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TWO PROPERTIES OF NORMS IN ORLICZ SPACES

ANDREA CARUSO

A characterization of the inclusion between L”-spaces is well-known
(see for instance [7], [3]). Here we present an analogous characterization
for Orlicz Spaces. To this aim we use some definitions of the Orlicz and
Luxemburg norms that are a little bit general than usual. Also this allows us
to extend to Orlicz spaces the well-known property that in a finite measure
space the L?-norm tends to the L>°-norm as p — +00.

1. Preliminaries.

1.1. Young Functions. Throughout this paper, the term Young function will
have a little more restrictive meaning than the usual one (see [5]). In fact we
assume that the function M in the definition below is left continuous. This
assumption assures the uniqueness of the integral representation of M and, on
the other hand, does not imply any restriction on the associated Orlicz space L
(see Remark 4).

Definition 1. By a Young function M we mean a function M : R— R
satisfying the following conditions:

a) M is convex on R;

b) M is evenon R, M(0) = 0 and M (£00) = +00; _

c) M is such that lim,_, .~ M(x) = M(c) where ¢ = sup{x e R : M(x) <
+00}.
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The following characterization of Young functions is easy checked to hold
true.

Proposition 1. A function M : R — R isa Young function if and only if it
admits an integral representation of the form

x]
M(x):/ ptydt VxeR,
0

where p : [0, +o00[—> [0, +00] is a function that satisfies the Sfollowing
conditions:

i) pisincreasing,

i) p is right continuous,
iii) p is different from the constant Sunctions 0 and oo;

moreover, such a function p is unique.

Starting from a function p that satisfies the above conditions i ), ii) and iii),
we can define the right inverse Sunction g : [0, +oco[—> [0, -+0o0] of p by the
position:

) = 0 if {xe€[0, +ool: px)<s}=40
q(s) = sup{x € [0, +oo[: p(x) <s} if {xe]0, +ool: p(x) <s}#0°

From this definition it follows that q is increasing and that the following
inequalities hold:

- q(p@®) =t Virel0, +oo,

- p(g(s)) =s Vse[0, oo,

—q(p(t)—e) <t Vte{tel0, +00[: 0 < p(x) < +o00}, Ve e]0, ()],
— plg(s) —e) <s Vte{se[0, +0oo[: 0 < g(x) < +00},Ve €]0, q(s)].

Moreover the set {s € [0, +oo[: g(s) = a} is closed in [0, +oo[ for each « € R,
in fact it results
[0, 400 if a<0

{s €0, +oo[: g(s) > al = [[ﬁmt_m p), +oo[ if a>0"

whereas {s € [0, +oo[: ¢(s) < +oo} is open in [0, +00[. The above facts imply
that g is like p and that the right inverse function of q is just p.

Two Young functions M and N are called complementary Young functions
provided that their integral representations

Iyl

[x]
M(x):/ p@®)dt VYxeR and N(y):/ q(s)ds VyeR,
JO 0

hold for some functions p and g right inverse to each other.
The following theorem is well known (see for example [5]):
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Theorem (Young Inequality). Let M and N be complementary Young functions.
Then
xy < M)+ N(y) Vx,yel0, +o0]

and equality occurs if and only if at least one of the two equalities, y = p(x)
and x = q(y) holds.

In the next sections the following simple classification of the Young func-
tions will be useful.

Definition 2. We say that a Young function M is:
M(x)

— Superlinear if and only if limy_ 10 = 400,
— Sublinear if and only if lim,_, Mﬁx— e [0, +o0l.

X

For the sake of convenience we call positive a Young function M, provided
that M (x) = O if and only if x = 0, finite provided that M (x) < +00 Vx €R,
null provided that there exists 0 < ¢ < +00 such that

0 if x| <c
M(x) = {+oo if |x|>c¢’
We will refer to the previous function as the null Young function pointed at c.
It is clear that whenever M and N are complementary Young functions,
then M is not finite if and only if N is sublinear.
Finally, M~! will denote the inverse function of the restriction of a finite
and positive Young function M to [0, 4-00] .

