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4-HARMONIC FUNCTIONS AND BEYOND

A. GRECU - M. MIHAILESCU

The family of partial differential equations —Aqu — €Awt =0 (€ > 0)
is studied in a bounded domain Q for given boundary data. We show
that for each € > 0 the problem has a unique viscosity solution which
is exactly the (4 + €)-harmonic map with the given boundary data. We
also explore the connections between the solutions of these problems and
infinity harmonic and 4-harmonic maps by studying the limiting behavior
of the solutions as € — oo and € — 0T, respectively.

1. Introduction

1.1. Statement of the problem

Let D > 1 be an integer and let Q C R” be a bounded domain with smooth
boundary Q. Next, let g € C!'(Q) NC(Q) be a given function. The main goal
of this paper is to analyse the problem

—Mu—€Au=0 1in Q
{ + (1)

u=g on 0Q,
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where € > 0 is a real parameter, Aqu := div(|Vu|3Vu) is the 4-Laplace operator

D Ju du Ju
lv]:1 Bx,- axj 8){in

and A.u := stands for the co-Laplace operator.

1.2. Motivation

Under the same assumptions as in the previous section the following problem
was investigated

(2)

—Au—€eAu=0 in Q
u=g on 0Q,

see, e.g. [6], [12] or [1]. By [12] we know that problem (2) has a unique

classical solution, say u, (which is, actually, an analytical function). Moreover,

since problem (2) can be investigated in connection with the equation
—div(efVbVi) =0 in Q 3)
u=g on 0Q,,

the solution #, minimizes the Euler-Lagrange functional associated to the prob-
lem (3), namely

I(u):= / Vel gy
o

over a closed and convex subset of an Orlicz-Sobolev space defined with the aid
of the N-function ®(¢t) := " — 1 and taking into account the boundary con-
dition (see [1] for more details). Furthermore, it was proved that u, converges
uniformly over Q, as € — oo, to the unique co-harmonic function with g bound-
ary data (see [7, Section 4.1] or [1, Proposition 4]), while in the case where
€ — 0%, ue converges in W!#(Q) to the unique harmonic function in Q with g
boundary value data (see [1, Theorem 3]).

Motivated by the studies on problem (2) here we analyse a similar problem,
that is problem (1), where we replace the Laplace operator with the 4-Laplace
operator. At this point a natural question which can be considered is investi-
gating problem (1) when the 4-Laplace operator is replaced by the p-Laplace
operator with p € (1,00)\ {2,4}. Unfortunately, the arguments provided for the
cases p € {2,4} seem to not hold true when p ¢ {2,4}. More precisely, for
p € {2,4} we can prove that the viscosity solutions of problems (2) and (1) are
actually variational solutions of some equivalent equations, which can be ob-
tained as minimizers of their corresponding Euler-Lagrange functionals. That
fact is crucial in the proofs of Lemmas 4.1 and 4.5 from this paper (and also
in the proofs from [1] and [7] and [11] for similar results). In the case when
p € {2,4} the lack of a variational characterization for the solutions should ask
for a diferent treatment of the problem.
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1.3. Main results

The main results of this paper are formulated below in the following two theo-
rems.

Theorem 1.1. For each g € C'(Q)NC(Q) and each € > 0 problem (1) has a
unique viscosity solution which is exactly the (44 €)-harmonic map with bound-
ary values g.

Theorem 1.2. Let g € C'(Q)NC(Q) and for each € > 0 let ue be the unique
viscosity solution of problem (1). Then ug converges uniformly over Q, as € —
oo, to the unique oo-harmonic function with g boundary data. Moreover, letting
ugy be the 4-harmonic map with g boundary data then ug converges weakly to ug

inW'*(Q), as € — 0%, and

lim / \Vug\“,)dx:/ Vuol$ dx.
Q Q

-0t

The rest of the paper is structured as follows: in Section 2 we present
some well-known results on p-harmonic functions and on co-harmonic func-
tions which will be useful in our subsequent analysis; in Section 3 we give the
proof of Theorem 1.1; in Section 4 we present the proof of Theorem 1.2.

