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4-HARMONIC FUNCTIONS AND BEYOND

A. GRECU - M. MIHĂILESCU

The family of partial differential equations −∆4u− ε∆∞u = 0 (ε > 0)
is studied in a bounded domain Ω for given boundary data. We show
that for each ε > 0 the problem has a unique viscosity solution which
is exactly the (4+ ε)-harmonic map with the given boundary data. We
also explore the connections between the solutions of these problems and
infinity harmonic and 4-harmonic maps by studying the limiting behavior
of the solutions as ε → ∞ and ε → 0+, respectively.

1. Introduction

1.1. Statement of the problem

Let D ≥ 1 be an integer and let Ω ⊂ RD be a bounded domain with smooth
boundary ∂Ω. Next, let g ∈C1(Ω)∩C(Ω) be a given function. The main goal
of this paper is to analyse the problem{

−∆4u− ε∆∞u = 0 in Ω

u = g on ∂Ω ,
(1)
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where ε > 0 is a real parameter, ∆4u := div(|∇u|2D∇u) is the 4-Laplace operator
and ∆∞u := ∑

D
i, j=1

∂u
∂xi

∂u
∂x j

∂ 2u
∂xix j

stands for the ∞-Laplace operator.

1.2. Motivation

Under the same assumptions as in the previous section the following problem
was investigated {

−∆u− ε∆∞u = 0 in Ω

u = g on ∂Ω ,
(2)

see, e.g. [6], [12] or [1]. By [12] we know that problem (2) has a unique
classical solution, say uε (which is, actually, an analytical function). Moreover,
since problem (2) can be investigated in connection with the equation{

−div(eε|∇u|2D∇u) = 0 in Ω

u = g on ∂Ω, ,
(3)

the solution uε minimizes the Euler-Lagrange functional associated to the prob-
lem (3), namely

I(u) :=
∫

Ω

eε|∇u|2D dx ,

over a closed and convex subset of an Orlicz-Sobolev space defined with the aid
of the N-function Φ(t) := eεt2 − 1 and taking into account the boundary con-
dition (see [1] for more details). Furthermore, it was proved that uε converges
uniformly over Ω, as ε → ∞, to the unique ∞-harmonic function with g bound-
ary data (see [7, Section 4.1] or [1, Proposition 4]), while in the case where
ε → 0+, uε converges in W 1,4(Ω) to the unique harmonic function in Ω with g
boundary value data (see [1, Theorem 3]).

Motivated by the studies on problem (2) here we analyse a similar problem,
that is problem (1), where we replace the Laplace operator with the 4-Laplace
operator. At this point a natural question which can be considered is investi-
gating problem (1) when the 4-Laplace operator is replaced by the p-Laplace
operator with p ∈ (1,∞)\{2,4}. Unfortunately, the arguments provided for the
cases p ∈ {2,4} seem to not hold true when p ̸∈ {2,4}. More precisely, for
p ∈ {2,4} we can prove that the viscosity solutions of problems (2) and (1) are
actually variational solutions of some equivalent equations, which can be ob-
tained as minimizers of their corresponding Euler-Lagrange functionals. That
fact is crucial in the proofs of Lemmas 4.1 and 4.5 from this paper (and also
in the proofs from [1] and [7] and [11] for similar results). In the case when
p ̸∈ {2,4} the lack of a variational characterization for the solutions should ask
for a diferent treatment of the problem.
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1.3. Main results

The main results of this paper are formulated below in the following two theo-
rems.

Theorem 1.1. For each g ∈ C1(Ω)∩C(Ω) and each ε > 0 problem (1) has a
unique viscosity solution which is exactly the (4+ε)-harmonic map with bound-
ary values g.

