TWO PROPERTIES OF NORMS IN ORLICZ SPACES

ANDREA CARUSO

A characterization of the inclusion between L^p -spaces is well-known (see for instance [7], [3]). Here we present an analogous characterization for Orlicz Spaces. To this aim we use some definitions of the Orlicz and Luxemburg norms that are a little bit general than usual. Also this allows us to extend to Orlicz spaces the well-known property that in a finite measure space the L^p -norm tends to the L^∞ -norm as $p \to +\infty$.

1. Preliminaries.

1.1. Young Functions. Throughout this paper, the term Young function will have a little more restrictive meaning than the usual one (see [5]). In fact we assume that the function M in the definition below is left continuous. This assumption assures the uniqueness of the integral representation of M and, on the other hand, does not imply any restriction on the associated Orlicz space L_M (see Remark 4).

Definition 1. By a Young function M we mean a function $M: \overline{\mathbb{R}} \longrightarrow \overline{\mathbb{R}}$ satisfying the following conditions:

- a) M is convex on \mathbb{R} ;
- b) M is even on $\overline{\mathbb{R}}$, M(0) = 0 and $M(\pm \infty) = +\infty$;
- c) M is such that $\lim_{x\to c^-} M(x) = M(c)$ where $c = \sup\{x \in \overline{\mathbb{R}} : M(x) < +\infty\}$.

Entrato in redazione il 13 marzo 2002.

The following characterization of Young functions is easy checked to hold true.

Proposition 1. A function $M: \overline{\mathbb{R}} \longrightarrow \overline{\mathbb{R}}$ is a Young function if and only if it admits an integral representation of the form

$$M(x) = \int_0^{|x|} p(t) dt \quad \forall x \in \overline{\mathbb{R}},$$

where $p:[0,+\infty[\longrightarrow [0,+\infty]]$ is a function that satisfies the following conditions:

- i) p is increasing,
- ii) p is right continuous,
- iii) p is different from the constant functions 0 and ∞ ;

moreover, such a function p is unique.

Starting from a function p that satisfies the above conditions i), ii) and iii), we can define the *right inverse function* $q:[0,+\infty[\longrightarrow [0,+\infty]]$ of p by the position:

$$q(s) = \begin{cases} 0 & \text{if } \{x \in [0, +\infty[: p(x) \le s\} = \emptyset \\ \sup\{x \in [0, +\infty[: p(x) \le s\} \text{ if } \{x \in [0, +\infty[: p(x) \le s\} \ne \emptyset \end{cases}.$$

From this definition it follows that q is increasing and that the following inequalities hold:

- $-q(p(t)) \ge t \quad \forall t \in [0, +\infty[,$
- $-p(q(s)) \ge s \quad \forall s \in [0, +\infty[,$
- $-q(p(t)-\epsilon) \le t \quad \forall t \in \{t \in [0,+\infty[:0< p(x)<+\infty] , \forall \epsilon \in]0, p(t)],$
- $p(q(s) \epsilon) \le s \quad \forall t \in \{s \in [0, +\infty[: 0 < q(x) < +\infty] , \forall \epsilon \in]0, q(s)].$

Moreover the set $\{s \in [0, +\infty[: q(s) \ge \alpha\} \text{ is closed in } [0, +\infty[\text{ for each } \alpha \in \mathbb{R}, \text{ in fact it results}]$

$$\{s \in [0, +\infty[: q(s) \ge \alpha] = \begin{cases} [0, +\infty[& \text{if } \alpha \le 0 \\ [\lim_{t \to \alpha^-} p(t), +\infty[& \text{if } \alpha > 0 \end{cases},$$

whereas $\{s \in [0, +\infty[: q(s) < +\infty] \text{ is open in } [0, +\infty[$. The above facts imply that q is like p and that the right inverse function of q is just p.

Two Young functions M and N are called *complementary Young functions* provided that their integral representations

$$M(x) = \int_0^{|x|} p(t) dt \quad \forall x \in \overline{\mathbb{R}} \quad \text{and} \quad N(y) = \int_0^{|y|} q(s) ds \quad \forall y \in \overline{\mathbb{R}},$$

hold for some functions p and q right inverse to each other. The following theorem is well known (see for example [5]):

Theorem (Young Inequality). Let M and N be complementary Young functions. Then

$$xy \le M(x) + N(y) \quad \forall x, y \in [0, +\infty]$$

and equality occurs if and only if at least one of the two equalities, y = p(x)and x = q(y) holds.

In the next sections the following simple classification of the Young functions will be useful.

Definition 2. We say that a Young function M is:

- Superlinear if and only if $\lim_{x\to +\infty} \frac{M(x)}{x} = +\infty$; Sublinear if and only if $\lim_{x\to +\infty} \frac{M(x)}{x} \in [0, +\infty[$.

