hold true when $p \not\in \{2, 4\}$. More precisely, for $p \in \{2, 4\}$ we can prove that the viscosity solutions of problems (2) and (1) are actually variational solutions of some equivalent equations, which can be obtained as minimizers of their corresponding Euler-Lagrange functionals. That fact is crucial in the proofs of Lemmas 4.1 and 4.5 from this paper (and also in the proofs from [1] and [7] and [11] for similar results). In the case when $p \not\in \{2, 4\}$ the lack of a variational characterization for the solutions should ask for a different treatment of the problem.
1.3. Main results

The main results of this paper are formulated below in the following two theorems.

Theorem 1.1. For each \(g \in C^1(\Omega) \cap C(\overline{\Omega}) \) and each \(\varepsilon > 0 \) problem (1) has a unique viscosity solution which is exactly the \((4 + \varepsilon)\)-harmonic map with boundary values \(g \).

Theorem 1.2. Let \(g \in C^1(\Omega) \cap C(\overline{\Omega}) \) and for each \(\varepsilon > 0 \) let \(u_\varepsilon \) be the unique viscosity solution of problem (1). Then \(u_\varepsilon \) converges uniformly over \(\Omega \), as \(\varepsilon \to \infty \), to the unique \(\infty \)-harmonic function with \(g \) boundary data. Moreover, letting \(u_0 \) be the 4-harmonic map with \(g \) boundary data then \(u_\varepsilon \) converges weakly to \(u_0 \) in \(W^{1,4}(\Omega) \), as \(\varepsilon \to 0^+ \), and

\[
\lim_{\varepsilon \to 0^+} \int_{\Omega} |\nabla u_\varepsilon|^4_D \, dx = \int_{\Omega} |\nabla u_0|^4_D \, dx.
\]

The rest of the paper is structured as follows: in Section 2 we present some well-known results on \(p \)-harmonic functions and on \(\infty \)-harmonic functions which will be useful in our subsequent analysis; in Section 3 we give the proof of Theorem 1.1; in Section 4 we present the proof of Theorem 1.2.

2. A quick overview on \(p \)-harmonic functions and \(\infty \)-harmonic functions

2.1. \(p \)-harmonic functions

Let \(\Omega \subset \mathbb{R}^D \) be a bounded domain with smooth boundary \(\partial \Omega \), and let \(g \in C^1(\Omega) \cap C(\overline{\Omega}) \) be given. For each real number \(p \in (1, \infty) \) we consider the problem

\[
\begin{align*}
-\Delta_p u &= 0 & \text{in} & & \Omega \\
 u &= g & \text{on} & & \partial \Omega,
\end{align*}
\]

where \(\Delta_p u := \text{div}(|\nabla u|^{p-2}_{D} \nabla u) \) is the \(p \)-Laplace operator. The solutions of problem (4) are sought in the set

\[
W_{g}^{1,p}(\Omega) := \{ u \in W^{1,p}(\Omega) : u = g \text{ on } \partial \Omega \},
\]

which is a closed and convex subset of the Sobolev space \(W^{1,p}(\Omega) \), and are understood in a variational sense. More precisely, \(u_p \) is a week solution of problem (4) if \(u_p \in W_{g}^{1,p}(\Omega) \) and satisfies

\[
\int_{\Omega} |\nabla u_p|^{p-2}_{D} \nabla u_p \nabla \phi \, dx = 0, \quad \forall \phi \in W^{1,p}_0(\Omega).
\]
Such a function is also called a p-harmonic function with g boundary data (see also [10, Definition 2.1] for the definition of a p-harmonic function). It is well-known (see, e.g. [13, Theorem 2.4] or [14, Theorem 2.16]) that problem (4) has a unique weak solution which turns out to be the unique minimizer on $W^{1,p}_g(\Omega)$ of the Euler-Lagrange functional associated with equation (4), namely, $I_p : W^{1,p}(\Omega) \to \mathbb{R}$ given by

$$ I_p(u) := \int_{\Omega} |\nabla u|^p_D \, dx. \quad (6) $$

Note also that when Ω is bounded and connected with the boundary $\partial \Omega$ of class $C^{1,\alpha}$ and $g \in W^{2,p}(\Omega)$ then $u_p \in C^{1,\alpha}_{\text{loc}}(\Omega)$ (see, e.g. [11, Section 2] or [14, Theorem 2.19]).