Theorem 1.2. Let g ∈ C1(Ω)∩C(Ω) and for each ε > 0 let uε be the unique
viscosity solution of problem (1). Then uε converges uniformly over Ω, as ε →
∞, to the unique ∞-harmonic function with g boundary data. Moreover, letting
u0 be the 4-harmonic map with g boundary data then uε converges weakly to u0
in W 1,4(Ω), as ε → 0+, and

lim
ε→0+

∫
Ω

|∇uε |4D dx =
∫

Ω

|∇u0|4D dx .

The rest of the paper is structured as follows: in Section 2 we present
some well-known results on p-harmonic functions and on ∞-harmonic func-
tions which will be useful in our subsequent analysis; in Section 3 we give the
proof of Theorem 1.1; in Section 4 we present the proof of Theorem 1.2.

2. A quick overview on p-harmonic functions and ∞-harmonic functions

2.1. p-harmonic functions

Let Ω ⊂ RD be a bounded domain with smooth boundary ∂Ω, and let g ∈
C1(Ω)∩C(Ω) be given. For each real number p ∈ (1,∞) we consider the prob-
lem {

−∆pu = 0 in Ω

u = g on ∂Ω ,
(4)

where ∆pu := div(|∇u|p−2
D ∇u) is the p-Laplace operator. The solutions of prob-

lem (4) are sought in the set

W 1,p
g (Ω) := {u ∈W 1,p(Ω) : u = g on ∂Ω} ,

which is a closed and convex subset of the Sobolev space W 1,p(Ω), and are
understood in a variational sense. More precisely, up is a week solution of
problem (4) if up ∈W 1,p

g (Ω) and satisfies∫
Ω

|∇up|p−2
D ∇up∇φ dx = 0, ∀ φ ∈W 1,p

0 (Ω) . (5)
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Such a function is also called a p-harmonic function with g boundary data (see
also [10, Definition 2.1] for the definition of a p-harmonic function). It is well-
known (see, e.g. [13, Theorem 2.4] or [14, Theorem 2.16]) that problem (4)
has a unique weak solution which turns out to be the unique minimizer on
W 1,p

g (Ω) of the Euler-Lagrange functional associated with equation (4), namely,
Ip : W 1,p(Ω)→ R given by

Ip(u) :=
∫

Ω

|∇u|pD dx . (6)

Note also that when Ω is bounded and connected with the boundary ∂Ω of
class C1,α and g ∈W 2,p(Ω) then up ∈C1,α

loc (Ω) (see, e.g. [11, Section 2] or [14,
Theorem 2.19]).

Next, we point out the fact that the weak solutions of problem (4) are equiv-
alent with the viscosity solutions of the same equation (see, e.g. [10, Corollary
2.8]). Let us recall the definition of a viscosity solution of an equation of type{

F(∇u,D2u) = 0 in Ω

u = g on ∂Ω ,
(7)

where D2u stands for the Hessioan matrix of u (see, e.g. [2]).

Definition 2.1. (i) An upper semicontinuous function u : Ω →R is called a vis-
cosity subsolution of (7) if u|∂Ω ≤ g and, whenever x0 ∈ Ω and Ψ ∈C2(Ω) are
such that u(x0) = Ψ(x0) and u(x) < Ψ(x) if x ∈ Br(x0) \ {x0} for some r > 0,
then we have F(∇Ψ(x0),D2Ψ(x0))≤ 0;
(ii) A lower semicontinuous function u : Ω → R is called a viscosity super-
solution of (7) if u|∂Ω ≥ g and, whenever x0 ∈ Ω and Ψ ∈ C2(Ω) are such
that u(x0) = Ψ(x0) and u(x) > Ψ(x) if x ∈ Br(x0) \ {x0} for some r > 0, then
F(∇Ψ(x0),D2Ψ(x0))≥ 0;
(iii) A continuous function u : Ω → R is called a viscosity solution of (7) if it is
both a viscosity subsolution and a viscosity supersolution of (7).