For the sake of convenience we call *positive* a Young function M, provided that M(x) = 0 if and only if x = 0, finite provided that $M(x) < +\infty$ $\forall x \in \mathbb{R}$, *null* provided that there exists $0 < c < +\infty$ such that

$$M(x) = \begin{cases} 0 & \text{if } |x| \le c \\ +\infty & \text{if } |x| > c \end{cases}.$$

We will refer to the previous function as the null Young function pointed at c.

It is clear that whenever M and N are complementary Young functions, then M is not finite if and only if N is sublinear.

Finally, M^{-1} will denote the inverse function of the restriction of a finite and positive Young function M to $[0, +\infty]$.

1.2 L_M Spaces. Let (Ω, A, μ) be a measure space. We will assume throughout that A contains a set of positive and finite measure. Moreover we identify two measurable functions provided that they are almost everywhere equal. As usual we denote by χ_A the characteristic function of a set A. We refer to [6] for concepts and basic results of functional analysis.

For a given function M, we will consider some subsets of the set of all measurable functions $f: \Omega \to \overline{\mathbb{R}}$, namely: $S_{M,a} = \{f: \int M(f)d\mu \leq a\} \ \forall a \in]0, +\infty[$ and $S_M = \bigcup_{0 < a < +\infty} S_{M,a} = \{f: \int M(f)d\mu < +\infty\}.$ By the above assumption on A, all sets $S_{M,a}$ and S_M are not empty. Moreover by the dominated convergence theorem we have that S_M is contained in the vector space generated by each $S_{M,a}$. Since $S_{M,a} \subseteq S_M$ for each $a \in]0, +\infty[$, it follows that all sets $S_{M,a}$ and S_M span the same vector space, which will be denoted by L_M .

The properties of M and the Jensen inequality imply that all $S_{M,a}$'s (and hence also S_M) are convex, balanced, absorbing sets in L_M .

In the following proposition we define the Luxemburg a-norms $\|\cdot\|_{(M),a}$ on L_M , that are slight generalizations of the Luxemburg norm, and for sake of entirety, we furnish a new proof of the completeness of the space.

Proposition 2. Let M be a Young function. Then the position

$$||f||_{(M),a} = \inf \left\{ \rho > 0 : \int M\left(\frac{f}{\rho}\right) d\mu \le a \right\} \quad \forall f \in L_M$$

defines a complete norm on L_M for each $a \in]0, +\infty[$. Moreover, all the norms $\|\cdot\|_{(M),a}$, $a \in]0, +\infty[$, are equivalent.

Proof. The functional $\|\cdot\|_{(M),a}$ is a seminorm on L_M because it is the Minkowski functional relative to the set $S_{M,a}$. To show that $\|\cdot\|_{(M),a}$ is a norm, fix $f \in L_M$, $f \neq 0$, and assume by contradiction that $\|f\|_{(M),a} = 0$, i.e. $\int M(\frac{f}{\rho}) \, d\mu \leq a \, \forall \rho > 0$. Letting $\rho \to 0$, by Fatou's lemma we get the contradiction. Now, observe that $S_{M,a}$ is equal to the closed unit ball $B = \{f \in L_M : \|f\|_{(M),a} \leq 1\}$. Indeed it is obvious that $S_{M,a} \subseteq B$. On the other hand, $S_{M,a}$ contains the open unit ball $\{f \in L_M : \|f\|_{(M),a} < 1\}$ and this fact, by the Monotone Convergence theorem, implies that $B \subseteq S_{M,a}$. Let us prove that the norm $\|\cdot\|_{(M),a}$ is complete. We must show that for each sequence $\{f_n\} \subseteq S_{M,a}$, and each sequence $\{\lambda_n\} \subseteq [0,1]$ such that $\sum_{n=1}^{+\infty} \lambda_n = 1$, then $\sum_{n=1}^{+\infty} \lambda_n f_n \in S_{M,a}$. In fact we have $\int M(\sum_{i=1}^n \lambda_i |f_i|) \, d\mu \leq \sum_{i=1}^n \lambda_i \int M(f_i) \leq a \quad \forall n \in \mathbb{N}$, and hence, by the Monotone Convergence theorem, $\int M(\sum_{n=1}^{+\infty} \lambda_n |f_n|) \, d\mu \leq a$. Thus, the properties of M imply that the function $\sum_{n=1}^{+\infty} \lambda_n f_n$ is defined a.e. on Ω and that it belongs to $S_{M,a}$.

