
LE MATEMATICHE
Vol. LXXVII (2022) – Issue I, pp. 119–141
doi: 10.4418/2022.77.1.7

COMPUTING TOTALLY REAL HYPERPLANE SECTIONS
AND LINEAR SERIES ON ALGEBRAIC CURVES

H. P. LE - D. MANEVICH - D. PLAUMANN

Given a real algebraic curve in projective space, we study the compu-
tational problem of deciding whether there exists a hyperplane meeting
the curve in real points only. More generally, given any divisor on such
a curve, we may ask whether the corresponding linear series contains an
effective divisor with totally real support. This translates into a particular
type of parametrized real root counting problem that we wish to solve ex-
actly. On the other hand, it is known that for a given genus and number of
real connected components, any linear series of sufficiently large degree
contains a totally real effective divisor. Using the algorithms described in
this paper, we solve a number of examples, which we can compare to the
best known bounds for the required degree.

Introduction

Given a real algebraic curve X of degree d embedded into some projective space,
we consider the computational problem of deciding whether there exists a real
hyperplane meeting X in a prescribed number r of real points, counted with mul-
tiplicity. Of particular interest is the case r = d, i.e., hyperplanes meeting X in
real points only. More generally, given any divisor D on X defined over R, and
thus consisting of real points and complex-conjugate pairs, we may ask whether
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the linear series |D| contains an effective divisor with totally real support. (The
first question is the special case when D is a hyperplane section of a suitably em-
bedded curve.) A number of general results have been obtained in this direction:

Figure 1: A real space curve of degree 6 with a totally real hyperplane section.

The answer is known to be positive for any divisor of sufficiently high degree
(see [12] and [21]). However, the precise degree required, relative to the genus
of X , is the subject of several results and conjectures, some of which we will
investigate from a computational point of view. Explicit bounds are only known
if the real locus X(R) has many connected components (so-called M-curves or
(M−1)-curves), by results due to Huisman [8] and Monnier [16]. On the other
hand, very little is known about curves whose number of connected components
is not close to maximal. Of course, the computational problem makes sense for
any given curve and divisor, regardless of whether or not there is a general result
covering all curves and divisors of the given kind.

It comes down to “solving” polynomial systems whose coefficients depend
on parameters. More precisely, we consider the coefficients of the equation
defining the hyperplane as parameters. One then associates a hyperplane to a
point in the space of parameters. The number of real points at the intersection
of the considered hyperplane with the curve may vary depending on the param-
eters, while the number of complex intersection points between the curve and
the hyperplane is equal to the degree d for generic values of the parameters.
(If the points are counted with intersection multiplicities and the curve is not
contained in a hyperplane, this complex intersection number is equal to d for
all values of the parameters.) Hence, from a computational point of view, we
are considering a polynomial system, depending on parameters such that, when
these parameters take generic values, the solution set over the complex numbers
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is finite. When the input system generates a radical ideal, the algorithm we use,
which is detailed in [14], computes a partition of a dense semi-algebraic subset
of the space of parameters into open semi-algebraic sets such that the number of
real simple solutions (i.e., without multiplicities) to the input system is invariant
for any point chosen in one of these sets. To do this, we compute a symmet-
ric matrix called the parametric Hermite matrix, whose entries are polynomials
depending on the parameters and such that, after specialization, its signature co-
incides with the number of real solutions to the specialized system. This allows
us to classify the possible number of real roots to the input system with respect
to the parameters.

Our main findings can be summarized as follows.

1. There exist canonical curves X in P3 with one or two ovals which do not
allow simple totally real hyperplane sections (Example 3.1).

2. There exists a curve X in P3 of genus two and degree five having one oval
which does not allow a simple totally real hyperplane section (Example
3.3).

3. There are infinitely many plane quartics X with many ovals possessing a
(complete) linear series of degree four which does not contain a totally
real divisor (Example 4.2).

4. For every d ≥ 3 and every number 1≤ s≤ g+1 with g= (d−1)(d−2)
2 , there

exists a plane curve X of degree d, genus g and having s branches such
that the linear series of lines |L| is totally real (Theorem 4.3).

The paper is structured as follows. Section 1 is devoted to preliminaries; we
recall basic definitions and properties. Section 2 describes the algorithm we use
to solve parametric polynomial systems representing the hyperplane sections.
In Section 3, we apply our computational methods to (canonical) space curves.
In Section 4, we determine the real divisor bound for certain plane quartics.

Acknowledgements. We would like to thank Matilde Manzaroli for helpful
discussions concerning the proof of Theorem 4.3. We would like to thank Mo-
hab Safey El Din for important discussions and remarks on the computations.
Daniel Plaumann was partially supported through DFG grant no. 426054364.