Note that problem (4) is an equation of type (7) since if we assume that
u : Ω → R is a sufficiently smooth function then the p-Laplacian of u becomes

∆pu = |∇u|p−4
D (|∇u|2D∆u+(p−2)∆∞u) , (8)

or, taking into account that ∆u = Trace(D2u) and ∆∞u = ⟨D2u∇u,∇u⟩ we get
that

∆pu = Fp(∇u,D2u) ,

where
Fp(ξ ,S) := |ξ |p−4

D (|ξ |2DTrace(S)+(p−2)⟨Sξ ,ξ ⟩) ,



4-HARMONIC FUNCTIONS AND BEYOND 111

when ξ ∈ RD and S ∈MD×D
symm(R). If p ∈ (1,2) the function Fp is not defined at

ξ = 0 (or ∇u = 0). Consequently, this case requires special attention in relation
with the definition of a viscosity solution (that is Definition 2.1 above). More
precisely, in order to fix this problem we have to add the requirement ∇u(x0) ̸= 0
in the definition of a viscosity solution. Consequently, there is no condition to
be verified at the critical points in the definition of a viscosity solution. Note
also that when p ∈ [2,∞) the above problem does not appear since ∆pu(x0) = 0
in that case (see, e.g., [14, p. 78] for more details).

2.2. ∞-harmonic functions

Under the same assumptions as in the previous section we consider the equation{
−∆∞u = 0 in Ω

u = g on ∂Ω .
(9)

We call a viscosity solution of problem (9) an ∞-harmonic function with g
boundary data. Let u∞ be the unique (see [8]) viscosity solution of problem
(9). It can be shown that the family of p-harmonic functions with g boundary
data, up, converges uniformly over Ω, as p → ∞, to u∞ (see, e.g. [11, Section 2]
for a simple and quick explanation).

3. Proof of Theorem 1.1

First, note that when p = 4 relation (8) implies that

∆4u = |∇u|2D∆u+2∆∞u .

Using that fact we observe that for each p ∈ (4,∞) we can rewrite relation (8)
in the following way

∆pu = |∇u|p−4
D (∆4u+(p−4)∆∞u) .

Thus, for each ε > 0 we have

∆4+εu = |∇u|εD(∆4u+ ε∆∞u) . (10)

Lemma 3.1. For each ε > 0 a function uε is a viscosity solution of problem (1)
if and only if it is a viscosity solution of problem (4) when p = 4+ ε .

Proof. Step I: Equivalence of the viscosity supersolutions.
• Let uε be a viscosity supersolution of problem (1). We show that it is a

viscosity supersolution of problem (4) when p = 4+ ε , too.
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Indeed, first note that uε = g on ∂Ω. Next, let x0 ∈ Ω and Ψ ∈ C2(Ω) be
such that uε(x0) = Ψ(x0) and uε(x)> Ψ(x) if x ∈ Br(x0)\{x0} for some r > 0.
Then

−∆4Ψ(x0)− ε∆∞Ψ(x0)≥ 0 .

It follows that

−|∇Ψ(x0)|εD(∆4Ψ(x0)+ ε∆∞Ψ(x0))≥ 0 ,

or, by (10) we deduce that

−∆4+εΨ(x0)≥ 0 ,

which shows that uε is a viscosity supersolution of problem (4) when p = 4+ε .
• Let uε be a viscosity supersolution of problem (4) when p = 4+ ε . We

show that it is a viscosity supersolution of problem (1), too.
It is obvious that the boundary data condition is satisfied. Further, let x0 ∈ Ω

and Ψ ∈ C2(Ω) be such that uε(x0) = Ψ(x0) and uε(x) > Ψ(x) if x ∈ Br(x0) \
{x0} for some r > 0. Then

−∆4+εΨ(x0)≥ 0 ,

or, by (10) we have

−|∇Ψ(x0)|εD(∆4Ψ(x0)+ ε∆∞Ψ(x0))≥ 0 .