1.2 Ly Spaces. Let (£2, 4, 1) be a measure space. We will assume through-
out that + contains a set of positive and finite measure. Moreover we identify
two measurable functions provided that they are almost everywhere equal. As
usual we denote by x4 the characteristic function of a set A. We refer to [6] for
concepts and basic results of functional analysis.

For a given function M, we will consider some subsets of the set of all
measurable functions f : @ — R, namely: SMa = {f c [M(f)du <
a} Ya €10, +ool and Sy = UycgerooSma = {f 1 [ M(f)dp < +o0}.
By the above assumption on #, all sets Sy, and Sy, are not empty. Moreover
by the dominated convergence theorem we have that Sy, is contained in the
vector space generated by each Sy ,. Since Sy, S Sy for each a € ]0, +o0],
it follows that all sets Sy, and Sy span the same vector space, which will be
denoted by Ly,.

The properties of M and the Jensen inequality imply that all Sy ,’s (and
hence also Sy, ) are convex, balanced, absorbing sets in L ;.
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In the following proposition we define the Luxemburg a-norms || - | (21,4
on Ly, that are slight generalizations of the Luxemburg norm, and for sake of
entirety, we furnish a new proof of the completeness of the space.

Proposition 2. Let M be a Young function. Then the position

Hfll(M),a=inf{p>O:/M(£)d;u§a} YfeLy

defines a complete norm on Ly for each a €10, +00[. Moreover, all the norms
Il - ll¢ay,a> @ €10, +00l, are equivalent.

Proof.  The functional || - |[(a),, is a seminorm on Ly because it is the
Minkowski functional relative to the set Sy ,. To show that || - lp).a is a
norm, fix f € Ly, f # 0, and assume by contradiction that || f|l,. = 0,
ie. fM(%)d,LL < aVp > 0. Letting p — 0, by Fatou’s lemma we get the
contradiction. Now, observe that Sy, , is equal to the closed unit ball B = { fe
Ly || fllan.e < 1}. Indeed it is obvious that Sy, € B. On the other hand,
Sm,q contains the open unit ball {f € Ly : || f lla),e < 1} and this fact, by the
Monotone Convergence theorem, implies that B C Sm,q. Let us prove that the
norm || - |f(ar),, is complete. We must show that for each sequence {f,} < SM.as
and each sequence {A,} C [0, 1] such that Y"1, = 1, then S A S €
Su.a- Infact wehave [ M (> ) Milfil)du < Y0 A [M(f) <a VneN,
and hence, by the Monotone Convergence theorem, [ M (3" 4,,| ful)du <
a. Thus, the properties of M imply that the function Z:j An fn 18 defined a.e.
on 2 and that it belongs to Sy ,.

Finally, the equivalence of the norms | - ||).4, @ € 10, +co[, follows by
a corollary to the Open Mapping theorem, from the fact that (L, || - l(m),a) 18
complete for each a € ]0, +oo[ and from the inequalities || - lans <1 l).a
whenever 0 < a < b.

Remark 1. Let M be a Young function. Then for 0 < a < b we have the
inequality al| fllwy,a < bl fllon.s Y f € Lyg. This fact can be easily checked
estimating the Luxemburg a-norm of £, where y = i—’ In this way we obtain a
direct proof of the equivalence of all norms || - |[().q.

Fora = 1 the norm | - ||(a),, reduces to the usual Luxemburg norm, that
we denote by || - ||(a) following [4].

If we consider the Minkowski functional relative to Sy, we get no longer
a norm in general. More precisely we have the following proposition whose
proof, technically similar to the previous one, is omitted.
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Proposition 3. Let M be a Young function. Then the position
o
pu(f) =inf{p >0: M(;)du<+oo

defines a seminorm on Ly . This seminorm is related to the norms || - || (ar).q by
the equality:
[ fllana = pu(f) VS eLy.