1. Preliminaries

By a real (algebraic) curve X , we mean an integral, smooth and projective va-
riety of dimension 1 defined over R such that the set X (R) of real points is



122 H. P. LE - D. MANEVICH - D. PLAUMANN

non-empty (and therefore Zariski-dense in X), unless any of these assumptions
is explicitly dropped. Note that a smooth curve is a curve without any singu-
larities, real or complex. In particular, the set X(R) is an analytic manifold and
decomposes into a finite number of connected components, which are called the
(real) branches of X . Each branch is diffeomorphic to a circle S1. By Harnack’s
Inequality [6], we have s ≤ g+1, where s is the number of branches and g is the
genus of X .

If X is embedded into the projective space Pn, a branch of X is an oval if
its homology class in H1(Pn(R),Z/2) is trivial, and a pseudo-line otherwise.
Equivalently, ovals are those branches of X that meet every real hyperplane in
Pn in an even number of real points (counted with multiplicities), while pseudo-
lines meet hyperplanes in an odd number of points. In particular, a pseudo-line
has non-empty intersection with any hyperplane.

We fix some notation and terminology concerning divisors on curves. As
a general reference (covering also curves defined over non-algebraically closed
fields), we suggest [15, Ch. 7]. A divisor on X is a formal Z-linear combination
of points

D =
m

∑
i=1

niPi (m ∈ N0,ni ∈ Z,Pi ∈ X) .

Assuming that the points P1, . . . ,Pm are distinct and ni ̸= 0 for all i, the set
{P1, . . . ,Pm} is called the support of the divisor, the numbers n1, . . . ,nm the mul-
tiplicities and ∑

m
i=1 ni the degree. If all multiplicities in D are nonnegative, the

divisor D is called effective. If all multiplicites are equal to 1, the divisor is
called simple. The support of a divisor on a real curve may consist of real or
complex points. However, we will only consider divisors that are defined over R
and hence conjugation-invariant, i.e., for any point in the support, its complex-
conjugate appears with equal multiplicity. In particular, the non-real part of a
divisor is of even degree.

For any non-zero real rational function f ∈ R(X) on X , the divisor of ze-
ros and poles (counted with positive or negative mutiplicities, respectively) is
denoted div( f ). Two divisors D and E are called linearly equivalent if E =
D+ div( f ) for some f ∈ R(X)∗. The principal divisors div( f ) have degree 0,
hence linear equivalence preserves the degree. The complete linear series asso-
ciated to D is the set of effective divisors on X which are linearly equivalent to D
and is denoted |D|. A complete linear series carries the structure of a projective
space. Any projective subspace of a complete linear series is called a linear se-
ries. If a point is contained in the support of all divisors in a given linear series,
it is a called a base point, and the union of all such points is the base locus. A
linear series is called base-point-free if its base locus is empty.

For a real curve X embedded into projective space Pn with degree d, any
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hypersurface Z ⊂ Pn of degree e not containing X defines an effective intersec-
tion divisor X ·Z of degree de. The set of all intersections with hypersurfaces of
a fixed degree forms a linear series on X , which may or may not be complete.
Clearly, such a linear series is always base-point-free.

An effective divisor D is called totally real if its support consists of real
points only. For the sake of brevity, we call any linear series totally real if
it contains a totally real (effective) divisor. After discussing the algorithms in
Section 2, we will examine the following problems.

Problem 1.1. Given a real curve X , determine the smallest natural number
N(X) ∈ N∗ such that any divisor of degree at least N(X) is linearly equivalent
to a totally real divisor.

We call N(X) the real divisor bound of X . It was shown by Krasnov [12,
Thm. 2.2] and Scheiderer [21, Cor. 2.10] that the real divisor bound is always
finite. Furthermore, upper and lower bounds for N(X) were found by Huisman
[8] and Monnier [16], which depend on the genus g of X only. For example, if
X is an M-curve or an (M−1)-curve, then we have N(X)≤ 2g−1. However, it
seems difficult to find upper bounds for curves with few branches.

An easy way to determine lower bounds for N(X) is to find a linear series
with a pair of complex-conjugate base points, i.e., a non-real point that is fixed
throughout the linear series. With that idea, Monnier [16, Cor. 6.2] proved the
inequality N(X) ≥ g+ 1 for a curve X with any number of branches. It seems
that no such lower bound is known when considering only base-point-free linear
series. At the end of Section 4, we will construct an example of such a linear
series on a plane quartic curve.

Problem 1.2. Given a real curve X embedded in projective space, decide whether
the linear series of hyperplanes contains a totally real hyperplane section.

Note that according to Bertini’s Theorem, the generic element of a linear
series on X is simple away from the base locus (see [5, Ch. 1, p. 137]). However,
it may happen that a linear series contains a totally real divisor, but no simple
such divisor. For example, the linear series of lines on the plane quartic X =
V+(x4 + y4 − z4)⊂ P2 contains the totally real line section

X · V+(x− z) = 4 · [1 : 0 : 1],

but it is easy to see that there is no simple totally real line section.

Problem 1.3. Given a real curve X , determine the smallest natural number
N′(X) ∈ N∗ such that any divisor of degree at least N′(X) is linearly equiva-
lent to a simple totally real divisor.
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We call N′(X) the simple real divisor bound of X . It was first introduced
in [1, p. 29]. Obviously, we have N(X) ≤ N′(X) and a first non-trivial result
comparing N(X) and N′(X) is obtained in [1, Prop. 2.1.2], namely N′(X) ≤
2N(X). However, it appears to be unknown if N(X) and N′(X) can ever actually
be different.