Finally, the equivalence of the norms $\|\cdot\|_{(M),a}$, $a \in]0, +\infty[$, follows by a corollary to the Open Mapping theorem, from the fact that $(L_M, \|\cdot\|_{(M),a})$ is complete for each $a \in]0, +\infty[$ and from the inequalities $\|\cdot\|_{(M),b} \leq \|\cdot\|_{(M),a}$ whenever 0 < a < b.

Remark 1. Let M be a Young function. Then for 0 < a < b we have the inequality $a \| f \|_{(M),a} \le b \| f \|_{(M),b} \ \forall f \in L_M$. This fact can be easily checked estimating the Luxemburg a-norm of $\frac{f}{\gamma}$, where $\gamma = \frac{b}{a}$. In this way we obtain a direct proof of the equivalence of all norms $\| \cdot \|_{(M),a}$.

For a = 1 the norm $\|\cdot\|_{(M),a}$ reduces to the usual Luxemburg norm, that we denote by $\|\cdot\|_{(M)}$ following [4].

If we consider the Minkowski functional relative to S_M , we get no longer a norm in general. More precisely we have the following proposition whose proof, technically similar to the previous one, is omitted.

Proposition 3. Let M be a Young function. Then the position

$$p_M(f) = \inf \left\{ \rho > 0 : \int M\left(\frac{f}{\rho}\right) d\mu < +\infty \right\}$$

defines a seminorm on L_M . This seminorm is related to the norms $\|\cdot\|_{(M),a}$ by the equality:

$$\lim_{a \to +\infty} ||f||_{(M),a} = p_M(f) \quad \forall f \in L_M.$$

Moreover, p_M is a norm if and only if M is not finite. In this case we also have $L_M \subseteq L^{\infty}$.

The inclusion $L_M \subseteq L^{\infty}$ may hold also for a finite M, as the following proposition shows.

Proposition 4. Let M be a Young function. Then:

- i) $L^{\infty} \subseteq L_M \iff$ either M is not positive or $\mu(\Omega) < +\infty$,
- ii) $L_M \subseteq L^{\infty} \iff$ either M is not finite or $\inf\{\mu(A) : A \in \mathcal{A}, \ \mu(A) > 0\} > 0$.

Proof. i) Assume $L^{\infty} \subseteq L_M$. Then every constant function is in L_M ; thus fixed any $d \in]0, +\infty[$ we have $M(\frac{d}{\rho})\mu(\Omega) = \int M(\frac{d}{\rho})\,d\mu < +\infty$ for some $\rho > 0$. Consequently if M is positive then $\mu(\Omega) < +\infty$. This proves the implication " \Longrightarrow ". Conversely, let $f \in L^{\infty}$ and denote by k the norm $\|f\|_{\infty}$. If M is not positive and d > 0 is such that M(x) = 0 for $x \in [-d, d]$, then choose $\rho > 0$ such that $\frac{k}{\rho} < d$; if M is positive, then choose $\rho > 0$ such that $M(\frac{k}{\rho}) < +\infty$. In any case we obtain $\int M(\frac{|f|}{\rho})\,d\mu \leq M(\frac{k}{\rho})\mu(\Omega) < +\infty$. This proves the reverse implication " \longleftarrow ".

ii) Assume $L_M\subseteq L^\infty$. If M is finite we proceed by contradiction supposing that $\inf\{\mu(A):A\in\mathcal{A},\,\mu(A)>0\}=0$. Choose a real sequence $\{a_n\}$ such that $M(a_n)\to +\infty$ as $n\to\infty$ and another sequence $\{b_n\}\subset]0,+\infty[$ such that the series $\sum_{n=1}^{+\infty}M(a_n)b_n$ converges. Then construct a sequence of sets $\{A_n\}\subseteq\mathcal{A}$, pairwise disjoint, such that $0<\mu(A_n)< b_n\ \forall n\in\mathbb{N}$. This is possible. Indeed, by our assumption, we can find a sequence $\{B_n\}$ in \mathcal{A} such that $0<\mu(B_n)\leq \frac{1}{2^{n+1}}$ for each $n\in\mathbb{N}$. If we let $C_n=B_n\cup B_{n+1}\cup\ldots,\,n\in\mathbb{N}$, it is possible to extract a subsequence $\{C_{n_k}\}$ such that $\mu(C_{n_1})< b_1$ and, inductively, $\mu(C_{n_{k+1}})\leq\min\{b_{k+1},\,\frac{1}{2}\mu(C_{n_k})\}$; it is clear that the sequence defined by $A_k=C_{n_k}\setminus C_{n_{k+1}}$ has the required properties. Now, if we consider the function f defined by the position $f=\sum_{n=1}^\infty a_n\chi_{A_n}$, it results $f\notin L^\infty$. On the other side $\int M(f)\,d\mu=\sum_{n=1}^\infty M(a_n)\mu(A_n)<+\infty$. This contradiction concludes the implication " \Longrightarrow ". Conversely, the inclusion $L_M\subseteq L^\infty$ holds when M is not finite by Proposition 3. So, assume that M is finite. Fixed $f\in L_M$ define