Next, we point out the fact that the weak solutions of problem (4) are equivalent with the viscosity solutions of the same equation (see, e.g. [10, Corollary 2.8]). Let us recall the definition of a viscosity solution of an equation of type

$$ \begin{cases}
F(\nabla u, D^2 u) = 0 & \text{in } \Omega, \\
\quad u = g & \text{on } \partial \Omega,
\end{cases} \quad (7) $$

where $D^2 u$ stands for the Hessioan matrix of u (see, e.g. [2]).

Definition 2.1. (i) An upper semicontinuous function $u : \Omega \to \mathbb{R}$ is called a viscosity subsolution of (7) if $u|_{\partial \Omega} \leq g$ and, whenever $x_0 \in \Omega$ and $\Psi \in C^2(\Omega)$ are such that $u(x_0) = \Psi(x_0)$ and $u(x) < \Psi(x)$ if $x \in B_r(x_0) \setminus \{x_0\}$ for some $r > 0$, then we have $F(\nabla \Psi(x_0), D^2 \Psi(x_0)) \leq 0$;

(ii) A lower semicontinuous function $u : \Omega \to \mathbb{R}$ is called a viscosity supersolution of (7) if $u|_{\partial \Omega} \geq g$ and, whenever $x_0 \in \Omega$ and $\Psi \in C^2(\Omega)$ are such that $u(x_0) = \Psi(x_0)$ and $u(x) > \Psi(x)$ if $x \in B_r(x_0) \setminus \{x_0\}$ for some $r > 0$, then $F(\nabla \Psi(x_0), D^2 \Psi(x_0)) \geq 0$;

(iii) A continuous function $u : \Omega \to \mathbb{R}$ is called a viscosity solution of (7) if it is both a viscosity subsolution and a viscosity supersolution of (7).

Note that problem (4) is an equation of type (7) since if we assume that $u : \Omega \to \mathbb{R}$ is a sufficiently smooth function then the p-Laplacian of u becomes

$$ \Delta_p u = |\nabla u|^p_D - 4 \left| |\nabla u|^2_D \Delta u + (p-2)\Delta_{\infty} u \right|, \quad (8) $$

or, taking into account that $\Delta u = \text{Trace}(D^2 u)$ and $\Delta_{\infty} u = \langle D^2 u \nabla u, \nabla u \rangle$ we get that

$$ \Delta_p u = F_p(\nabla u, D^2 u), $$

where

$$ F_p(\xi, S) := |\xi|^p_D - 4 \left(|\xi|^2_D \text{Trace}(S) + (p-2)\langle S\xi, \xi \rangle \right), $$
when $\xi \in \mathbb{R}^D$ and $S \in M_{sym}^{D \times D}(\mathbb{R})$. If $p \in (1, 2)$ the function F_p is not defined at $\xi = 0$ (or $\nabla u = 0$). Consequently, this case requires special attention in relation with the definition of a viscosity solution (that is Definition 2.1 above). More precisely, in order to fix this problem we have to add the requirement $\nabla u(x_0) \neq 0$ in the definition of a viscosity solution. Consequently, there is no condition to be verified at the critical points in the definition of a viscosity solution. Note also that when $p \in [2, \infty)$ the above problem does not appear since $\Delta_p u(x_0) = 0$ in that case (see, e.g., [14, p. 78] for more details).

2.2. ∞-harmonic functions

Under the same assumptions as in the previous section we consider the equation

$$\begin{cases} -\Delta_{\infty} u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial\Omega. \end{cases}$$

(9)

We call a viscosity solution of problem (9) an ∞-harmonic function with g boundary data. Let u_∞ be the unique (see [8]) viscosity solution of problem (9). It can be shown that the family of p-harmonic functions with g boundary data, u_p, converges uniformly over Ω, as $p \to \infty$, to u_∞ (see, e.g., [11, Section 2] for a simple and quick explanation).