One reason for the importance of the simple real divisor bound comes from
the possibility of transfering results from smooth to singular curves (see [17,
Thm. 4.3]). Basically, our algorithm computes simple totally real hyperplane
sections. When we are mainly interested in the non-existence of totally real
divisors within a linear series, i.e., in lower bounds for N(X), we modify the
algorithm in a way explained in Section 2 to handle totally real hyperplane sec-
tions in general.

2. Algorithm for solving parametric systems

We consider as input fff = ( f1, . . . , fs) in Q[yyy][xxx] with yyy = (y1, . . . ,yt) and xxx =
(x1, . . . ,xn). We assume that there exists a non-empty Zariski-open subset Ω

of Ct such that the number of complex solutions to fff (η ,xxx) is finite for every
η ∈ Ω and that fff generates a radical ideal in Q(yyy)[xxx]. Below, we describe the
main ingredients which allow us to classify the real roots of the system fff , i.e.,
to compute semi-algebraic formulas defining a partition S1 ∪ ·· ·∪Sr of a dense
semi-algebraic subset of Rt such that for a given 1 ≤ i ≤ r and all η ∈ Si, the
number of real roots to fff (η ,xxx) is invariant.

To do that, we rely on well-known properties of Hermite’s quadratic form to
count the real roots of zero-dimensional ideals; see [7]. Basically, given a zero-
dimensional ideal I ⊂ Q[xxx], Hermite’s quadratic form is defined on the finite
dimensional Q-vector space A :=Q[xxx]/I by

A×A →Q
(h,k) 7→ trace(Lh·k),

where Lh·k denotes the endomorphism p 7→ h · k · p of A.
The number of distinct real (resp. complex) roots of the algebraic set defined

by I equals the signature (resp. rank) of Hermite’s quadratic form; see e.g. [2,
Thm. 4.101]. Given a basis of Q[xxx]/I, such a quadratic form is represented by
a symmetric matrix of size δ ×δ , where δ is the degree of I. Hence, the signa-
ture of Hermite’s quadratic form can be computed once a matrix representation,
which we call Hermite’s matrix, of this quadratic form is known [2, Algo. 8.18].

In [14], we slightly extend the definition of Hermite’s quadratic form and
Hermite’s matrix to the context of parametric systems; we call them parametric
Hermite quadratic form and parametric Hermite matrix. This is easily done
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since the ideal of Q(yyy)[xxx] generated by fff , considering Q(yyy) as the base field,
has dimension zero.

We also establish a specialization property for this parametric Hermite ma-
trix: we identify a polynomial www∞ ∈ Q(yyy) such that, when specializing the pa-
rameters yyy in the Hermite matrix to a point η ∈Rt where www∞(η) ̸= 0, we obtain
a Hermite matrix representing Hermite’s quadratic form in Q[xxx]/⟨ fff (η ,xxx)⟩.

Hence, such a parametric Hermite matrix allows us to count respectively
the number of distinct real and complex roots at any parameters outside a strict
algebraic sets of Rt by evaluating the signature and rank of its specialization.

Based on the aforementioned specialization property, we design an algo-
rithm for solving parametric systems as follows.

(a) We start by computing a parametric Hermite matrix H associated to fff ⊂
Q[yyy][xxx]. Note that this requires computations over the quotient algebra
Q(yyy)[xxx]/⟨ fff ⟩ through the theory of Gröbner bases.

From the matrix H , we derive two polynomials: www∞ encoding the non-
specialization locus of H and wwwH which is basically the numerator of
det(H ). The product www∞ ·wwwH is denoted by www.

(b) Next, we compute a set of sample points {aaa1, . . . ,aaaℓ} in the connected
components of the semi-algebraic set of Rt defined by www∞ ̸= 0 and wwwH ̸=
0 where wwwH is derived from H .

This is done through the so-called critical point method (see e.g. [2,
Ch. 12] and references therein) which are adapted to obtain practically
fast algorithms following [20].

By [14, Prop. 21], for any η varying over the connected component con-
taining a sample point aaai, the number of real solutions to fff (η ,xxx) is the
same as the number of real solutions to fff (aaai,xxx).

(c) For 1 ≤ i ≤ ℓ, evaluate the signature of the specialized Hermite matrix
H (aaai), which gives the number ri of real solutions to fff (aaai,xxx).

In most of the cases, the algorithm above is sufficient to compute a hyper-
plane that intersects the given curve at only real points if such a hyperplane
exists. From a computational point of view, Step (b) is usually the most ex-
pensive: the polynomial www it takes as input may have large degree since it may
be exponential in the number of variables n (but polynomial in the maximum
degree of the input polynomials).

Note also that the resulting classification holds only for the subset of the
space of parameters where www ̸= 0. The vanishing locus of www contains points
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above which either the matrix H does not specialize well (www∞ = 0) or fff has
multiple roots (wwwH = 0).