 $A_{\alpha}=\{x\in\Omega:|f(x)|>\alpha\}\quad\forall\alpha>0.$ By the Chebyshev-Markov inequality we obtain $M(\frac{\alpha}{\rho})\mu(A_{\alpha})\leq\int M(\frac{|f|}{\rho})\,d\mu\leq 1$ for some $\rho>0$, hence, by the hypothesis on the sets of positive measure, there must be some $\overline{\alpha}>0$ such that $\mu(A_{\alpha})=0\quad\forall\alpha\geq\overline{\alpha}$. This shows the reverse implication " \longleftarrow ". \square

Remark 2. Let M be the null Young function pointed at c. Then by the previous proposition we have $L_M = L^{\infty}$. Moreover it is immediate that $p_M(f) = \|f\|_{(M),a} = \frac{\|f\|_{\infty}}{c} \ \forall f \in L_M, \ \forall a > 0.$

Remark 3. Let M be a Young function and let $0 < c < +\infty$. Define a new Young function M_c by the position

$$M_c(x) = \begin{cases} M(x) & \text{if} & |x| \le c \\ +\infty & \text{if} & |x| > c \end{cases}.$$

Then it is clear that $L_M \cap L^{\infty} = L_{M_c}$.

Remark 4. We already mentioned that requisite c) in Definition 1 is not restrictive. In fact if \widetilde{M} is a standard Young function, i.e. \widetilde{M} satisfies requisites a) and b), but not necessarily c), then the same arguments in the present section allow us to define in a completely analogous way the Banach space $L_{\widetilde{M}}$, the Luxemburg complete norms $\|\cdot\|_{(\widetilde{M}),a}$ and the seminorm $p_{\widetilde{M}}$. Moreover if we consider the Young function M, according to Definition 1, that is obtained from \widetilde{M} by changing only the value at the point $c = \sup\{x \in \overline{\mathbb{R}} : \widetilde{M}(x) < +\infty\}$ if necessary, it is easy to verify that $L_{\widetilde{M}} = L_{M}$ when $c = +\infty$ or $\widetilde{M}(c) \in [M(c), +\infty[$, while $L_{\widetilde{M}} \subseteq L_{M}$ when $M(c) < +\infty = \widetilde{M}(c)$; here, of course, all set-theoretic inclusions also hold from the topological point of view. Concerning the last case we observe that if in addition it results M(c) = 0, then we actually have $L_{\widetilde{M}} = L_{M}$; moreover the equalities $p_{\widetilde{M}}(f) = \|f\|_{(\widetilde{M}),a} = \frac{\|f\|_{\infty}}{c} \ \forall f \in L_{\widetilde{M}}$, $\forall a > 0$, still hold.

Remark 5. Let M be a finite positive Young function. If a > 0 and $A \in \mathcal{A}$, $0 < \mu(A) < +\infty$, then it is easily checked that $\|\chi_A\|_{(M),a} = \frac{1}{M^{-1}(\frac{a}{\mu(A)})}$.

The following propositions display some facts concerning the Luxemburg a-norms, which will be useful in the sequel. Some of the proofs are omitted.

Proposition 5. Let M be a Young function. If $\{f_n\} \subseteq L_M$ is such that $|f_n| \uparrow f$ for some measurable f, then $\lim_n ||f_n||_{(M),a} = ||f||_{(M),a}$ if $f \in L_M$, $\lim_n ||f_n||_{(M),a} = +\infty$ if $f \notin L_M$.

Proposition 6. Let M be a Young function. If $f_1, \ldots, f_n \in L_M$ and at least one of these functions is different from zero, then $\int M\left(\frac{|f_1|+\ldots+|f_n|}{\|f_1\|_{(M),a}+\ldots+\|f_n\|_{(M),a}}\right)d\mu \leq a$.

Proposition 7. Let M be a Young function. If $f_n \to f$ in L_M then there exists a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \to f$ μ -a.e..