2. A quick overview on p-harmonic functions and «-harmonic functions
2.1. p-harmonic functions

Let Q C R? be a bounded domain with smooth boundary dQ, and let g €
C'(Q)NC(Q) be given. For each real number p € (1,) we consider the prob-
lem

{A,,u:o in Q @

u=g on dQ,

where A,u 1= div(|Vu]£_2Vu) is the p-Laplace operator. The solutions of prob-
lem (4) are sought in the set

WP(Q) = {u e W'P(Q) : u=gon o0},

which is a closed and convex subset of the Sobolev space W!»(Q), and are
understood in a variational sense. More precisely, u, is a week solution of

problem (4) if u, € W7 () and satisfies

/Q Vi 2 2V, Vo dx =0, ¥ ¢ € W(Q). )
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Such a function is also called a p-harmonic function with g boundary data (see
also [10, Definition 2.1] for the definition of a p-harmonic function). It is well-
known (see, e.g. [13, Theorem 2.4] or [14, Theorem 2.16]) that problem (4)
has a unique weak solution which turns out to be the unique minimizer on
ng P (Q) of the Euler-Lagrange functional associated with equation (4), namely,
I, : W'P(Q) — R given by

I(u) = /Q Vul? dx. ©)

Note also that when Q is bounded and connected with the boundary dQ of
class C1'* and g € W2P(Q) then u, € Cllo’f‘(ﬂ) (see, e.g. [11, Section 2] or [14,
Theorem 2.19]).

Next, we point out the fact that the weak solutions of problem (4) are equiv-
alent with the viscosity solutions of the same equation (see, e.g. [10, Corollary
2.8]). Let us recall the definition of a viscosity solution of an equation of type

{F(Vu,DZu)zo in Q o

u=g on JdQ,
where D?u stands for the Hessioan matrix of u (see, e.g. [2]).

Definition 2.1. (i) An upper semicontinuous function u : Q — R is called a vis-
cosity subsolution of (7) if u|;q < g and, whenever xy € Q and ¥ € C*(Q) are
such that u(xg) = ¥(xp) and u(x) < W(x) if x € B.(xo) \ {xo} for some r > 0,
then we have F(V¥(xo), D*¥(xp)) < 0;

(i1) A lower semicontinuous function u : Q — R is called a viscosity super-
solution of (7) if u|yq > g and, whenever xg € Q and ¥ € C?(Q) are such
that u(xg) = W¥(xo) and u(x) > ¥(x) if x € B,(x0) \ {xo} for some r > 0, then
F(V¥(x0),D*¥(x0)) > 0;

(iii) A continuous function u : Q — R is called a viscosity solution of (7) if it is
both a viscosity subsolution and a viscosity supersolution of (7).

Note that problem (4) is an equation of type (7) since if we assume that
u: Q — R is a sufficiently smooth function then the p-Laplacian of u becomes

Apu = [VulpH(|VulhAu+ (p —2)Act) (8)

or, taking into account that Au = Trace(D?u) and Awu = (D*uVu,Vu) we get
that
Apu = Fy(Vu,D*u),

where
Fp(&,8) == &[5 (€]} Trace(S) + (p — 2)(SE,£))



4-HARMONIC FUNCTIONS AND BEYOND 111

when & € RP and § € MDD (R). If p € (1,2) the function F), is not defined at
& =0 (or Vu = 0). Consequently, this case requires special attention in relation
with the definition of a viscosity solution (that is Definition 2.1 above). More
precisely, in order to fix this problem we have to add the requirement Vu(xp) # 0
in the definition of a viscosity solution. Consequently, there is no condition to
be verified at the critical points in the definition of a viscosity solution. Note
also that when p € [2,00) the above problem does not appear since A,u(xg) =0

in that case (see, e.g., [14, p. 78] for more details).
2.2. oo-harmonic functions
Under the same assumptions as in the previous section we consider the equation

{ —Aou=0 in Q )

u=g on 0Q.