3. Proof of Theorem 1.1

First, note that when $p = 4$ relation (8) implies that

$$\Delta_4 u = |\nabla u|_D^2 \Delta u + 2\Delta_{\infty} u.$$

Using that fact we observe that for each $p \in (4, \infty)$ we can rewrite relation (8) in the following way

$$\Delta_p u = |\nabla u|_D^{p-4} (\Delta_4 u + (p-4)\Delta_{\infty} u).$$

Thus, for each $\varepsilon > 0$ we have

$$\Delta_{4+\varepsilon} u = |\nabla u|_D^{\varepsilon} (\Delta_4 u + \varepsilon\Delta_{\infty} u).$$

(10)

Lemma 3.1. For each $\varepsilon > 0$ a function u_ε is a viscosity solution of problem (1) if and only if it is a viscosity solution of problem (4) when $p = 4 + \varepsilon$.

Proof. Step I: Equivalence of the viscosity supersolutions.

• Let u_ε be a viscosity supersolution of problem (1). We show that it is a viscosity supersolution of problem (4) when $p = 4 + \varepsilon$, too.
Indeed, first note that $u_{\varepsilon} = g$ on $\partial \Omega$. Next, let $x_0 \in \Omega$ and $\Psi \in C^2(\Omega)$ be such that $u_{\varepsilon}(x_0) = \Psi(x_0)$ and $u_{\varepsilon}(x) > \Psi(x)$ if $x \in B_r(x_0) \setminus \{x_0\}$ for some $r > 0$. Then

$$-\Delta_4 \Psi(x_0) - \varepsilon \Delta_\infty \Psi(x_0) \geq 0.$$ It follows that

$$-|\nabla \Psi(x_0)|_D^p (\Delta_4 \Psi(x_0) + \varepsilon \Delta_\infty \Psi(x_0)) \geq 0,$$ or, by (10) we deduce that

$$-\Delta_{4+\varepsilon} \Psi(x_0) \geq 0,$$

which shows that u_{ε} is a viscosity supersolution of problem (4) when $p = 4 + \varepsilon$.

Let u_{ε} be a viscosity supersolution of problem (4) when $p = 4 + \varepsilon$. We show that it is a viscosity supersolution of problem (1), too.

It is obvious that the boundary data condition is satisfied. Further, let $x_0 \in \Omega$ and $\Psi \in C^2(\Omega)$ be such that $u_{\varepsilon}(x_0) = \Psi(x_0)$ and $u_{\varepsilon}(x) > \Psi(x)$ if $x \in B_r(x_0) \setminus \{x_0\}$ for some $r > 0$. Then

$$-\Delta_4 \Psi(x_0) - \varepsilon \Delta_\infty \Psi(x_0) \geq 0,$$

or, by (10) we have

$$-|\nabla \Psi(x_0)|_D^p (\Delta_4 \Psi(x_0) + \varepsilon \Delta_\infty \Psi(x_0)) \geq 0.$$ If $|\nabla \Psi(x_0)|_D > 0$ then we get

$$-\Delta_4 \Psi(x_0) - \varepsilon \Delta_\infty \Psi(x_0) \geq 0,$$

which means that u_{ε} is a viscosity supersolution of problem (1). Otherwise, if $|\nabla \Psi(x_0)|_D = 0$ then $\frac{\partial \Psi}{\partial x_i}(x_0) = 0$ for each integer $i \in \{1, \ldots, D\}$ and taking into account the definitions of the 4-Laplacian and the ∞-Laplacian we conclude that

$$-\Delta_4 \Psi(x_0) - \varepsilon \Delta_\infty \Psi(x_0) = 0,$$

which leads again to the conclusion that u_{ε} is a viscosity supersolution of problem (1).

Step II: Equivalence of the viscosity subsolutions.

The analysis of this case can be done similarly with the one from the first part of this proof and consequently we omit it.