Proof. Obviously we can suppose that $\{f_n\}$ possesses no constant subsequence. Let $\{f_{n_k}\}$ be a subsequence of $\{f_n\}$ such that $\|f_{n_{k+1}} - f_{n_k}\|_{(M),a} < \frac{1}{2^k} \ \forall k \in \mathbb{N}$. Set $g_1 = |f_{n_1}|, \ g_{k+1} = |f_{n_{k+1}} - f_{n_k}| \ \forall k \in \mathbb{N}$ and observe that $M\left(\frac{\sum_{k=1}^{+\infty} g_k}{\sum_{k=1}^{+\infty} \|g_k\|_{(M),a}}\right) \le \liminf_n M\left(\frac{\sum_{k=1}^n g_k}{\sum_{k=1}^n \|g_k\|_{(M),a}}\right)$. Thus, by Proposition 6 and Fatou's lemma, it follows that there exists a measurable function, say \overline{f} , such that $f_{n_k} \to \overline{f}$ μ -a.e. To complete the proof it is enough to verify that we also have $f_{n_k} \to \overline{f}$ in L_M . To show this, fix any $\epsilon > 0$ and select $\overline{k} \in \mathbb{N}$ such that $\sum_{i=k+1}^{+\infty} \|g_i\|_{(M),a} < \epsilon$ for $k \ge \overline{k}$. Arguing as above we have $\int M\left(\frac{|f_{n_k} - \overline{f}|}{\sum_{i=k+1}^{+\infty} \|g_i\|_{(M),a}}\right) \le \int \liminf_n M\left(\frac{\sum_{i=k+1}^n g_i}{\sum_{i=k+1}^n \|g_i\|_{(M),a}}\right) \le a \quad \forall k \in \mathbb{N}$, thus $\|f_{n_k} - \overline{f}\|_{(M),a} < \epsilon \quad \forall k \ge \overline{k}$.

It is clear that the the above argument furnishes us with an alternative proof of the completeness of L_M .

In the proposition below the Orlicz a-norms $\|\cdot\|_{M,a}$ are showed (for a=1 we have the usual Orlicz norm), jointly with the relationships between them and the Luxemburg a-norms. The proofs are classic, so we omit them (refer to [5] and [10]).

Recall that the measure space $(\Omega, \mathcal{A}, \mu)$ (or, simply, the measure μ) is said to have the *finite subset property* (shortly denoted by f.s.p.) or is said to be semifinite provided that for any $A \in \mathcal{A}$, with $\mu(A) > 0$, there exists $B \in \mathcal{A}$, $B \subseteq A$, such that $0 < \mu(B) < +\infty$ (refer to [5] and [9]).

Proposition 8. Let M and N be complementary Young functions, with M superlinear. Also let a > 0 and let $f : \Omega \longrightarrow \mathbb{R}$ be a measurable function. Then the following two statements hold true.

- 1) If M is positive the following facts are equivalent:
 - i) $f \in L_M$;
 - ii) $\{x \in \Omega : f(x) \neq 0\}$ is σ -finite and $\int |fg| d\mu < +\infty \quad \forall g \in S_N$;
- iii) $\{x \in \Omega : f(x) \neq 0\}$ is σ -finite and $\sup_{g \in S_{N,\alpha}} \int |fg| d\mu < +\infty$.
- 2) If μ has the f.s.p. the following facts are equivalent:
 - j) $f \in L_M$;

$$(jj) \int |fg| d\mu < +\infty \quad \forall g \in S_N;$$

 $(jjj) \sup_{g \in S_{N,a}} \int |fg| d\mu < +\infty.$

In both cases the position

$$||f||_{M,a} = \sup_{g \in S_{N,a}} \int |fg| \, d\mu \quad \forall \, f \in L_M$$

defines a norm on L_M and the inequalities

$$a \| f \|_{(M),a} \le \| f \|_{M,a} \le 2a \| f \|_{(M),a} \quad \forall f \in L_M$$

hold. Moreover we have

$$|f|_{M,a} = \sup_{g \in S_{N,a}} |\int fg d\mu| \quad \forall f \in L_M.$$

Remark 6. It is easy to find an example in which both conditions jj and jjj hold, although the set $\{x \in \Omega : f(x) \neq 0\}$ is not σ -finite (hence, $f \notin L_M$ and μ has not the f.s.p.): take $\Omega = \{0, 1\}$, $A = \mathcal{P}(\Omega)$, μ defined by the positions $\mu(\{0\}) = 1$, $\mu(\{1\}) = +\infty$ and $f \equiv 1$.

2. The inclusion $L_M \subseteq L_N$.

For all definitions in this section about atoms and so on we refer to [1].

Notation.

$$\mathcal{A}_0 = \{ A \in \mathcal{A} : \mu(A) > 0 \}, \qquad \mathcal{A}_\infty = \{ A \in \mathcal{A} : \mu(A) < +\infty \},$$

$$\mathcal{T} = \{ A \in \mathcal{A} : A \text{ is an atom} \},$$

$$l = \inf \{ \mu(A) : A \in \mathcal{A}_0 \}, \quad L = \sup \{ \mu(A) : A \in \mathcal{A}_\infty \},$$

$$\mathbf{R} = \left\{ \frac{1}{\mu(A)} : A \in \mathcal{A}_0 \cap \mathcal{A}_\infty \right\}.$$

It is clear that if the measure space $(\Omega, \mathcal{A}, \mu)$ possesses no atom of finite measure, then $\mathbf{R} = [\frac{1}{L}, +\infty[$.