If |∇Ψ(x0)|D > 0 then we get

−∆4Ψ(x0)− ε∆∞Ψ(x0)≥ 0 ,

which means that uε is a viscosity supersolution of problem (1). Otherwise, if
|∇Ψ(x0)|D = 0 then ∂Ψ

∂xi
(x0) = 0 for each integer i ∈ {1, ...,D} and taking into

account the definitions of the 4-Laplacian and the ∞-Laplacian we conclude that

−∆4Ψ(x0)− ε∆∞Ψ(x0) = 0 ,

which leads again to the conclusion that uε is a viscosity supersolution of prob-
lem (1).

Step II: Equivalence of the viscosity subsolutions.
The analysis of this case can be done similarly with the one from the first

part of this proof and consequently we omit it.

Proof of Theorem 1.1 (concluded). Let ε > 0 be arbitrary but fixed. By
[13, Theorem 2.4] or [14, Theorem 2.16]) the problem (4) with p = 4+ ε has a
unique weak solution, say uε , which is a (4+ ε)-harmonic map (with boundary
values g). Moreover, uε is a continuous function. Then by [10, Corollary 2.8]
we infer that uε is a viscosity solution of problem (4) with p= 4+ε . Combining
that fact with Lemma 3.1 it follows that uε is the unique viscosity solution of
problem (1).
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4. Proof of Theorem 1.2

By Theorem 1.1 we deduce that for each ε > 0 the unique viscosity solution of
problem (1), uε , is a (4+ ε)-harmonic function with boundary values g (or the
unique weak solution of problem (4) with p = 4+ ε). Then it is well-known
that uε converges uniformly, as ε → ∞ to the unique ∞-harmonic function with
boundary values g (see, e.g. [11, Section 2]).

Next, we analyse the convergence of uε as ε → 0+.

We start by showing the following result:

Lemma 4.1. The sequence {uε}ε>0 is bounded in W 1,4(Ω).

Proof. For each ε > 0, uε ∈ W 1,4+ε
g (Ω) ⊂ W 1,4

g (Ω). Let u0 be the 4-harmonic
map with boundary values g. By [13, Theorem 2.4] or [14, Theorem 2.16], u0
is a minimizer of I4 given by relation (6) when p = 4. Consequently, we have∫

Ω

|∇u0|4D dx ≤
∫

Ω

|∇uε |4D dx, ∀ ε > 0 . (11)

Similar arguments can be used to point out that uε is a minimizer of I4+ε given
by relation (6) when p = 4+ ε . Consequently, we deduce that∫

Ω

|∇uε |4+ε

D dx ≤
∫

Ω

|∇g|4+ε

D dx, ∀ ε > 0 . (12)

On the other hand, Hölder’s inequality yields∫
Ω

|∇uε |4D dx ≤
(∫

Ω

|∇uε |4+ε

D dx
)4/(4+ε)

m(Ω)ε/(4+ε), ∀ ε > 0 . (13)

Combining (12) and (13) we find

∥ |∇uε |D ∥L4(Ω) ≤ ∥ |∇uε |D ∥L4+ε (Ω)(m(Ω)+1)1/4

≤ ∥ |∇g|D ∥L4+ε (Ω)(m(Ω)+1)1/4

≤ ∥ |∇g|D ∥L∞(Ω)(m(Ω)+1)1/4, ∀ ε > 0 .
(14)

Finally, using Poincaré’s inequality and relation (14) we deduce the existence of
a constant C > 0 for which we get

∥uε∥W 1,4(Ω) ≤ ∥uε −g∥W 1,4(Ω)+∥g∥W 1,4(Ω)

≤ C∥ |∇uε −∇g|D ∥L4(Ω)+∥g∥W 1,4(Ω)

≤ C(∥ |∇uε |D ∥L4(Ω)+∥ |∇g|D ∥L4(Ω))+∥g∥W 1,4(Ω)

≤ C(∥ |∇g|D ∥L∞(Ω)(m(Ω)+1)1/4 +∥ |∇g|D ∥L4(Ω))

+∥g∥W 1,4(Ω), ∀ ε > 0 .
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Since the right hand side of the above estimate is constant (it does not depend
on ε > 0) we deduce the conclusion of the lemma.