Proof of Theorem 1.1 (concluded). Let $\varepsilon > 0$ be arbitrary but fixed. By [13, Theorem 2.4] or [14, Theorem 2.16] the problem (4) with $p = 4 + \varepsilon$ has a unique weak solution, say u_{ε}, which is a $(4 + \varepsilon)$-harmonic map (with boundary values g). Moreover, u_{ε} is a continuous function. Then by [10, Corollary 2.8] we infer that u_{ε} is a viscosity solution of problem (4) with $p = 4 + \varepsilon$. Combining that fact with Lemma 3.1 it follows that u_{ε} is the unique viscosity solution of problem (1).
4. Proof of Theorem 1.2

By Theorem 1.1 we deduce that for each \(\epsilon > 0 \) the unique viscosity solution of problem (1), \(u_\epsilon \), is a \((4 + \epsilon)\)-harmonic function with boundary values \(g \) (or the unique weak solution of problem (4) with \(p = 4 + \epsilon \)). Then it is well-known that \(u_\epsilon \) converges uniformly, as \(\epsilon \to \infty \) to the unique infinite-harmonic function with boundary values \(g \) (see, e.g. [11, Section 2]).

Next, we analyse the convergence of \(u_\epsilon \) as \(\epsilon \to 0^+ \).

We start by showing the following result:

Lemma 4.1. The sequence \(\{u_\epsilon\}_{\epsilon > 0} \) is bounded in \(W^{1,4}(\Omega) \).

Proof. For each \(\epsilon > 0 \), \(u_\epsilon \in W^{1,4+\epsilon}_g(\Omega) \subset W^{1,4}_g(\Omega) \). Let \(u_0 \) be the 4-harmonic map with boundary values \(g \). By [13, Theorem 2.4] or [14, Theorem 2.16], \(u_0 \) is a minimizer of \(I_4 \) given by relation (6) when \(p = 4 \). Consequently, we have

\[
\int_\Omega |\nabla u_0|^4_D \, dx \leq \int_\Omega |\nabla u_\epsilon|^4_D \, dx, \quad \forall \epsilon > 0. \tag{11}
\]

Similar arguments can be used to point out that \(u_\epsilon \) is a minimizer of \(I_{4+\epsilon} \) given by relation (6) when \(p = 4 + \epsilon \). Consequently, we deduce that

\[
\int_\Omega |\nabla u_\epsilon|^{4+\epsilon}_D \, dx \leq \int_\Omega |\nabla g|^{4+\epsilon}_D \, dx, \quad \forall \epsilon > 0. \tag{12}
\]

On the other hand, Hölder’s inequality yields

\[
\int_\Omega |\nabla u_\epsilon|^4_D \, dx \leq \left(\int_\Omega |\nabla u_\epsilon|^{4+\epsilon}_D \, dx \right)^{4/(4+\epsilon)} m(\Omega)^{\epsilon/(4+\epsilon)}, \quad \forall \epsilon > 0. \tag{13}
\]

Combining (12) and (13) we find

\[
\left\| |\nabla u_\epsilon|^4_D \right\|_{L^4(\Omega)} \leq \left\| |\nabla u_\epsilon|^{4+\epsilon}_D \right\|_{L^{4+\epsilon}(\Omega)} \left(m(\Omega) + 1 \right)^{1/4} \leq \left\| |\nabla g|^4_D \right\|_{L^{4+\epsilon}(\Omega)} \left(m(\Omega) + 1 \right)^{1/4}, \quad \forall \epsilon > 0. \tag{14}
\]

Finally, using Poincaré’s inequality and relation (14) we deduce the existence of a constant \(C > 0 \) for which we get

\[
\left\| u_\epsilon \right\|_{W^{1,4}(\Omega)} \leq \left\| u_\epsilon - g \right\|_{W^{1,4}(\Omega)} + \left\| g \right\|_{W^{1,4}(\Omega)} \leq C \left\| |\nabla u_\epsilon| - |\nabla g|^4_D \right\|_{L^4(\Omega)} + \left\| |\nabla g|^4_D \right\|_{L^1(\Omega)} + \left\| g \right\|_{W^{1,4}(\Omega)} \leq C \left(\left\| |\nabla g|_D \right\|_{L^\infty(\Omega)} \left(m(\Omega) + 1 \right)^{1/4} + \left\| |\nabla g|^4_D \right\|_{L^1(\Omega)} \right) + \left\| g \right\|_{W^{1,4}(\Omega)}, \quad \forall \epsilon > 0.
\]
Since the right hand side of the above estimate is constant (it does not depend on $\varepsilon > 0$) we deduce the conclusion of the lemma.