Remark 7. It is easy to verify that the following two equivalences hold:

 $-l>0 \iff \mathcal{T} \neq \emptyset$, $\inf_{\mathcal{T}} \mu(T)>0$ and for each $A\in \mathcal{A}_0\cap \mathcal{A}_\infty$ there exist $T_1,\ldots,T_n\in \mathcal{T}$, pairwise disjoint, such that $A=\bigcup_{i=1}^n T_i;$ $-L<+\infty \iff$ there exist $S,T\in \mathcal{A}$ such that $S\cup T=\Omega,S\cap T=\emptyset,$ $S\in \mathcal{A}_\infty$, and either $\mu(T)=0$ or $T\in \mathcal{T}$ and $\mu(T)=+\infty$. Moreover if l>0 then $l=\inf_{\mathcal{T}} \mu(T)$.

Let M and N be two Young functions. Consider the following facts:

- (0) $L_M \subseteq L_N$;
- $(1) \exists k > 0 : ||u||_{(N)} \le k ||u||_{(M)} \quad \forall u \in \text{Span}(\{\chi_A : A \in \mathcal{A}_0 \cap \mathcal{A}_\infty\});$
- $(2) \exists k > 0 : \|\chi_A\|_{(N)} \le k \|\chi_A\|_{(M)} \quad \forall A \in A_0 \cap A_\infty;$
- $(3) \exists c > 0 : N(t) \le M(ct) \quad \forall t \in [\frac{1}{L}, +\infty[.$

Remark 8. Easy calculations show that if M and N are two positive finite Young functions, then each of the following two facts is equivalent to (2):

$$\begin{array}{lll} (2') \ \exists \ k > 0: & M^{-1}(r) \le kN^{-1}(r) & \forall r \in \mathbf{R}, \\ (2'') \ \exists \ k > 0: & N(\frac{s}{k}) \le M(s) & \forall s \in M^{-1}(\mathbf{R}) = \{M^{-1}(r): r \in \mathbf{R}\}. \end{array}$$

Moreover, (3) is equivalent to:

(3')
$$\exists c > 0$$
, $\exists a \geq 0$ $(a = 0 \text{ if } L = +\infty) : N(t) \leq M(ct) \quad \forall t \in [a, +\infty[$.

The following theorem characterizes, in finite atomless hypothesis, the inclusion (0) between two Orlicz spaces, in terms of the Luxemburg norms of characteristic functions (compare with Theorem 3 on page 155 of [5]).

Theorem 1. Let M and N be two positive finite Young functions. Then:

$$(3) \Longrightarrow (0) \Longleftrightarrow (1) \Longrightarrow (2).$$

If, in addition, μ has no atom of finite measure, then all four facts are equivalent. Proof. (3) \Longrightarrow (0). Let $f \in L_M$ and $\rho > 0$ such that $\frac{f}{\rho} \in S_M$. If $L = +\infty$ then it is apparent that $\frac{f}{c\rho} \in S_N$. Thus suppose $L < +\infty$. From Remark 7 it follows that $\mu(\{f(x) \neq 0\}) \leq L$. Integrating $N(\frac{|f|}{c\rho})$ over $\{f(x) \neq 0\} = \{0 < |f| < \frac{c\rho}{L}\} \cup \{|f| \geq \frac{c\rho}{L}\}$ one obtains $f \in L_N$.

 $(0)\Longrightarrow (1)$. It is enough to verify that the canonical inclusion $i:L_M\to L_N$ is continuous, i.e. its graphic is closed. So, let $\{f_n\}$ be a sequence in L_M such that $(f_n,f_n)\to (f,g)$ in $L_M\times L_N$. Proposition 7 implies the existence of a subsequence $\{f_{n_k}\}$ such that $f_{n_k}\to f$ μ -a.e. and $f_{n_k}\to g$ μ -a.e. Thus f=g and the proof is complete.