Theoretically, a complete root classification, i.e., the number of real solu-
tions of fff for every η ∈ Rt can be obtained using a similar routine. This con-
sists of classifying the solutions of fff over the vanishing locus of www. There
are several possible approaches, for instances, computing over the algebraic ex-
tension Q[yyy]/⟨www⟩ or calling the algorithm above on with www added to the input
system. The first approach usually leads to high arithmetic costs while the sec-
ond induces Hermite matrices of large size (depending on the degree of www). One
can also try to compute the sign conditions of the leading principal minors of
H while imposing a rank deficiency on the matrix. This results in deciding
the emptiness of a semi-algebraic set whose defining atoms are minors of the
Hermite matrix. To the best of our knowledge, these methods can be computa-
tionally difficult in practice.

However, in the examples we consider in this paper, the polynomials www∞

correspond to the hyperplanes which intersect the given curves at infinity and
are factorized into polynomials of small degree (at most 3). Thus, they can
be treated by calling the algorithm on the input fff adding each factor of www∞.
Looking closer, these factors can be simplified before being sent to the above
algorithm to accelerate the computation. For examples, linear factors can be
handled through substitutions of variables or the quadratic factors which are
sums of squares can be replaced by linear equations. Further, these processes
will be explained in detail for each example.

On the contrary, handling the solutions of wwwH , where the system fff has
multiple roots, requires an expensive computation. Therefore, our algorithm is
limited at the moment to computing simple totally real hyperplane sections, i.e.,
the intersection has only simple points.

In the particular case of one-parameter (see the examples in Section 4), we
can obtain easily the complete root classification by evaluating the signs of lead-
ing principal minors of the matrix H at real solutions of w using exact algo-
rithms for real root isolation [11, 23].

We illustrate the algorithm above by the following example.

Example 2.1. We consider the parametric system

fff = {x2
1 + x2

2 − y,x2
1 + x1x2 − yx2 + x1 + y2},

where (x1,x2) are variables and y is the parameter. Following [14, Algo. 2],
we obtain the basis {1,x2,x1,x2

2} for the quotient ring Q[y][x1,x2]/⟨ fff ⟩ and the
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symmetric Hermite matrix associated to this basis

H =


4 −y−1 y−1 2y2 +5y
∗ 2y2 +5y −3y2 − y+1 y3/2−6y2 −3y+1/2
∗ ∗ −2y2 − y 7y3/2+4y2 − y−1/2
∗ ∗ ∗ −5y4/2+5y3 +23y2/2+ y−1/2

 .

The non-specialization polynomial www∞ in this example is identically 1. The
determinant of this Hermite matrix is

www = wwwH = 41y8 +43y7 −59y6 −204y5 −60y4 +20y3 +4y2 − y.

This polynomial has two real solutions: 0 and ỹ ≈ 1.714. So, the semi-algebraic
set defined by www ̸= 0 has three connected components and the number of distinct
real solutions of fff is invariant over each of those connected components. More
precisely,

y < 0 : fff has 0 real solution,

0 < y < ỹ : fff has 2 real solutions,

ỹ < y : fff has 0 real solution.

Now we study the roots of fff over two real roots of w.
We specialize y to 0 in the leading principal minors of H and obtain the sign

sequence (1,−1,−1,0). Thus, the system has three distinct complex solutions
but only one real solution when y = 0.

For y = ỹ, we obtain the sign sequence (1,−1,1,0) for the leading principal
minors specialized at y = ỹ. Therefore, the system has three distinct complex
solutions but no real solution. △

Further, we will use this algorithm for solving parametric polynomial sys-
tems arising in the computation of totally real hyperplane sections.

3. Totally real hyperplane sections

The possibilities of our computational approach can by shown by the following
examples. We point out that X is always assumed to be a real curve and g stands
for the genus of X . If X is a real rational or real elliptic curve, it is not hard to
see that N(X) = 1. Hence, we assume g ≥ 2.

We first consider canonical curves: If X ⊂ Pg−1 is a canonical curve having
s ≥ g−1 branches, then the canonical linear series, which is equal to the hyper-
plane linear series, is totally real. Since there are no canonical curves of genus
g ≤ 2, the minimal examples are plane quartic curves. In this case, the question
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of whether a plane quartic curve consisting of only one oval possesses a totally
real line section is related to the undulation invariant (see [19, Thm. 4.2]). We
therefore look at canonical curves in P3.

Example 3.1. In this example, we consider a finite sequence of canonical curves
Xk in P3; these curves arise as complete intersections of a cubic and a quadric.
Their genus is 4 and their degree is 6. In non-homogeneous coordinates, we fix
the real cubic polynomial f = (x+3)(x− y−3)(x+ y−3)−2.

1. We set g5 = x2 + y2 + z2 − 100, g4 = (x+ 3)2 +(y+ 2)2 + z2 − 60 and
g3 = x2 +y2 + z2 −50. Let Xk be the projective curve defined by the affine ideal
Ik = ⟨ f ,gk⟩ for k = 3,4,5. The curve Xk has k ovals. Running the algorithm on

Figure 2: The curves X5, X4, and X3.