In order to go further, we recall the definition of Γ-convergence (introduced in [4], [5]) in metric spaces. The reader is referred to [3] for a comprehensive introduction to the subject.

Definition 4.2. Let Y be a metric space. A sequence $\{F_n\}$ of functionals $F_n : Y \to \mathbb{R} := \mathbb{R} \cup \{\infty\}$ is said to $\Gamma(Y)$-converge to $F : Y \to \mathbb{R}$, and we write $\Gamma(Y) - \lim_{n \to \infty} F_n = F_\infty$, if the following hold:

(i) for every $u \in Y$ and $\{u_n\} \subset Y$ such that $u_n \to u$ in Y, we have

$$F(u) \leq \liminf_{n \to \infty} F_n(u_n);$$

(ii) for every $u \in Y$ there exists a sequence $\{u_n\} \subset Y$ (called a recovery sequence) such that $u_n \to u$ in Y and

$$F(u) \geq \limsup_{n \to \infty} F_n(u_n).$$

The following two results are well-known and can be found, e.g., in [9, Lemma 6.1.1] and [9, Corollary 6.1.1].

Proposition 4.3. Let Y be a topological space that satisfies the first axiom of countability, and assume that $\{u_n\}$ is a sequence such that $u_n \to u$ in Y as $n \to \infty$,

$$\limsup_{n \to \infty} F(u_n) \leq F(u),$$

and such that for every $m \in \mathbb{N}$ there exists a sequence $\{u_{m,n}\}$, $u_{m,n} \to u_m$ as $n \to \infty$, with

$$\limsup_{n \to \infty} F_n(u_{m,n}) \leq F(u_m).$$

Then there exists a recovering sequence for u in the sense of (ii) of Definition 4.2.

Proposition 4.4. Let Y be a topological space satisfying the first axiom of countability, and assume that the sequence $\{F_n\}$ of functionals $F_n : Y \to \mathbb{R}$ Γ-converge to $F : Y \to \mathbb{R}$. Let z_n be a minimizer for F_n. If $z_n \to z$ in X, then z is a minimizer of F, and $F(z) = \liminf_{n \to \infty} F_n(z_n)$.

For each $\varepsilon \geq 0$ define $J_\varepsilon : L^1(\Omega) \to \mathbb{R}$ ($n \geq 2$) and $J_\infty : L^1(\Omega) \to \mathbb{R}$ by

$$J_\varepsilon(u) := \begin{cases}
I_{4+\varepsilon}(u) + \infty & \text{if } u \in W_g^{1,4+\varepsilon}(\Omega) \\
\infty & \text{if } u \in L^1(\Omega) \setminus W_g^{1,4+\varepsilon}(\Omega).
\end{cases}$$
Lemma 4.5. $\Gamma(L^1(\Omega)) - \lim_{\varepsilon \to 0^+} J_\varepsilon = J_0$.

Proof. Let $v_\varepsilon \to v$ in $L^1(\Omega)$. If we have $\liminf_{\varepsilon \to 0^+} J_\varepsilon(v_\varepsilon) = +\infty$, there is nothing to prove. Thus, we may assume, without loss of generality, that $v_\varepsilon \in W^{1,4+\varepsilon}_g(\Omega)$ and, after eventually extracting a subsequence,

$$
\liminf_{\varepsilon \to 0^+} J_\varepsilon(v_\varepsilon) = \lim_{\varepsilon \to 0^+} J_\varepsilon(v_\varepsilon) =: L < +\infty. \tag{15}
$$