Moreover, py is a norm if and only if M is not finite. In this case we also have
Ly C L™,

The inclusion Ly € L may hold also for a finite M, as the following
proposition shows.

Proposition 4. Let M be a Young functioﬁ. Then:

i) L*® C Ly <= either M is not positive or 1(2) < +00,
ii) Ly C L% <= either M is not finite or inf{u(A) : A€ A, u(A) > 0} >
0.

Proof. i) Assume L*° C L. Then every constant function is in L ,,; thus fixed
any d € )0, +o00[ we have M(%)M(Q) = fM(%) dpu < 400 for some p > 0.
Consequently if M is positive then ©(§2) < +4o00. This proves the implication
“ == ", Conversely, let f € L* and denote by k the norm || f||cc. If M is not
positive and d > 0 is such that M(x) = O for x € [—d, d], then choose p > 0
such that K < d; if M is positive, then choose p > 0 such that M (k) < 400.

In any case we obtain fM('f')du M( )u(§2) < +oo. This proves the
reverse implication “ ="

- ii) Assume Ly C L°° If M is finite we proceed by contradiction
supposing that inf{t(A) : A € A, u(A) > 0} = 0. Choose a real sequence
{a,} such that M(a,) — +o00 as n — oo and another sequence {b,} C]0, +o0[
such that the series Z:;x]’ M (ay,)b, converges. Then construct a sequence of
sets {A,} C A, pairwise disjoint, such that 0 < w(A,) < b, Vn € N. This is
possible. Indeed, by our assumption, we can find a sequence {B,} in + such that
0< u(By) < # foreachneN. If welet C, = B, U B, U..., neN,itis
possible to extract a subsequence {C,,} such that ©(C,,) < b; and, inductively,
m(Cpy,) < min {brqy , %M(an)}i it is clear that the sequence defined by
A = Cy, \ Cy,,, has the required properties. Now, if we consider the function
f defined by the position f = Y o a,xa,, it results f ¢ L°°. On the other
side f M(f)du = Z,‘:":I M(a;)u(A,) < +o00. This contradiction concludes
the implication “ == . Conversely, the inclusion L, € L* holds when M is
not finite by Proposition 3. So, assume that M is finite. Fixed f € L), define
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Ay = {xeQ:|f(x)| > a} VYa > 0. By the Chebyshev-Markov inequality
we obtain M( W(Ay) < fM(m)d,u < 1 for some p > 0, hence, by the
hypothesis on the sets of positive measure, there must be some @ > 0 such that
H(Ay) =0 Yo > @. This shows the reverse implication “ <= ", O

Remark 2. Let M be the null Young function pointed at ¢. Then by the
previous proposition we have Ly = L*. Moreover it is immediate that

pu(f) =l flane ==V feLy, Ya>0.

Remark 3. Let M be a Young function and let 0 < ¢ < +o00. Define a new
Young function M, by the position

M) if x| =<c
MC(X)_{-f—oo if |x]>c’

Then it is clear that Ly N L™ = Ly, .

Remark 4. We already mentioned that requisite c) in Definition 1 is not
restrictive. In fact if M is a standard Young function, i.e. M satisfies requisites
a) and b), but not necessarily c), then the same arguments in the present section
allow us to define in a completely analogous way the Banach space L7y, the
Luxemburg complete norms || - || 37 , and the seminorm pz;. Moreover if
we consider the Young function M, according to Definition 1, that is obtained
from M by changing only the value at the point ¢ = sup{rx € R : M x) <
+o0} if necessary, it is easy to verlfy that Ly = Ly when ¢ = +00 or
M(c) € [M(c), +ool, while L7; € Ly when M(c) < o0 = M(c), here, of
course, all set-theoretic 1nclu510ns also hold from the topological point of view.
Concerning the last case we observe that if in addition it results M (c) = 0, then
we actually have Lg; = Ly ; moreover the equalities pg;(f) = | f e =

Vle v fe Ly, Ya > 0, still hold.