Ik for a couple of minutes, we find affine hyperplanes which intersect the curve
Xk in real points only, such as the following three hyperplanes:

H5 = x+15307y−8072z+6472,
H4 = x−14842y−25786z−61192,
H3 = x+55704y−26379z−19751.

Each hyperplane Hk intersects Xk in 6 (distinct) real points.
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Figure 3: Intersecting curves and planes: Xi ∩Hi for i = 5,4,3.

2. Setting g2 = x2 + y2 + z2 − 10, let X2 be the projective curve defined by
the affine ideal I2 = ⟨ f ,g2⟩. This curve has 2 ovals. From the theoretical point
of view and in contrast to the first examples, it is a priori not clear whether this
curve possesses a totally real hyperplane section. Running the algorithm for
about 40 minutes on I2, the result is that this curve does possess a totally real
hyperplane section. More precisely, the hyperplane

H2 = x+43y/2000+131z/25+9,

intersects X2 in 6 (distinct) real points.
3. Setting g′2 = (x+1)2 +(y+1)2 + z2 −10, let X ′

2 be the projective curve
defined by the affine ideal I′2 = ⟨ f ,g′2⟩. This curve has 2 ovals, too. We compute
a Hermite matrix of size 6 × 6 in three parameters, which gives a boundary
polynomial www of degree 18. These computations are done within seconds. The
algorithm then computes points per connected component of the semi-algebraic
set defined by www∞ ·wwwH ̸= 0. This computation takes almost 2 hours. In contrast
to the second example, this Hermite matrix does not attain signature 6 at any
of those points. Besides, the hyperplanes that correspond to the real solutions
of www∞ intersect X ′

2 at non-real points at infinity. Thus, these hyperplanes do
not give any totally real hyperplane section. So, X ′

2 has no simple totally real
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Figure 4: The curve X2 and its intersection with the plane H2.

Figure 5: The curve X ′
2.

hyperplane section. Consequently, we have N′(X ′
2)≥ 7.

4. For the next example, let us take the Clebsch cubic surface f0 = x3+y3+
z3 + 1− (x+ y+ z+ 1)3 and g1 = (x+ 1)2 + y2 + z2 − 2. The projective curve
X1 defined by the affine ideal I1 = ⟨ f0,g1⟩ has only 1 oval. The output of the
algorithm is the hyperplane

H1 = x−4468y−32932z−10164

which intersects X1 in 6 (distinct) real points.
5. Finally, taking g′1 = (x+2)2 + y2 + z2 −2, let X1 be the projective curve

defined by the affine ideal I′1 = ⟨ f ,g′1⟩. This curve has only 1 oval, too. Again,
it is a priori not clear whether this curve has a totally real hyperplane section.

On this example, our algorithm behaves similarly as in the third example.
We compute a 6×6 Hermite matrix in three parameters which gives a boundary
polynomial www of degree 18. The computation of sample points of the semi-
algebraic set defined by www ̸= 0 takes 2 hours and none of the computed sample
points gives the Hermite matrix a signature of 6. Moreover, the solutions of www∞

here are the same as in the third example and do not correspond to a totally real
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Figure 6: The curve X1 and its intersection with the plane H1.

Figure 7: The curve X ′
1.

hyperplane section. Thus, there is no simple totally real hyperplane section in
this case. Consequently, we have N′(X ′

1)≥ 7. △

Of course, it takes much effort to show or disprove the existence of a canon-
ical curve X in P3 with 1 or 2 ovals and N(X)≤ 6. The existence would imply
that the real divisor bound N(X) cannot depend on the main topological pa-
rameters of a real curve (the genus, the number of connected components, and
whether or not the curve is of dividing type) only.

As already mentioned, it is a challenging problem to find upper bounds for
N(X) in the case of curves with few branches. However, assuming the follow-
ing conjecture by Huisman to be true, Monnier [16, Thm. 3.7] established new
bounds for (M−2)-curves depending on the genus only.

Conjecture 3.2 (Conjecture 3.4 in [9]). Let n ≥ 3 be an odd integer and X ⊂ Pn

be an unramified real curve. Then X is an M-curve and each branch of X is a
pseudo-line, i.e., it realizes the non-trivial homology class in H1(Pn(R),Z/2).