We call a viscosity solution of problem (9) an co-harmonic function with g
boundary data. Let u. be the unique (see [8]) viscosity solution of problem
(9). It can be shown that the family of p-harmonic functions with g boundary
data, u,, converges uniformly over £, as p — o, t0 u.. (see, e.g. [11, Section 2]
for a simple and quick explanation).

3. Proof of Theorem 1.1
First, note that when p = 4 relation (8) implies that

Aqu = |Vu|pAu+2Au.

Using that fact we observe that for each p € (4,00) we can rewrite relation (8)
in the following way

Apt = [Vl (Aqu+ (p— 4) Acett) .
Thus, for each € > 0 we have
Agieu=|Vul5(Agu+ eActr) . (10)

Lemma 3.1. For each € > 0 a function ug is a viscosity solution of problem (1)
if and only if it is a viscosity solution of problem (4) when p = 4+ ¢.

Proof. Step I: Equivalence of the viscosity supersolutions.
e [ et ue be a viscosity supersolution of problem (1). We show that it is a
viscosity supersolution of problem (4) when p = 4 + €, too.
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Indeed, first note that u; = g on dQ. Next, let xo € Q and ¥ € C?(Q) be
such that ue (xg) = ¥(x0) and ug (x) > W¥(x) if x € B,(x9) \ {x0} for some r > 0.
Then

—A4lP(X()) — EA.X,\P(XQ) >0.
It follows that
—‘VT(Xo)’%(AﬂP()Co) + ngolP(XO)) >0,
or, by (10) we deduce that
_A4+8‘P(x0) > Oa

which shows that u, is a viscosity supersolution of problem (4) when p =4+ €.
e Let ue be a viscosity supersolution of problem (4) when p =4+ ¢. We
show that it is a viscosity supersolution of problem (1), too.
It is obvious that the boundary data condition is satisfied. Further, let xg € Q
and W € C?(Q) be such that ug(xp) = ¥(xo) and ue(x) > P(x) if x € B,(x0) \
{x0} for some r > 0. Then

—Ag4¥(x0) >0,
or, by (10) we have
—|V¥(x0)|5(A4¥(x0) + €ALP(x0)) > 0.
If [VW¥(x0)|p > O then we get
—As¥(x0) — €AL¥(x9) >0,

which means that u, is a viscosity supersolution of problem (1). Otherwise, if
VW (x0)|p = O then ‘;—;I:(xo) = 0 for each integer i € {1,...,D} and taking into
account the definitions of the 4-Laplacian and the co-Laplacian we conclude that

—A4lP(X()) — SAwlP(X()) = 0,

which leads again to the conclusion that u, is a viscosity supersolution of prob-
lem (1).

Step II: Equivalence of the viscosity subsolutions.

The analysis of this case can be done similarly with the one from the first
part of this proof and consequently we omit it. O

Proof of Theorem 1.1 (concluded). Let € > 0 be arbitrary but fixed. By
[13, Theorem 2.4] or [14, Theorem 2.16]) the problem (4) with p =4+ € has a
unique weak solution, say ug, which is a (4 + €)-harmonic map (with boundary
values g). Moreover, u, is a continuous function. Then by [10, Corollary 2.8]
we infer that u, is a viscosity solution of problem (4) with p =4+ &. Combining
that fact with Lemma 3.1 it follows that u, is the unique viscosity solution of
problem (1).
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4. Proof of Theorem 1.2

By Theorem 1.1 we deduce that for each € > 0 the unique viscosity solution of
problem (1), ug, is a (4 + €)-harmonic function with boundary values g (or the
unique weak solution of problem (4) with p =4+ €). Then it is well-known
that ue converges uniformly, as € — oo to the unique co-harmonic function with
boundary values g (see, e.g. [11, Section 2]).

Next, we analyse the convergence of ue as € — 0.

We start by showing the following result:
Lemma 4.1. The sequence {ug }e~o is bounded in W4 (Q).