Since for each $\varepsilon > 0$ we have $W^{1,4+\varepsilon}_g(\Omega) \subset W_g^{1,4}(\Omega)$ then Young’s inequality implies

$$
\int_{\Omega} |\nabla v_\varepsilon|^4_D \, dx \leq \frac{4}{4+\varepsilon} \int_{\Omega} |\nabla v_\varepsilon|^{4+\varepsilon}_D \, dx + \frac{\varepsilon}{4+\varepsilon} m(\Omega) \leq (L+1) + m(\Omega) =: M,
$$

for all $\varepsilon > 0$, where $m(\Omega)$ stands for the Lebesgue measure of Ω and M is a positive constant. It follows that $\{|\nabla v_\varepsilon|_D\}_{\varepsilon}$ is bounded in $L^4(\Omega)$. Next, for each $\varepsilon > 0$ the use of Poincaré’s inequality implies the existence of a positive constant C such that

$$
\|v_\varepsilon\|_{W^{1,4}(\Omega)} \leq \|v_\varepsilon - g\|_{W^{1,4}(\Omega)} + \|g\|_{W^{1,4}(\Omega)} \leq C\|\nabla v_\varepsilon - \nabla g\|_D \|\nabla g\|_{L^4(\Omega)} + \|g\|_{W^{1,4}(\Omega)} \leq C(M^{1/4} + \|\nabla g\|_D \|\nabla g\|_{L^4(\Omega)}) + \|g\|_{W^{1,4}(\Omega)}, \quad \forall \varepsilon > 0.
$$

We deduce that $\{v_\varepsilon\}$ is bounded in $W^{1,4}(\Omega)$, and, thus, after eventually extracting a subsequence (not relabeled), we have $v_\varepsilon \rightharpoonup v$ weakly in $W^{1,4}(\Omega)$. Moreover, standard arguments from trace theory show that $u = g$ on $\partial \Omega$. Taking into account the fact that the functional J_0 is sequentially weakly lower semicontinuous in $W^{1,4}(\Omega)$, we obtain

$$
J_0(v) = \int_{\Omega} |\nabla v|^4_D \, dx \leq \liminf_{\varepsilon \to 0^+} \int_{\Omega} |\nabla v_\varepsilon|^4_D \, dx \leq \liminf_{\varepsilon \to 0^+} \left[\frac{4}{4+\varepsilon} \int_{\Omega} |\nabla v_\varepsilon|^{4+\varepsilon}_D \, dx + \frac{\varepsilon}{4+\varepsilon} m(\Omega) \right] = \lim_{\varepsilon \to 0^+} J_\varepsilon(v_\varepsilon).
$$

It remains to prove the existence of a recovery sequence for the Γ-limit. To this, let $v \in L^1(\Omega)$ be arbitrary, and note that if $v \not\in W_g^{1,4}(\Omega)$ there is nothing to prove, since $J_0(v) = +\infty$ in this case. Next, assume that $v \in W_g^{1,4}(\Omega)$, and let $\{v_\varepsilon\} \subset C_0^\infty(\Omega)$ be such that $v_\varepsilon \rightharpoonup v - g$ as $\varepsilon \to 0^+$ in $W^{1,4}_0(\Omega)$. Thus, $v_\varepsilon + g \rightharpoonup v$
as \(\varepsilon \to 0^+ \) in \(W^{1,4}(\Omega) \) and \(v_\varepsilon + g \in W^{1,4+\varepsilon}_g(\Omega) \) for each \(\varepsilon > 0 \). In particular, we have \(\lim_{\varepsilon \to 0^+} J_0(v_\varepsilon + g) = J_0(v) \).

Claim. For each \(w \in C^\infty_0(\Omega) \) we have

\[
\lim_{\varepsilon \to 0^+} I_4(\varepsilon w + g) = I_4(w + g).
\]

Indeed, since \(w \in C^\infty_0(\Omega) \) and \(g \in C^1(\Omega) \) it follows that \(|\nabla (w + g)|_D \in L^\infty(\Omega) \subset L^5(\Omega) \). Thus, for each \(\varepsilon \in (0, 1) \) we have

\[
|\nabla (w + g)(x)|_D^{4+\varepsilon} \leq |\nabla (w + g)(x)|_D^{5} + 1 \in L^1(\Omega), \quad \forall \, x \in \Omega.
\]

On the other hand, it is clear that

\[
\lim_{\varepsilon \to 0^+} |\nabla (w + g)(x)|_D^{4+\varepsilon} = |\nabla (w + g)(x)|_D^{4}, \quad \forall \, x \in \Omega.
\]

Thus, a simple application of Lebesgue’s dominated convergence theorem concludes the result of the claim.