Recently, a family of counterexamples to Huisman’s conjecture has been
constructed for n = 3 (see [13]). These counterexamples explicitly contradict
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the bound found by Monnier in the case of g = 2. For our next examples, we
briefly recall their construction. A non-degenerate (i.e., not lying on any real
hyperplane) curve X ⊂ Pn is called unramified if, taken any real hyperplane H,
we have

wt(H ·X)≤ n−1,

whereby the weight of the intersection divisor H ·X is defined to be

wt(H ·X) = deg(H ·X − (H ·X)red) ,

i.e., the degree of the difference between the latter and the reduced divisor
(which contains each point of H ∩X with multiplicity exactly one). Given two
univariate strictly interlacing polynomials both of degree d ∈N∗, we embed the
graph of their fraction into P3 via the Segre map. We obtain an unramified ra-
tional curve C1 of degree d +1. To obtain a curve of positive genus, we take a
complex-conjugate pair of lines C2 and consider the union Z =C1 ∪C2. Taking
ε > 0 small enough, it is possible to make a small perturbation Zε such that Zε

becomes a real curve (in particular, we mean smooth and irreducible) which is
unramified. The degree of Zε is d + 3 and the genus is 2(d − 1). Since these
counterexamples depend on a parameter ε > 0, one may wonder whether it is
possible to determine such an ε > 0 in practice. In the following example, we
reconstruct two such curves and determine different parameters ε > 0, for which
there exists (and for which there does not exist) a simple totally real hyperplane
section.

Example 3.3. For the first example, we consider the same polynomials as in
[13, Ex. 3]. We obtain a curve of genus 4, and degree 6, which has 1 oval. In
the second example, we construct a hyperelliptic curve of genus 2 and degree 5,
which has 1 pseudo-line.

1. Let q = x0x3 + x1x2 be the Segre quadric and consider the polynomials

h = 3x3
0 +3x0x2

1 − x2
0x2 −3x0x2

2 + x3
2 +4x2

0x3 − x0x1x3 +4x2
1x3 − x2

2x3 −3x0x2
3 + x2x2

3 − x3
3

and p = x3
0 + x3

1 + x3
2 − x3

3. It is shown in [13] that the curve Xε = V+ (q,h+ ε p)
does not have a totally real hyperplane section for some small parameter ε > 0.
On the one hand, the algorithm shows that for ε = 2−4, there is a totally real
hyperplane section. For example, we can take the hyperplane

H =−902330031190717857x0+1152921504606846976x1

+323139221492926521x2−590264337985175552x3.

On the other hand, for ε = 2−5, our algorithm computes a 6×6 Hermite matrix
in three parameters. The polynomial www∞ has two factors: one is linear in the
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parameters and the other is a univariate polynomial of degree 3 in one parameter.
The boundary polynomial www has degree 22. Computing points per connected
component of the semi-algebraic set defined by www ̸= 0 takes about 4 hours and
does not return any point that gives the Hermite matrix a signature 6.

Figure 8: The curve X2−4 ; the intersections X2−4 ∩H and X2−5 ∩H.

It remains to classify the solutions when the parameters are real solutions of
www∞. For the linear factor, we simply substitute one parameter by the others in
the system to solve and use the same algorithm (with one less parameter). Fi-
nally, we call our algorithm over the algebraic extension by the univariate factor
of www∞ to classify the solutions in this case. These computations do not return
any totally real hyperplane section. So, we conclude that X2−5 does not have any
simple totally real hyperplane section. Thus, we have N′(X2−5)≥ 7.

2. In general, if X is a hyperelliptic curve, then it is known that N(X) ≥
2g− 1. If X has at least g branches, then equality holds (see [16, Cor. 6.4]).
Starting with homogeneous strictly interlacing polynomials P = y2 − 2yx and
Q = y2 − x2 and following [13, Cons. 1], we can construct a curve of genus 2,
degree 5 with 1 pseudo-line and prescribed intersection behaviour with any real
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hyperplane. To be precise, the polynomials

q = x0x3 − x1x2,

f =−x2
0x1 − x3

1 +2x2
0x2 − x0x2

2 +2x0x1x3 + x0x2x3 − x0x2
3 + x1x2

3,

g = 2x0x2
2 − x3

2 − x2
0x3 − x2

1x3 + x2
2x3 +2x0x2

3 − x2x2
3 + x3

3,

h1 = x3
0 + x3

1 + x0x2
2 − x1x2

3,

h2 = x2
0x2 + x2

1x3 + x3
2 − x3

3

define parametrized curves Xε = V+(q, f + εh1,g+ εh2) for ε > 0. For a small
parameter ε > 0, the curve Xε does not have a totally real hyperplane section.
On the one hand, the algorithm shows that for ε ∈ {2−1,2−4}, there is a totally
real hyperplane section.

On the other hand, for ε = 2−8, our algorithm computes a 5× 5 Hermite
matrix in three parameters with a boundary polynomial www of degree 15. Partic-
ularly, the non-specialization polynomial www∞ is a product of three linear poly-
nomials of the parameters. Computing the sample points for the set defined by
www ̸= 0 takes 3 minutes and returns no point which gives a signature 5 to the
Hermite matrix.

When the parameters are real solutions of www∞, which has only linear factors,
we substitute one parameter by the others in the parametric system. This gives
us new parametric systems depending on only two parameters. Using the same
algorithm, we classify the solutions of these new systems and obtain no totally
real hyperplane section when www∞ = 0. So, we conclude that there is no simple
totally real hyperplane section for X2−8 . Thus, we have N′(X2−8)≥ 6. △

From the above examples, we also raise the question of determining the
largest value ε0 ∈R such that, for any ε ∈]0,ε0[, the curve Xε has no totally real
hyperplane section. This computation can also be carried out by the algorithm
we present in Section 2 but ε is now considered as a parameter. However, the
boundary polynomial depends on 4 indeterminates and has degree up to 35. So,
the computation of sample points becomes much more difficult.