Proof. For each € > 0, u, € ng ATEQ) ng “4(Q). Let ug be the 4-harmonic
map with boundary values g. By [13, Theorem 2.4] or [14, Theorem 2.16], ug
is a minimizer of /4 given by relation (6) when p = 4. Consequently, we have

/Q]Vuo\“Ddxg/Q\Vug\“Ddx, Ve>0. (11)

Similar arguments can be used to point out that u, is a minimizer of 4, given
by relation (6) when p = 4+ €. Consequently, we deduce that

/Q\Vug]?fgdxg/gwgﬁ;rs dx, Ve>0. (12)

On the other hand, Holder’s inequality yields

4)(4+e)
/|vu£\4,)dxg (/ Vie |5+ dx> m(Q)F/4) ves0.  (13)
Q Q

Combining (12) and (13) we find

| 1Vuelp ls) < Il [Vite|p |lpsre(q)(m(Q) + 1)1/
11V8]p (|5 (g) (m(Q) + 1)1/ (14)
1 1Velp |- (m(Q)+ 1)V, Ve >o0.

IN A

Finally, using Poincaré’s inequality and relation (14) we deduce the existence of
a constant C > 0 for which we get

luellwis@) < llue —gllwrs) + lIgllwiae)
< C|Vue = Velp |12 0) + lIgllwr4(a)
< C([ Vuelp s + 11 1V8lp @) +18llwiaq)
< C(]| Vel ll=@) (m(Q) + 1)""* + 1| Ve|p I 3()

+HgHW|‘4(Q), Ve>0.
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Since the right hand side of the above estimate is constant (it does not depend
on € > 0) we deduce the conclusion of the lemma. ]

In order to go further, we recall the definition of I"-convergence (introduced
in [4], [5]) in metric spaces. The reader is referred to [3] for a comprehensive
introduction to the subject.

Definition 4.2. Let Y be a metric space. A sequence {F,} of functionals F, :
Y — R:=RU{e} is said to ['(Y)-converge to F : Y — R, and we write I'(Y) —
lim F, = F., if the following hold:

n—soo
(i) for every u € Y and {u,} C Y such that u, — uin Y, we have
F(u) <liminfF,(u,);
n—oo

(ii) for every u € Y there exists a sequence {u,} C Y (called a recovery sequence)
such that u,, — u in Y and

F(u) > limsup £, (up).
n—yoo

The following two results are well-known and can be found, e.g., in [9,
Lemma 6.1.1] and [9, Corollary 6.1.1].

Proposition 4.3. Let Y be a topological space that satisfies the first axiom of
countability, and assume that {u, } is a sequence such that u, — uinY asn— oo,

limsup F (u,) < F(u),
n—soo
and such that for every m € N there exists a sequence {upn}n, Umn — Up as
n — oo, with
limsup F, (ttmn) < F (t4m).

n—soo

Then there exists a recovering sequence for u in the sense of (ii) of Definition
4.2.

Proposition 4.4. Let Y be a topological space satisfying the first axiom of
countability, and assume that the sequence {F,} of functionals F, : Y — R
I — converge to F : Y — R. Let z, be a minimizer for F,. If z, — 7 in X,
then z is a minimizer of F, and F (z) = liminf F, (2n)-

For each € > 0 define J; : L' (Q) = R (n>2) and J.. : L' (Q) — R by

Jo(u) = Lie(w) ifuc W;’HE(Q)
ST 4o if ue L'(Q)\ Wy 4 (Q).
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Lemma 4.5. T'(L'(Q)) — lim Je = Jp.
e—07"

Proof. Letve — vin L'(Q). If we have limé{rlf.]g (ve) = oo, there is nothing to
E—

prove. Thus, we may assume, without loss of generality, that v, € ng ’4+8(Q)
and, after eventually extracting a subsequence,

llmlnfjg(Vg) = hm Je(Vg) =:L < 4oo. (15)

e—0T

Since for each € > 0 we have W1 ATEQ) ng “(Q) then Young’s inequality
implies

4 €
/ |Vveld dx < F/ |Vve|HHe dx + mm(Q) <(L+1)4+m(Q)=M,
for all € > 0, where m(Q) stands for the Lebesgue measure of Q and M is a
positive constant. It follows that {|Vve|p}e is bounded in L*(Q). Next, for
each € > 0 the use of Poincaré’s inequality implies the existence of a positive
constant C such that

