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SURFACES WITH DEFECTIVE TANGENTIAL
VARIETIES

ANDREY INSHAKOV

Surfaces with A-defective tangential varieties are classified for any h.
For such surfaces the corresponding defects are calculated. Smooth surfaces
with this property not coinciding with v3 (P?) are pointed out. It is shown that
varieties of osculatings (of any order) to curves are not defective.

1. Introduction.

In this paper we work over complex numbers. Suppose that X C PN is a
smooth variety. It is a well-known fact that if N > 2dim X + 1 then X can be
projected isomorphically to P24imX+1_ One can ask whether X can be projected
isomorphically to P™ with m < 2dim X + 1. In order to answer this question
we notice that X can be projected isomorphically to P iff dim SX < m, where
SX = UX’ yeX,xsty (x, y) is a secant variety (by (U) we denote the linear span of

a set U), because the projection 7 : PN — — > P" from a linear subspace
L is an isomorphism on X iff L N §X = ¢. By simple dimension count
one can see that dim SX does not exceed 2dim X + 1, and equality holds for
“general” X. Because of that, in general X can be isomorphically projected
only to P?4mX+1 Byt if we are interested in isomorphic projection to P™,
then we should find varieties for which dimSX < m < 2dim X + 1 and also
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dimSX < m < N. Such varieties are called / -defective. Straightforward
generalization leads us to varieties for which the dimension of the variety of
(h + 1)-secant #-dimensional subspaces S"X is less then the expected one, i. e.
dim §"X < min{N, (h + 1) -dim X + A}. Such varieties are called h-defective.
It is more or less clear that there are no /-defective curves.

The main tool in studying defective varieties is the following lemma.

Lemma. (Terracini). For general point xo,...,x, € X and general point
q € (xg,...,xp) C S"X holds

T,8"X = (T, X, ..., T, X).

Defective surfaces were classified by many authors. Classically such
surfaces were considered by Palatini [9] and [10] whose classification theorem
has a serious gap. Then Terracini [13] completed Palatini’s classification. Also
Scorza [12] and Bronowski [1] worked on this topic. Both Palatini’s and
Terracini’s papers are obscure and difficult to read. Chiantini and Ciliberto [3]
classified weakly defective surfaces, of which defective surfaces form a special
case. Their approach is easier and faster then the previous ones. The result is as
follows:

Theorem. A surface X is h-defective iff X is one of the following:

(1) A non-degenerate surface X c C one,C, where C is a curve, L is a linear
space of dimension h — 1, N > 3h + 2 such that for any linear subspace
I C L one has dimm;(X) = 2;

@) X = vn@) C P2 where Y C P! 5 4 non-degenerate surface of
minimal degree.

1-defective threefolds were classified by Scorza [11]. In more recent
times Zak [14], Fujita-Roberts [6] and Fujita [5] considered smooth defective
threefolds. Ciliberto and Chiantini [4] reworked the Scorza classification in an
easy and fast way.

For higher dimensional defective varieties only general properties are
known, see Zak [14].

In [2] Bronowski first considered a surface whose tangential variety is
-defective and stated that [2, 3] through a general point of 9-dimensional space
there passes no 5-dimensional space containing 2 tangent planes to the Del
Pezzo surface. So, one can ask whether v3(P%) ¢ P is the only surface in P°
with the following property: the P*’s spanned by two tangent planes to X do
not fill up P°? This question can be reformulated in the following way: when
dim S(TX) <9 (or TX is 1-defective)?
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Our main Theorem 3 gives an answer to this question, i.e. it describes
all surfaces for which the tangential varieties are 4-defective. It appears that
v3(P?) is not the only such surface. For example, a general surface on a cone
with vertex a plane over a curve has 1-defective tangential variety when the
dimension of the ambient space is big enough.

This paper is organized in the following way: in Sections 2 and 3 we gather
the preliminaries; the varieties of osculatings to curves are discussed in Section
4; in Section 5 the main property of surfaces with defective tangential varieties
is pointed out; Section 6 is devoted to describing examples, including smooth
ones, and calculating the corresponding defects; in Section 7 we state our main
Theorem 3. In the subsequent Sections we give a proof of Theorem 3: in Section
8 we prove Theorem 3 in the case dim 7X = 3; Section 9 contains a proof in
the case dimT'X = 4 and & = 1, in Subsection 9.1 we consider the case when
the surface is mapped to a curve under the projection from the osculating space
of order 2 at a general point, in Subsection 9.2 the case when the image of this
projection is a surface is described; in Section 8 we prove Theorem 3 for h > 1.
Finally, in Section 11 Corollary 5 is discussed.