It remains an open problem to find (or disprove the existence) of a curve
X of genus 2 with 1 branch satisfying N(X) ≤ 5. Furthermore, it remains an
unsolved task to find curves with the same topological parameters, but different
values for N(X) or N′(X).

4. Plane quartics

Let X ⊂ P2 be a plane quartic curve. If X has many branches, i.e., if s ∈ {3,4},
we know that 4 ≤ N(X) ≤ 5. We would expect N(X) = 5, so we would like
to have a possibility to check if certain linear series of degree 4 do not contain
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a totally real divisor. The general expectation is N(X) = 2g− 1 for curves of
genus g having many branches (see [8, p. 92]). If D is a divisor of degree 4
on X having odd degree on at least one branch of X , then |D| can be shown
to be totally real. Hence, we are interested in divisors of degree 4 having even
degree on every branch. For such a divisor D, there are two possibilities. If D
is special, then |D| is the canonical linear series and must be totally real. If D
is non-special, then |D| defines a morphism to P1 and in particular, D cannot be
very ample. With the help of the algorithm, we are able to check whether each
fibre of X → P1 contains a complex-conjugate pair.

If the plane quartic curve X has s ∈ {1,2} ovals, we would like to con-
sider very ample divisors of high degree, which give an embedding into a high-
dimensional projective space. In this case, we need to check whether the hyper-
plane linear series of the embedded curve is totally real. For the computations,
one can use the divisor package [22] in Macaulay2 [4].

Remark 4.1. Given a plane quartic curve X with only one oval, no upper bound
for N(X) is known. For two ovals, it is possible to conclude N(X)≤ 9 under the
assumption of an unsolved case of Conjecture 3.2. In particular, it is interesting
to check whether every divisor of degree 10 defines a totally real linear series.
If not, a new case of the conjecture is disproved. Since divisors of degree 9
on plane quartic curves are very ample, one can use the aforementioned divi-
sor package in Macaulay2 to compute the embedding into a high-dimensional
projective space. Then, one can check the (non-)existence of a totally real hy-
perplane section of the image curve.

If we take a plane quartic curve X (with s ∈ {3,4} branches) and a special
divisor D of degree 4, then the linear series |D| defines a morphism ϕ : X → P1.
Using the algorithm, we can check whether there exists a real point [c : d] ∈
P1(R) which has a totally real fibre. If so, the linear series |D| is totally real. If
there is no such a point, then |D| is not totally real.

By dehomogenizing the projective point [c : d], our algorithm is reduced to
solving a polynomial system depending on one parameter. Thus, for these exam-
ples, we can obtain a complete root classification of the system by the additional
steps using root isolating algorithms as mentioned at the end of Section 2

Example 4.2. We continue with plane quartic curves with many branches and
consider divisors of degree 4.

1. We can use the method described above to get a lower bound for N(X)
on the curve X = V+(x4 +y4 − z4). The linear series of lines is an example for a
linear series which contains a totally real divisor, but does not contain a simple
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totally real one. Hence, we have N′(X)≥ 5. We consider the divisor

D = [1 : 0 : 1]+ [0 : 1 : i]σ +[0 : 1 : 1]

which defines a morphism

X → P1, [x : y : z] 7→ [xy+ xz− yz− z2 : x2 − xz].

The algorithm shows that there is no totally real fibre. Even more, each fibre
has of at most 2 real points. Hence, we have N(X)≥ 5.

2. In this example, we construct an explicit plane quartic curve with three
ovals and a base-point-free linear series of degree four which is not totally real.
Generally, if X is a plane quartic curve and D is a special divisor of degree 4,
then the morphism to P1 is given by conics. Since the intersection of a quartic
and a conic consists of eight points (counted with multiplicity), linear equiv-
alence within |D| is given by a fraction of two conics having four points in
common. Conversely, fixing four (real) points on X , we may consider the set of
conics going trough these points. The four residual points define a linear series
of degree 4. Our goal is to find a linear series which is not totally real. First, we
construct a plane quartic curve X with the desired topology. (There are several
ways to achieve this; we use a linear determinantal representation and exploit
the relation between the Cayley octad, the number of real bitangents, and the
number of branches of X ; see [18]). For example, we can take the equation of
X to be

f = 9x4 −30x3y+161x2y2 −116xy3 −8y4 +46x3z−80x2yz+202xy2z

−116y3z+59x2z2 −80xyz2 +185y2z2 −6xz3 −50yz3 −11z4.

Next, we take the circle c= x2+
(
y− z

10

)2− 2z2

10 and fix the four real intersection
points. The real vector space V = Lin(Q1,Q2) of conics through these points is
generated by

Q1 = 0.31100521007570264x2 −0.4569339120067826xy

+0.7395296982938114y2 +0.01692042897825057xz

−0.3797243325905672yz−0.05573253113981307z2,

Q2 = 0.7303803360779876x2 +0.5870985535950933xy

+0.17978406689755905y2 −0.021740473005624657xz

+0.2618986086207364yz−0.14308743118437495z2.