Remark 5. Let M be a finite positive Young function. If a > 0 and A €
A, 0 < u(A) < +o00, then it is easily checked that || x4ll(ar),. = M——,-(—,,—)
(A)

The following propositions display some facts concerning the Luxemburg
a-norms, which will be useful in the sequel. Some of the proofs are omitted.

Proposition 5. Let M be a Young function. If {f,} < Ly is such that
| fal 1t f for some measurable f, then lim, || fillmye = I fllan.a if f €
Ly, limy, || full ay,e = +00 if f & L.
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Proposition 6. Let M be a Young function. If f1, ..., f. € Ly and at least one

‘ o fil+ ot Lol
of these functions is different from zero, then [ M ( oot Tl f””(m‘n) du < a.

Proposition 7. Let M be a Young function. If f, — f in Ly then there exists
a subsequence { f, } such that f, — f u-a.e..

Proof. Obviously we can suppose that {f,} possesses no constant subse-
quence. Let {f, } be a subsequence of {f,} such that || .., — fullane <

2% Vk e N. Set gy = |fu, &1 = [ frern — Jul Yk € N and observe
+o0 n
that M(%) < liminf, M (—,Zii‘f‘—> Thus, by Proposition 6
ey N8k at),a ey N8& N,

and Fatou’s lemma, it follows that there exists a measurable function, say f,

such that f,, — f w-ae. . To complete the proof it is enough to verify

that we also have f, — 7 in Ly . To show this, fix any € > 0 and se-

lect k € N such that Y /"% ligillmya < € for k > k. Arguing as above we
i L D i 8 |

have fM(m) < fllmlnan(m> <a VkeN, thus

I foe — fllm.a <€ Yk =k, O

Itis clear that the the above argument furnishes us with an alternative proof
of the completeness of L.

In the proposition below the Orlicz a-norms || - |[ 5., are showed (for a = 1
we have the usual Orlicz norm), jointly with the relationships between them and
the Luxemburg a-norms. The proofs are classic, so we omit them (refer to [5]
and [10]).

Recall that the measure space (2, 4, ) (or, simply, the measure 1) is said
to have the finite subset property (shortly denoted by f.s.p.) or is said to be semi-
finite provided that for any A € 4, with ©(A) > 0, there exists B e 4, B C A,
such that 0 < w(B) < +oo (refer to [5] and [9]).

Proposition 8. Let M and N be complementary Young functions, with M
superlinear. Also let a > 0 and let f : Q@ —> R be a measurable function.
Then the following two statements hold true.

1) If M is positive the following facts are equivalent:

i) fELM,'
i) {(xeQ: f(x) # 0} is o-finite and [ |fg|dpn < +00 VgeSy;
iii) {x € f(x) # 0} is o -finite and sup,s, [ | fgldp < +oo0.

2) If i has the f.s.p. the following facts are equivalent:

J) felu;
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0 [1fgldu < +oo0 VgeSy;
Jij) $upges,, S 1 fgldu < +oo.

In both cases the position

I flima = Supflfgldu Vfeluy

gESN.a

defines a norm on Ly and the inequalities

all fllany.e = 1 flima < 2allfllny.e Y E€Lu

hold. Moreover we have

|flsa= sup || fedul VfeLpy.

8ESN,«

Remark 6. It is easy to find an example in which both conditions jj) and jjj)
hold, although the set {x € Q2 : f(x) # 0} is not o-finite (hence, f ¢ L, and
. has not the f.s.p.): take 2 = {0, 1}, A = P(2), u defined by the positions
w({0) = 1, u({1}) = +oo and f = 1.

2. The inclusion L,; € Ly.
For all definitions in this section about atoms and so on we refer to [1].

Notation.
Ag={AeA: u(A) > 0}, A = {A €A L(A) < +00},
' T={AecA:A is an atom},
I =inf{u(A) : Ae Ao}, L =sup{u(A): Ac Axl,

R:{ZL—(IA—_);AeromAOO}.