The question arose from the paper of Bronowski was pointed out to the
author by Prof. Ciliberto during the summer school PRAGMATIC 2001 at
Catania, whose organizers, especially Prof. Ragusa, created the excellent
conditions for the participants. The author would like to thank Prof. Ciliberto
for very fruitful discussions on the topic and Prof. Zak for his tuition and very
useful corrections and suggestions during writing this paper.

2. h-secant varieties and their defects.

Definition. The variety S"X = U, . cx dimo..x,=h (%0s - - - Xn) is called
h-secant variety of the variety X. = '

By counting dimensions one can see that if N is big enough then the
expected dimension of ShX is dimX - (h + 1) + h. Hence for an arbitrary
N the expected dimension of S"X is min{N, dim X - (h4+ 1)+ h}.

Definition. The number d,(X) = dimX(h + 1) + h — dim S$"X is called
the cumulative h-defect of the variety X C PV. The number §,(X) =
min N, dim X (h + 1) + h — dim S*X is called the h-th defect of the variety
X c PV,

Remark 1.
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1. dp(X) is called cumulative defect because of the following. It is clear that
StX = S(X, S1X), where

sy, = |J o

yeY,zeZ,y#z

For a general point s € $" X the variety

Yy={xlxeX, JreSh1X, t#x: s€(x,t)

is called the entry locus for s. Put dim X; = 05,(X). One has dim S"X =
dim §(X, §"71X) = (dim X +dim S*" ' X +1)— 0, (X). So, dy(X)—dp_1(X) =
dim X + 1 —dim $* X + dim §"~'X = (dim X 4+ 1 +dim $*~'X) — dim §"X =
op(X),and dj,(X) = o (X) + ... + o, (X).

2. 8,(X) = min (N — dim$"X, dy(X)} = min {N — (dim X - (h + 1) +
h — dy(X)), dy(X)}) = min {dy(X) + (N —dimX - (h + 1) — h), dp(X));
Si(X) <dp(X) iff N < dim X (h + 1) + K.

3. As we saw above, dj41(X) = dp(X) +0p4+1(X), and so dy41 (X) > dj(X).

) N—1=2dim —dim
Moreover, for N > dim X (h +2) +h+1 (h < ¥=2de X = ’c”l'imd;”’f — 1) also
Snr1(X) > 8,(X). For b > N=dimX 5, (X)) = N—dim S"'X < N—§"X =

dim X+1 °
Sn(X).

4. Y i, 6(X) > 0, d;(X) > 0. At the end, if for some £, §,(X) = 0 and
She1(X) > 0, then h < J=9X (N > dimX(h + 1) + &) and Vi < h,
8i(X) = 0, because 8;(X) < 8,(X) = 0. Alsosince N > dim X (h + 1) + &,

Vi <h,dy(X) =0, dpt1(X) > 8p41(X) > 0.

Definition. A variety X < PV is called h-defective, if §,(X) > O and
8p-1(X) = 0.

Remark 2. If X is h-defective then d;(X) > Oand dy_1(X) = 0. If dy(X) > 0
and dj,_; (X) = 0 then §"X = PV or X is h-defective.

Proposition 1. Suppose that a variety X C PV is non-degenerate, gy € S™'X
is a general point and mw is the projection with the center at T, S™'X.
Then dimn(X) = dimX — d,(X) + dn—1(X) and for any k > 1 one has
d((X)) = diym(X) — du(X) — k(dn(X) = dp-1(X)). If d(X) = O then
dim 7 (X) = dim X and for any k > 1, 8y (7 (X)) = 81 (X).
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Proof. Choose general points yo, y;,... € X and general points ¢, g2, ... €
PV such that Vi > 1, ¢; € (Yo, .-+, Ym-14i)s i. €. g; € S" ' X. Suppose in
addition that g € (Yo, - . - , Ym—1). Then by Terracini’s lemma for £ > 1 one has
T, S" WX = (T X, ..., Ty, . X) = (T,,;S"'X, L, X,...,T,, ., X) =
(T S™ X, (Ty, X, ..., Ty, . X)). Wehave dimz(X) = dim Ty, )7 (X) =
dimn(7y, X) = dim 7, $"X —dim T, $"'X — 1 = (dim X - (m + 1) + m —
dp(X) —dimX -m+m—1—d,_ (X)) — 1 =dimX — d,(X) + dpn_1(X).
Hence dj (7 (X)) = dim 7 (X) - (k+ 1) +k—dim S* (7w (X)) = (dim X —d,,(X) +
1 (X)) (k1) ke —dim Ty gy, ) ST (X)) = (dim X —dyy (X)+dymy (X)) - (h+
1) +k— (Tn'(y,,,)ﬂ(X)» ORE Tn(y,,,+k)7[(X)) = (dlm X — dm (X) +dm——l(X)) ' (k +
D+k—(n(Ty, X), ..., n(Ty,, X)) = (dim X ~d,, (X)+dp-1(X)) - k+1)+k—
(dim T, S™* X —dim T, S™ ' X — 1) = (dim X —d, (X) +dp_1 (X)) - (k+ 1) +
k—((dim X-(m+k+1D)+m—+k—dpr (X)) —(dim X -m+m—1—d,_(X))—1) =
(dnk(X) = d (X)) — k(din (X) — dip—1(X)).