The computational problem is to check whether there is a conic in V intersecting
X in only real points. As in the first example, we solve a polynomial system of
one parameter using the algorithm of Section 2.
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Figure 9: The plane quartic X and the circle c.

We start by computing a Hermite matrix of size 8×8 and a boundary poly-
nomial www of degree 24 (degwww∞ = 4, degwwwH = 20). Each fiber over the semi-
algebraic set defined by www ̸= 0 contains 8 distinct complex points but at most 6
real points.

Next, we isolate the real solutions of wwwH and evaluate the signs of the lead-
ing principal minors of H at those solutions. These sign patterns allow us to
count the number of real and complex points at the real solutions of wwwH . This
handles the case when the parameter takes values that satisfy wwwH = 0. For
the vanishing locus of www∞, we call the algorithm over its associated algebraic
extension. In both of these cases, we do not find any totally real fiber.

So, our algorithm shows that there is no conic in V intersecting X in real
points only. Hence, taking the four residual points of any intersection Q ·X with
Q ∈ V (i.e., leaving the four fixed points out), we get a divisor of degree four
which does not define a totally real linear series. Furthermore, this linear series
is base-point-free. The plane quartic X is an explicit example where the bound
N(X) = 5 is determined.

3. Analogously, we can consider the plane quartic curve X defined by

f = (81x4)/4− (135x3y)/4+(1953x2y2)/16+(297xy3)/2+69y4

+(9x3z)/2+(57x2yz)/2+(431xy2z)/8− (85y3z)/6− (179x2z2)/4

+(67xyz2)/2− (4685y2z2)/48− (16xz3)/3− (1433yz3)/36+(917z4)/36.

The curve X consists of four ovals.
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Figure 10: The plane quartic X and conics going through four fixed points.

Summing up, the conics

Q1 = 0.47127272928773783x2 +0.6598453341260914xy

−0.13447226903447518y2 +0.4868883263821278xz

−0.24467908024400253yz+0.16581695886185108z2

Q2 =−0.09774545786950306x2 +0.4442913360602867xy

−0.5056096052652832y2 −0.2532574091360106xz

+0.6653828276536204yz−0.17474649814093252z2

define the real vector space through the four fixed real points.
In this example, our algorithm computes a Hermite matrix H of size 8×8

and a boundary polynomial www of degree 20 (www∞ = 1, degwwwH = 20). Again, the
algorithm shows that there is no conic in this vector space intersecting X in real
points only. Hence, we have N(X) = 5. △

By perturbing the equation of the quartics (and the circles, if necessary), we
get infinitely many plane quartics with many components where the real divisor
bound is determined.

Increasing the degree, we may ask whether a plane quintic curve X always
possesses a totally real line section. If X has s ≥ 3 branches, then there must
be exactly one pseudo-line and s− 1 ovals. Taking a line through two points
on two distinct ovals, we automatically get a totally real line section. Further-
more, we can conclude that the canonical series is totally real. If X has s ≤ 2
branches, then the question whether a plane quintic curve possesses a totally real
line section is related to the so-called undulation invariant (see [19, Thm. 6.2]).
Generally, it is possible to construct plane curves with prescribed topological
properties that have a totally real line section.
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Theorem 4.3. For every d ≥ 3 and every number 1 ≤ s ≤ g + 1 with g =
(d−1)(d−2)

2 , there exists a plane curve X of degree d, genus g and having s
branches such that the linear series of lines |L| is totally real.

Proof. First, we use the method for constructing curves introduced by Harnack
[6, pp. 193-196]. For d = 3, the statement is obvious. Given any d ≥ 4, he
constructs a smooth plane M-curve of degree d such that there is a line L in-
tersecting a single component of X in d distinct real points. In the process of
constructing the M-curve of degree d out of the previous one (of degree d −1),
we use the classical small perturbation theorem (see [10, Thm. 3.5]), which is
originally due to Brusotti [3]. Given the line L and the transversal intersec-
tion points with the M-curve of degree d, we can thus choose the shape of the
arcs when smoothing the nodal points. Hence, we can obtain any number of
connected components while keeping a line intersecting the resulting curve of
degree d +1 in d +1 distinct real points.

Corollary 4.4. For every d ≥ 4 and every number 1 ≤ s ≤ g + 1 with g =
(d−1)(d−2)

2 , there exists a plane curve X of degree d, genus g and having s
branches such that the canonical series |K| is totally real.

One may ask whether it is possible to construct a plane curve X of degree
d ≥ 6 with prescribed topological behaviour such that the linear series of lines
is not totally real.

Finally, we remark that our algorithm also works for singular curves. In
the case of a singular curve, we only allow the support of the divisors to be
contained in the regular locus (see [17] for details) , hence it is possible to look
for (generic) simple totally real hyperplane sections.
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