Vellwisy < lve—gllwia) + llgllwiaq)
< C|l[Vve —Vglp ll12) + Igllwi@)
< C(l Vvelp |2 ) + |l |V8!D 4@ )+Hg||wl4
< CM'* 4 [Velp ) + Igllwis@), Ve>0.

We deduce that {v,} is bounded in W!#(Q), and, thus, after eventually extract-
ing a subsequence (not relabeled), we have v — v weakly in W1’4(Q). More-
over, standard arguments from trace theory show that u = g on dQ. Taking into
account the fact that the functional Jy is sequentially weakly lower semicontin-
uous in W!4(Q), we obtain

Jo(v):/ Vv|pdx < 1iminf/ |Vve|?, dax
Q Q

e—0t

N

e—0t |4+¢€
= lim J .
g Jelve)

4 £
liminf {/ Vel dx+ ——m(Q)
Q + €

It remains to prove the existence of a recovery sequence for the I'-limit. To
this, let v € L'(Q) be arbitrary, and note that if v ¢ Wg1’4(§2) there is nothing to

prove, since Jo(v) = oo in this case. Next, assume that v € ng 4(Q), and let
{ve} C C5(Q) be such that v —v—gase — 07 in W01’4(Q). Thus, ve +g — v
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as € — 0" in W4 (Q) and ve + g € W;’HS(Q) for each € > 0. In particular, we
have lim Jy(ve +g) = Jo(v).
£—0"
Claim. For each w € Cy’(Q) we have

lim Iyye(w+g) =Lw+g).
e—0*

Indeed, since w € C(Q) and g € C'(Q) it follows that |[V(w +g)|p € L™(Q) C
L3(Q). Thus, for each € € (0, 1) we have

IViw+g)(x)[p < [Viw+g)x)p+1€L'(Q), VxeQ.
On the other hand, it is clear that
lim [V(w+g)(x) A['fs = ]V(w+g)(x)\4D, VxeQ.
e—0t

Thus, a simple application of Lebesgue’s dominated convergence theorem con-
cludes the result of the claim.

Next, using the above claim we deduce that for each & > 0 small enough we
have

lim Je(vs +g) = Jo(vs +38)-
0"
Finally, in view of Proposition 4.3 we conclude that

Jo(v) > limsupJe(ve + g) -

-0t

The proof of Lemma 4.5 is complete. O

Now, we are ready to discuss the convergence of u. as € — 0™ First, note
that by Lemma 4.1 we deduce that, passing eventually to a subsequence, we
have that u, converges weakly in W!#(Q) and strongly in L'(Q) to some uy,
as € — 0". Next, since Lemma 4.5 holds true we can apply Proposition 4.4
with X = LY(Q), F, = Je, F = Jy, 2z, = ue and taking into account the strong
convergence of ug to ug we deduce the ug should be a minimizer of Jy on L! (Q)
and consequently of /4 on ng 4(Q). Moreover,

liminf/ Ve |5€ dx:/ \Vuo[} dx.
Q Q

e—0T

On the other hand, since by Young’s inequality we know that

4 €
/Q’VMg|%dXS m/ﬂ‘vu(g‘é+£dx+mm(g), V8>0,
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letting € — O in the last inequality and taking into acconut the previous equality
we get
limsup [ [Vug|, dx < / \Vuo|$ dx.
Q Q

=0t

Next, since ue converges weakly to ug in W'#(Q) we have

/ Vo3, dxghminf/ |V} dx.
Q e—=0t JO

The last two inequalities lead to the conclusion that

lim / \VugﬁDdx:/ |V 3, dx.
Q Q

=0+t

The proof of Theorem 1.2 is complete.
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