It is clear that if the measure space (£2, #, ) possesses no atom of finite
measure, then R =[], 00l
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Remark 7. Itis easy to verify that the following two equivalences hold:
-1 > 0= T # @, infr u(T) > 0 and for each A € A¢ N Ao there exist
Ty,...,T, €7, pairwise disjoint, such that A = |J}_, T;;
- L < 400 & there exist S, T € A such that SUT =Q,SNT = @,
S € Ao, and either u(T) =0o0r T €T and u(T) = +oo.
Moreover if [ > 0 then [ = inf7 u(T). ’

Let M and N be two Young functions. Consider the following facts:

(0) Ly S Ly;

(1) 3k >0 fullwy < kllullpry Yue Span({xa : A € Ao N soo});
(2)3k>0:lxallvy <k lxallny YAE AN Aoo;
(3)3c>0:N() < M(ct) Vie[t, +ool.

Remark 8. Easy calculations show that if M and N are two positive finite
Young functions, then .each of the following two facts is equivalent to (2):

(2’)3k=>0: M'(r)<kN-'(r) VreR,
(27)3k>0: N()<M(s) VseM ' (R)={M'(r):reR).

Moreover, (3) is equivalent to:

(3’)) 3¢ > 0,da > 0 (a = 0if L = +00) : N(t) < M(ct) Vte
[a, +ool.

The following theorem characterizes, in finite atomless hypothesis, the inclusion
(0) between two Orlicz spaces, in terms of the Luxemburg norms of character-
istic functions (compare with Theorem 3 on page 155 of [5]).

Theorem 1. Let M and N be two positive finite Young functions. Then:
B) = 0) <= (1) = (2).

If, in addition, . has no atom of finite measure, then all four facts are equivalent.

Proof. (3) => (0). Let f € Ly and p > 0 such that g €Sy. fL =400

then it is apparent that é € Sy. Thus suppose L < +4oo. From-

Remark 7 it follows that w({f(x) # 0}) < L. Integrating N (%) over

(f(x) #0) = {0 < | f] < L)} U{|f] = 2} one obtains f € Ly.

(0) == (1). It is enough to verify that the canonical inclusion i : Ly —
Ly is continuous, i.e. its graphic is closed. So, let {f,} be a sequence in Ly,
such that (f,, fu) = (f, 8) in Ly x Ly. Proposition 7 implies the existence
of a subsequence {f,,} such that f,, — f p-ae. and f,, — g p-ae.. Thus
f = g and the proof is complete.
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(1) => (0). Let0 # f €Ly and p > O such that £ € S),. By the
Chebyshev-Markov inequality we obtain that {x € 2 : f(x) # 0} = {x €
Qo M(%) # 0} is a o-finite set. Let {A,} be a sequence in +A,, such that
A, 1 {f # 0}; also let {u,} be a sequence of simple functions such that
u, 1 |fl. Then v, = u,xa, lies in Span({xs : A € A¢ N A}) for every
neN and v, 1 |f|. By our assumption we have [|v, ||y < k& [[vallary for every
n € N and the argument follows from Proposition 5 .

(1) = (2). It is obvious.

‘Finally suppose that 4 has no atom of finite measure and show that (2) =
(3). By Remark 8, (2) is equivalent to (2”). Setting ¢t = £, by our assumption

on atoms (2”) becomes 3k > 0: N() < M(kt) Vt e [%M‘l(%), +oo[, i.e.

condition+(3’) holds. A further application of Remark 8 concludes the proof.
t

The following corollary shows that when M and N satisfy some particular
assumptions, the inclusion (0) can be characterized more simply in terms of
conditions / > 0 and L < +oo already introduced at the beginning of this
section. The proof, technically similar to the previous one, is omitted.

Corollary 1. Let M and N be two positive finite Young functions.