 $(1)\Longrightarrow (0)$. Let $0\neq f\in L_M$ and $\rho>0$ such that $\frac{f}{\rho}\in S_M$. By the Chebyshev-Markov inequality we obtain that $\{x\in\Omega:f(x)\neq 0\}=\{x\in\Omega:M(\frac{|f|}{\rho})\neq 0\}$ is a σ -finite set. Let $\{A_n\}$ be a sequence in \mathcal{A}_∞ such that $A_n\uparrow\{f\neq 0\}$; also let $\{u_n\}$ be a sequence of simple functions such that $u_n\uparrow|f|$. Then $v_n=u_n\chi_{A_n}$ lies in $\mathrm{Span}(\{\chi_A:A\in\mathcal{A}_0\cap\mathcal{A}_\infty\})$ for every $n\in\mathbb{N}$ and $v_n\uparrow|f|$. By our assumption we have $\|v_n\|_{(N)}\leq k\,\|v_n\|_{(M)}$ for every $n\in\mathbb{N}$ and the argument follows from Proposition 5.

 $(1) \Longrightarrow (2)$. It is obvious.

Finally suppose that μ has no atom of finite measure and show that $(2)\Longrightarrow (3)$. By Remark 8, (2) is equivalent to (2"). Setting $t=\frac{s}{k}$, by our assumption on atoms (2") becomes $\exists \ k>0: \ N(t)\le M(kt) \ \forall \ t\in \left[\frac{1}{k}M^{-1}\left(\frac{1}{L}\right), +\infty\right[$, i.e. condition (3") holds. A further application of Remark 8 concludes the proof. \square

The following corollary shows that when M and N satisfy some particular assumptions, the inclusion (0) can be characterized more simply in terms of conditions l>0 and $L<+\infty$ already introduced at the beginning of this section. The proof, technically similar to the previous one, is omitted.

Corollary 1. Let M and N be two positive finite Young functions.

(i) If $\lim_{x\to +\infty} \frac{N^{-1}(x)}{M^{-1}(x)} = 0$ and there exists $\delta > 0$ such that $N(x) \leq M(x)$ for $|x| \leq \delta$, then:

$$(0) \Longleftrightarrow (1) \Longleftrightarrow (2) \Longleftrightarrow l > 0.$$

(ii) If $\lim_{x\to 0^+} \frac{N^{-1}(x)}{M^{-1}(x)} = 0$ and there exists $\delta > 0$ such that $N(x) \leq M(x)$ for $|x| \geq \delta$, then:

$$(0) \Longleftrightarrow (1) \Longleftrightarrow (2) \Longleftrightarrow L < +\infty.$$

Example 1. If $1 \le p < q < +\infty$ then $M(x) = |x|^p$, $N(x) = |x|^q$ is an example of a couple of positive Young functions verifying the hypotheses for Corollary 1, (i). To get an analogous example for (ii) it is sufficient to interchange p and q.

Remark 9. Corollary 1 and Example 1, jointly with Remark 7 and Preposition 4, yields us in particular Theorems 1 and 2 of [7] (of course to allow p and q to range over all of $]0, +\infty]$ it suffices to consider that $L^p \subseteq L^q$ if and only if $L^{pt} \subseteq L^{qt} \ \forall t > 0$).

3. An extension of a continuity property of the L^p -norm.

When the measure μ is finite, it is well-known that if $f \in L^p \equiv L^p(\mu)$ for every $p \in [1, +\infty[$, then $\|f\|_p \to \|f\|_\infty$ as $p \to +\infty$, where $\|f\|_\infty$ is assumed to be $+\infty$ if $f \notin L^\infty$ (see [8], Theorem (8.1)). The following proposition generalizes this property.

Theorem 2. Let (Ω, A, μ) be a finite measure space. Moreover let $\{M_n\}$ be a sequence of superlinear positive Young functions which converges pointwise to the null Young function M pointed at c. Then for each $f \in \bigcap_n L_{M_n}$ and each a > 0 it results

$$\lim_{n} \|f\|_{(M_n),a} = \lim_{n} \frac{\|f\|_{M_n,a}}{a} = \begin{cases} \frac{\|f\|_{\infty}}{c} & if \quad f \in L_M \\ +\infty & if \quad f \notin L_M \end{cases}.$$

(Recall that $L_M = L^{\infty}$ by Remark 2).