Ifd, =0thend,_; =0and dimn(X) =dim X — d,,(X) + d-1(X)} =
dimX. More, N, = dimzP") = N — dim TqOS’"“X -1 = N —
(dmX m+m—-—1—-—d,1(X))—1 =N —dimX -m — m. At the end,
Sk (m(X)) = min{de (7w (X)) + (Ny —dimn(X) - (k + 1) — k), d(m(X))} =
min{((dnx(X) — du(X)) — k(dn(X) — dp-1(X))) + (N — dimX - m —
m) —dimX - (k + 1) — k), (dnx(X) — dn(X)) — k(dn(X) - dp-1(X)} =
min{dy 14 (X) + (N —dim X - (m +k + 1) = (m +k)), dp 1 (X)} = S (X). O

The following fact was also proved in [14 Chapter V, Proposition 1.7].

Corollary 1. For any k > 1, dyy(X) — di(X) = dp(X) — di_1(X), ie.
0x+1(X) = 0x(X) in the notation of Remark 1.

Remark 3. Really, if X is smooth, then much more stronger statement is true:

Theorem. ([14] Chapter V, Theorem 1.8) For any k > 1, S¥(X) # PV, one
has op+1(X) = o (X) + 01(X), i.e. dry1(X) — dip(X) = (di(X) — dr—1(X)) +
di(X).

3. Osculating and tangent spaces.

By G(n, N) we denote the grassmannian of linear subspaces of dimension
n in PV, For any point & € G(n, N) denote the corresponding linear subspace
by P7.

Let f : X~ —>G(n,N) be a family of P*’s in PV and put Uy =

UxEX ]P)’jl"(x) :
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Definition. A family g : X — — = G(m, N) is generally tangent to the family
S if for a general point x € X and a general point u € IP’;(X) one has P¥, D
.U fe ) ] '

This definition could be reformulated in terms of Grassmannian as follows:
Definition. A family g : X — — = G(m, N) is generally tangent to the family
S if for a general point x € X one has Tf(x)‘f(X) C TrGyy(n,m) C
Tr(G(n, N), where G,(n, m) is the Grassmannian of P"’s in P c PNfor
aeG(n, N).

Definition. A family ¢ : X — — > G(m, N) generally tangent to f is called
tangent to f if m is minimal possible. Such m is called the dimension of the
Sfamily f and is denoted by dim f.

Example 1.
L If f: pl—~>G(n,2n+1) is the family of fibers of the Segre variety

P! x P" then dim f = 2n + 1. |
2. If f: P!l ——>G(n,N) is the family of osculating spaces of order n to
vy(PY ¢ PV, then dim f = n + 1.

Remark 4. Having a family f : X — — > G(n, N) and a linear susbspace

L C P¥ one can construct the new (projected) family f; in the following way:
suppose that for a general point x € X, dim ]P’;(x) M L = ly. Then a family

fr: X-—->Gm—1Ilf—1,N—dimL — 1) issuch that for a general point
xeX, m,(Ph,) = IP’;L‘(Z)—], where 7, is the projection from L. It is easy to

see that if a family g : X — — > G(m, N) is generally tangent to the family f,
then the family g, is generally tangent to the family f7 .

Suppose now that X C PV is a projective variety.
Definition. 7°: X — — > G(0, N) is a family of points of X, 7°(x) = x for
any x € X. For any k > 1 the family 7% : X — — > G(ng, N) is tangent to the

family 7%, n; = dim T*~!. Consider the following diagram:

N'cXxGm,N) IcCG@ng, N)xPV

q1 N G2 3" \ 44
X G(ng, N) PV,

where I' = {(x,a)|a = f(x)} is the closure of the graphic of f, I =
{(a, p)Ip € P+}, gi, 1 < i < 4, are the projections. The cone Tka
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q4(q5 l(qz(ql"l (x)))) is called the osculating cone of order k to the variety X
at the point x. The number n; = dim T*~! is denoted by dim; X. T*X =
q4(qs l(qz(ql_ 1(X)))), which is the union of all osculating cones, is called the
variety of osculatings of order k to X.