() I Timys oo 229 = 0 and there exists 8 > 0 such that N(x) < M(x)
M-1(x)
for.|x| <6, then:

0) = (1) & 2) 1> 0.

(ii) If limy,_ g+ %;—11%)) = 0 and there exists § > 0 such that N(x) < M(x)

for |x| = 6, then:

0) &= (1) & 2) &= L < +00.

Example 1. If 1 < p < g < 400 then M(x) = |x|”, N(x) = |x|9 is
an example of a couple of positive Young functions verifying the hypotheses
for Corollary 1, (i). To get an analogous example for (ii) it is sufficient to
interchange p and q.

Remark 9. Corollary 1 and Example 1, jointly with Remark 7 and Preposi-
tion 4, yields us in particular Theorems 1 and 2 of [7] (of course to allow p and
q to range over all of ]0, +oc0] it suffices to consider that L” < L7 if and only
if LP C LVt > 0).
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3. An extension of a continuity property of the L?-norm.

When the measure p is finite, it is well-known that if f € L? = L?(u)
for every p € [1, +ool, then [ fll, = | fllw as p — +00, where | f]loo
is assumed to be +oo if f ¢ L (see [8], Theorem (8.1)). The following
proposition generalizes this property.”

Theorem 2. Let (2, A, i) be a finite measure space. Moreover let {M,} be a
sequence of superlinear positive Young functions which converges pointwise to
the null Young function M pointed at c. Then for each f € [, Ly, and each
a > 0 it results

IS st _ { Ve f feLy
a

I =i '
im || £l m,),a = lim +oo if f ¢Luy

(Recall that Lj; = L* by Remark 2).
Proof Llet f € (\,Lm,,f # 0and A = UMl if f e, A = +oo

if f ¢ Ly. Fixed any A such that 0 < X <CA, consider the set A =
{x e Q : |f(x)] > Ac} and observe that u(A) > 0 since A¢ < || f]lco-

Moreover, for every n € N the ingquality M, ( %) xa < My( "4), p > 0, implies

[p >0 : fM,,('—’;—')du < a} - [p >0 M,,(%C)M(A) < a}, thus denoting
by p, the infimum of the right side and having in mind the definition of the
Luxemburg norm we have liminf, p, < liminf, || f|l(s,),¢. At this point fix any
o such that 0 < o < A and consider that Mn(%) — +00 as n — oo so that
M,,(%) > M?A) for n large enough. From this we deduce that for n large enough
we have also 0 < p, hence o < liminf, p,. Since o is arbitrary we have also
A < liminf, || fll(m,),q- But A is arbitrary too, so A < liminf, || fll(a,).q- If
A = +o00 the thesis follows from Proposition 8. Thus suppose A < +0c0 and
for each n € N denote by N, the complementary Young function of M,. Let
g : © —> R an arbitrary measurable function: from the inequalities c|g| <
M,(c) + Ny(Igl) we have ¢ [ |gldpn < My (c)u(R2) + [ Nu(lg)di YneN.
It follows that

17,0 = Asup{e [[lgldus [ NGghdn < a} <

< AM,(Opu(2) +Aa VneN

and finally limsup, mﬁ’—— < A. A further application of Proposition 8
concludes the proof. 0
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Example 2. It is well known that for the Young function ®,, 1 <p < +o0,
defined by the position ¢,(x) = ‘—’51-)'-'- Vx € R, it results Ly, = L” and

) ) )
Ity = <%) "Il - I,. Now, assume that 1 is a finite measure and that the

function f belongs to L? for every p € [1, +oo[. If M, = = &, ,neN, where
{pn} is an arbitrary sequence in [1, +-00f such that p, — +o0 and M is the
null Young function pointed at ¢ = 1, all hypotheses of Theorem 2 are verified.
It follows that

1\ G o i
tim | £, _hm(p> 171 ,,>—{!£l<|) ;]J: ;;fﬁ:

Since {p,} is arbitrary we can conclude that

- _JWfllee if feL*™
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