Next, using the above claim we deduce that for each \(\delta > 0 \) small enough we have

\[
\lim_{\varepsilon \to 0^+} J_\varepsilon(v_\delta + g) = J_0(v_\delta + g).
\]

Finally, in view of Proposition 4.3 we conclude that

\[
J_0(v) \geq \limsup_{\varepsilon \to 0^+} J_\varepsilon(v_\varepsilon + g).
\]

The proof of Lemma 4.5 is complete. \(\square \)

Now, we are ready to discuss the convergence of \(u_\varepsilon \) as \(\varepsilon \to 0^+ \). First, note that by Lemma 4.1 we deduce that, passing eventually to a subsequence, we have that \(u_\varepsilon \) converges weakly in \(W^{1,4}(\Omega) \) and strongly in \(L^1(\Omega) \) to some \(u_0 \), as \(\varepsilon \to 0^+ \). Next, since Lemma 4.5 holds true we can apply Proposition 4.4 with \(X = L^1(\Omega) \), \(F_n = J_\varepsilon \), \(F = J_0 \), \(z_n = u_\varepsilon \) and taking into account the strong convergence of \(u_\varepsilon \) to \(u_0 \) we deduce the \(u_0 \) should be a minimizer of \(J_0 \) on \(L^1(\Omega) \) and consequently of \(I_4 \) on \(W^{1,4}_g(\Omega) \). Moreover,

\[
\liminf_{\varepsilon \to 0^+} \int_\Omega |\nabla u_\varepsilon|_D^{4+\varepsilon} \, dx = \int_\Omega |\nabla u_0|_D^4 \, dx.
\]

On the other hand, since by Young’s inequality we know that

\[
\int_\Omega |\nabla u_\varepsilon|_D^4 \, dx \leq \frac{4}{4+\varepsilon} \int_\Omega |\nabla u_\varepsilon|_D^{4+\varepsilon} \, dx + \frac{\varepsilon}{4+\varepsilon} m(\Omega), \quad \forall \, \varepsilon > 0,
\]

as \(\varepsilon \to 0^+ \) in \(W^{1,4}(\Omega) \) and \(v_\varepsilon + g \in W^{1,4+\varepsilon}_g(\Omega) \) for each \(\varepsilon > 0 \). In particular, we have \(\lim_{\varepsilon \to 0^+} J_0(v_\varepsilon + g) = J_0(v) \).

Claim. For each \(w \in C^\infty_0(\Omega) \) we have

\[
\lim_{\varepsilon \to 0^+} I_4(\varepsilon w + g) = I_4(w + g).
\]
letting $\varepsilon \to 0^+$ in the last inequality and taking into account the previous equality we get
\[
\limsup_{\varepsilon \to 0^+} \int_\Omega |\nabla u_\varepsilon|_D^4 \, dx \leq \int_\Omega |\nabla u_0|_D^4 \, dx.
\]
Next, since u_ε converges weakly to u_0 in $W^{1,4}(\Omega)$ we have
\[
\int_\Omega |\nabla u_0|_D^4 \, dx \leq \liminf_{\varepsilon \to 0^+} \int_\Omega |\nabla u_\varepsilon|_D^4 \, dx.
\]
The last two inequalities lead to the conclusion that
\[
\lim_{\varepsilon \to 0^+} \int_\Omega |\nabla u_\varepsilon|_D^4 \, dx = \int_\Omega |\nabla u_0|_D^4 \, dx.
\]
The proof of Theorem 1.2 is complete.

REFERENCES

A. GRECU
Department of Mathematics
University of Craiova
and
Research group of the project PN-III-P1-1.1-TE- 2019-0456
Politehnica University of Bucharest
e-mail: andreigrecu.cv@gmail.com

M. MIHĂILESCU
Department of Mathematics
University of Craiova
and
"Gheorghe Mihoc - Caius Iacob“ Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy
e-mail: mmihales@yahoo.com