Proof. Let $f \in \bigcap_n L_{M_n}, f \neq 0$ and $\Lambda = \frac{\|f\|_{\infty}}{c}$ if $f \in L_M$, $\Lambda = +\infty$ if $f \notin L_M$. Fixed any λ such that $0 < \lambda < \Lambda$, consider the set $A = \{x \in \Omega : |f(x)| > \lambda c\}$ and observe that $\mu(A) > 0$ since $\lambda c < \|f\|_{\infty}$. Moreover, for every $n \in \mathbb{N}$ the inequality $M_n(\frac{\lambda c}{\rho})\chi_A \leq M_n(\frac{|f|}{\rho}), \, \rho > 0$, implies $\left\{\rho > 0 : \int M_n(\frac{|f|}{\rho}) d\mu \leq a\right\} \subseteq \left\{\rho > 0 : M_n(\frac{\lambda c}{\rho})\mu(A) \leq a\right\}$, thus denoting by ρ_n the infimum of the right side and having in mind the definition of the Luxemburg norm we have $\liminf_n \rho_n \leq \liminf_n \|f\|_{(M_n),a}$. At this point fix any σ such that $0 < \sigma < \lambda$ and consider that $M_n(\frac{\lambda c}{\sigma}) \to +\infty$ as $n \to \infty$ so that $M_n(\frac{\lambda c}{\sigma}) > \frac{a}{\mu(A)}$ for n large enough. From this we deduce that for n large enough we have also $\sigma < \rho_n$ hence $\sigma \leq \liminf_n \rho_n$. Since σ is arbitrary we have also $\lambda \leq \liminf_n \|f\|_{(M_n),a}$. But λ is arbitrary too, so $\lambda \leq \liminf_n \|f\|_{(M_n),a}$. If $\lambda = +\infty$ the thesis follows from Proposition 8. Thus suppose $\lambda < +\infty$ and for each $\lambda \in \mathbb{N}$ denote by $\lambda \in \mathbb{N}$ the complementary Young function of $\lambda \in \mathbb{N}$. Let $\lambda \in \mathbb{N}$ an arbitrary measurable function: from the inequalities $\lambda \in \mathbb{N}$. It follows that

$$||f||_{M_n,a} \le \Lambda \sup \left\{ c \int |g| \, d\mu : \int N_n(|g|) \, d\mu \le a \right\} \le$$

$$\le \Lambda M_n(c) \mu(\Omega) + \Lambda a \quad \forall n \in \mathbb{N}$$

and finally $\limsup_n \frac{\|f\|_{M_n,a}}{a} \leq \Lambda$. A further application of Proposition 8 concludes the proof.

Example 2. It is well known that for the Young function Φ_p , $1 \leq p < +\infty$, defined by the position $\Phi_p(x) = \frac{|x|^p}{p} \ \forall x \in \mathbb{R}$, it results $L_M = L^p$ and $\|\cdot\|_{(M)} = \left(\frac{1}{p}\right)^{\left(\frac{1}{p}\right)}\|\cdot\|_p$. Now, assume that μ is a finite measure and that the function f belongs to L^p for every $p \in [1, +\infty[$. If $M_n = \Phi_{p_n}, n \in \mathbb{N}$, where $\{p_n\}$ is an arbitrary sequence in $[1, +\infty[$ such that $p_n \to +\infty$ and M is the null Young function pointed at c=1, all hypotheses of Theorem 2 are verified. It follows that

$$\lim_{n} \|f\|_{p_{n}} = \lim_{n} \left(\frac{1}{p_{n}}\right)^{\left(\frac{1}{p_{n}}\right)} \|f\|_{(M_{n})} = \begin{cases} \|f\|_{\infty} & if \quad f \in L_{M} \\ +\infty & if \quad f \notin L_{M} \end{cases}.$$

Since $\{p_n\}$ is arbitrary we can conclude that

$$\lim_{p\to +\infty}\|f\|_p = \begin{cases} \|f\|_\infty & if \quad f\in L^\infty\\ +\infty & if \quad f\notin L^\infty \end{cases}.$$

REFERENCES

- [1] N. Dinculeanu, Vector Measures, Pergamon Press, 1967.
- [2] L.V. Kantorovič G. P. Akilov, *Analisi funzionale*, Edizioni Mir-Editori Riuniti, 1980.
- [3] L. Klotz, Inclusion Relations for Some L^p-Spaces of Operator-Valued Functions, Math. Nachr., 150 (1991), pp. 119–126.
- [4] M.A. Krasnosel'skii Ya.B. Rutickii, *Convex functions and Orlicz spaces*, P. Noordhoff, Ltd. Groningen, 1961.
- [5] M.M. Rao Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., 1991.
- [6] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
- [7] A. Villani, Another note on the inclusion $L^p(\mu) \subseteq L^q(\mu)$, American Mathematical Monthly, 92 7 (1985).
- [8] R.L. Wheeden A. Zygmund, *Measure and Integral (an introduction to real analysis)*, Marcel Dekker Inc., 1977.
- [9] A.C. Zaanen, Integration, North-Holland Publishing Co.-Amsterdam, 1967.
- [10] A.C. Zaanen, Linear Analysis, North-Holland Publishing Co.-Amsterdam, 1957.

Dipartimento di Matematica e Informatica Viale A. Doria, 6 95125 Catania (ITALY) e-mail: aocaruso@dmi.unict.it