In order to go further, we recall the definition of Γ-convergence (introduced
in [4], [5]) in metric spaces. The reader is referred to [3] for a comprehensive
introduction to the subject.

Definition 4.2. Let Y be a metric space. A sequence {Fn} of functionals Fn :
Y →R :=R∪{∞} is said to Γ(Y )-converge to F : Y →R, and we write Γ(Y )−
lim
n→∞

Fn = F∞, if the following hold:

(i) for every u ∈ Y and {un} ⊂ Y such that un → u in Y , we have

F(u)≤ liminf
n→∞

Fn(un);

(ii) for every u∈Y there exists a sequence {un}⊂Y (called a recovery sequence)
such that un → u in Y and

F(u)≥ limsup
n→∞

Fn(un).

The following two results are well-known and can be found, e.g., in [9,
Lemma 6.1.1] and [9, Corollary 6.1.1].

Proposition 4.3. Let Y be a topological space that satisfies the first axiom of
countability, and assume that {un} is a sequence such that un → u in Y as n→∞,

limsup
n→∞

F(un)≤ F(u),

and such that for every m ∈ N there exists a sequence {um,n}n, um,n → um as
n → ∞, with

limsup
n→∞

Fn(um,n)≤ F(um).

Then there exists a recovering sequence for u in the sense of (ii) of Definition
4.2.

Proposition 4.4. Let Y be a topological space satisfying the first axiom of
countability, and assume that the sequence {Fn} of functionals Fn : Y → R
Γ − converge to F : Y → R. Let zn be a minimizer for Fn. If zn → z in X,
then z is a minimizer of F, and F(z) = liminf

n→∞
Fn(zn).

For each ε ≥ 0 define Jε : L1(Ω)→ R (n ≥ 2) and J∞ : L1(Ω)→ R by

Jε(u) :=

{
I4+ε(u) if u ∈W 1,4+ε

g (Ω)

+∞ if u ∈ L1(Ω)\W 1,4+ε
g (Ω) .
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Lemma 4.5. Γ(L1(Ω))− lim
ε→0+

Jε = J0.

Proof. Let vε → v in L1(Ω). If we have liminf
ε→0+

Jε(vε) = +∞, there is nothing to

prove. Thus, we may assume, without loss of generality, that vε ∈ W 1,4+ε
g (Ω)

and, after eventually extracting a subsequence,

liminf
ε→0+

Jε(vε) = lim
ε→0+

Jε(vε) =: L <+∞ . (15)

Since for each ε > 0 we have W 1,4+ε
g (Ω) ⊂ W 1,4

g (Ω) then Young’s inequality
implies∫

Ω

|∇vε |4D dx ≤ 4
4+ ε

∫
Ω

|∇vε |4+ε

D dx+
ε

4+ ε
m(Ω)≤ (L+1)+m(Ω) =: M ,

for all ε > 0, where m(Ω) stands for the Lebesgue measure of Ω and M is a
positive constant. It follows that {|∇vε |D}ε is bounded in L4(Ω). Next, for
each ε > 0 the use of Poincaré’s inequality implies the existence of a positive
constant C such that

∥vε∥W 1,4(Ω) ≤ ∥vε −g∥W 1,4(Ω)+∥g∥W 1,4(Ω)

≤ C∥ |∇vε −∇g|D ∥L4(Ω)+∥g∥W 1,4(Ω)

≤ C(∥ |∇vε |D ∥L4(Ω)+∥ |∇g|D ∥L4(Ω))+∥g∥W 1,4(Ω)

≤ C(M1/4 +∥ |∇g|D ∥L4(Ω))+∥g∥W 1,4(Ω), ∀ ε > 0 .

We deduce that {vε} is bounded in W 1,4(Ω), and, thus, after eventually extract-
ing a subsequence (not relabeled), we have vε ⇀ v weakly in W 1,4(Ω). More-
over, standard arguments from trace theory show that u = g on ∂Ω. Taking into
account the fact that the functional J0 is sequentially weakly lower semicontin-
uous in W 1,4(Ω), we obtain

J0(v) =
∫

Ω

|∇v|4D dx ≤ liminf
ε→0+

∫
Ω

|∇vε |4D dx

≤ liminf
ε→0+

[
4

4+ ε

∫
Ω

|∇vε |4+ε

D dx+
ε

4+ ε
m(Ω)

]
= lim

ε→0+
Jε(vε) .

It remains to prove the existence of a recovery sequence for the Γ-limit. To
this, let v ∈ L1(Ω) be arbitrary, and note that if v ̸∈W 1,4

g (Ω) there is nothing to
prove, since J0(v) = +∞ in this case. Next, assume that v ∈ W 1,4

g (Ω), and let
{vε} ⊂C∞

0 (Ω) be such that vε → v−g as ε → 0+ in W 1,4
0 (Ω). Thus, vε +g → v



116 A. GRECU - M. MIHĂILESCU

as ε → 0+ in W 1,4(Ω) and vε +g ∈W 1,4+ε
g (Ω) for each ε > 0. In particular, we

have lim
ε→0+

J0(vε +g) = J0(v).

Claim. For each w ∈C∞
0 (Ω) we have

lim
ε→0+

I4+ε(w+g) = I4(w+g) .

Indeed, since w ∈C∞
0 (Ω) and g ∈C1(Ω) it follows that |∇(w+g)|D ∈ L∞(Ω)⊂

L5(Ω). Thus, for each ε ∈ (0,1) we have

|∇(w+g)(x)|4+ε

D ≤ |∇(w+g)(x)|5D +1 ∈ L1(Ω), ∀ x ∈ Ω .

On the other hand, it is clear that

lim
ε→0+

|∇(w+g)(x)|4+ε

D = |∇(w+g)(x)|4D, ∀ x ∈ Ω .

Thus, a simple application of Lebesgue’s dominated convergence theorem con-
cludes the result of the claim.

Next, using the above claim we deduce that for each δ > 0 small enough we
have

lim
ε→0+

Jε(vδ +g) = J0(vδ +g) .

Finally, in view of Proposition 4.3 we conclude that

J0(v)≥ limsup
ε→0+

Jε(vε +g) .

The proof of Lemma 4.5 is complete.

Now, we are ready to discuss the convergence of uε as ε → 0+. First, note
that by Lemma 4.1 we deduce that, passing eventually to a subsequence, we
have that uε converges weakly in W 1,4(Ω) and strongly in L1(Ω) to some u0,
as ε → 0+. Next, since Lemma 4.5 holds true we can apply Proposition 4.4
with X = L1(Ω), Fn = Jε , F = J0, zn = uε and taking into account the strong
convergence of uε to u0 we deduce the u0 should be a minimizer of J0 on L1(Ω)
and consequently of I4 on W 1,4

g (Ω). Moreover,

liminf
ε→0+

∫
Ω

|∇uε |4+ε

D dx =
∫

Ω

|∇u0|4D dx .

On the other hand, since by Young’s inequality we know that∫
Ω

|∇uε |4D dx ≤ 4
4+ ε

∫
Ω

|∇uε |4+ε

D dx+
ε

4+ ε
m(Ω), ∀ ε > 0 ,
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letting ε → 0+ in the last inequality and taking into acconut the previous equality
we get

limsup
ε→0+

∫
Ω

|∇uε |4D dx ≤
∫

Ω

|∇u0|4D dx .

Next, since uε converges weakly to u0 in W 1,4(Ω) we have∫
Ω

|∇u0|4D dx ≤ liminf
ε→0+

∫
Ω

|∇uε |4D dx .

The last two inequalities lead to the conclusion that

lim
ε→0+

∫
Ω

|∇uε |4D dx =
∫

Ω

|∇u0|4D dx .

The proof of Theorem 1.2 is complete.
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