Proposition 2. Suppose that x € X is a general point, dimX = n and
F : Uy—-—->X, FO) = x is a local parametrization (Uy C C" is a
neighborhood of 0, u;, 1 <i < n, are the coordin in C"). Then

(1) T*X is a linear subspace and for a general point p € Txk“IX one has
T,T"'X C T'X;

2) TEX = (F(0), F,, (0), ..., Fu, (), ..., Fuy . uyuy 0), ...
. ! %I_'J .
k
--,Ful...ulun(o),-n,Fun...un(o));
———— (-

k ) k

(3) a hyperplane H < PN contains TfX iff the equation H(F(u)) = 0

has zero at 0 of order at least k + 1 (here we put H(x) = 0 for the
corresponding linear equation).

Proof. .
1. Since x is a general point, g7 ' (x) = {(x, T¥(x)} and T/X = IP‘;,‘,?&)X is
a liner subspace. By definition, the family T* is tangent to the family Tk e,
PC}TZQ)X D T,T*'X for a general point p ePf;‘,?f",‘(;)X. So, TkX O T,T* ' X for
a general point p € TF-1X. '

2. We prove this by induction on k. For k = 0 it is clear. Suppose that

TX = (F(0), Fuy (0), ..., Fu, (0), ..., Fuy .. uquy (0), ...
— e

k

'*5Ful...ull/l”(o)s""Fun...un(o)>
[ ——— N’
k k
for a general point x € X. Then for any numbers 1 < ji,..., ji;1 < n the

variety T*X contains points Fu,—,...u,k (u(t)), where u;(t) = O for i # jiy and
wj,,,(t) = t, t € C! is a parameter from a small neighborhood of 0. Hence
T}*'X should contain the point F (0) as well as T* X . Therefore

..‘ij_H

TEX D (F(0), Fuy (0), ..y Fuy0), oo Fuy . yuy 0), -
R

k+1
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v Fup o ouqun, ©0)s s Fyy o u, (0)).
e e’ NS

k+1 k41

On the other hand, it is clear that the space

(F(0), F,, (0), ..., Fy, (0), ..., Fuy . ouquy (0), -
[ ——

k+1
v Fuy o ouu, 0, Fuy o, (0)
- (S
k41 k1

contains any tangent line to 7%X at a general point p € TfX. Since, by
definition, T**!X should be minimal subspace containing 7,,T kX for a general
point p € T*¥X, one has
Txk+1X = <F(O)’ Ful(O)» L) Fu,,(o)a v Ful . .M1u1(0)5 s
e o’

k+1

v Fuy o ouqun, (0), s Fuy o, (0)).
N e’ N o’
k+1 k+1
3. Since H (%) is a linear function, for any numbers 1 < ji,..., jm < 1,

m S k, one has (HOF)MJ'I...MJM (0) = (HOFuj‘...ujm)(O)- SO9 (HOF)MJ" ...uj," (O) = O
iff the hyperplane H contains the point Fujl...u,-,,, (0). Moreover, H(F(u)) =0
has zero at O of order at least k -+ 1 iff for any number 0 < m < k and

any numbers 1 < ji,..., jm < n one has (H o F)uj]..‘ujm (0) = 0. Hence,
H(F (1)) = 0 has zero at 0 of order at least k -+ 1 iff the hyperplane H contains
all points of type Fy, ., (0),ie. H D TFX. O

Corollary 2. dim T*"'X < dim; X < (” -1: k) — 1.

" The following fact will be used throughout the paper because one of our
principal methods is taking projections from various subspaces.

Proposition 3. If L C PV is a linear space, then for a general point x € X and
any k > 0 one has w (T¥X) = TﬁL(x)er(X) and 7 (T*X) = T*(n (X)).

Proof. This fact essentially follows from Remark 4 and definitions. J

Proposition 4. If X ¢ PV isa non—degenerdte curve and k < N, then
dimy X = k.
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Proof. Assume the opposite. Since dimg X = 0 and dim;4; X > dim; X for
any j > 0, one can find an index / < k such that | = dim; X = dim;; X.
Hence, for a general point x € X one has 7'X = Txl“X . By Proposition 2
for a general point p € T!X it is true that 7,7'X C T!*'X = T'X. Since
T,X CT,T'X and T'X C T'X, T'X = T!X. Moreover, X C T'X. Therefore
T!X =PN and l = dim; X = N. Since I < k < N, we obtain a contradiction.

]

For any point x € X we have three well-defined objects related to the notion
of tangency:

(1) the tangent (Zariski) space T, X;

(2) the tangent star ©, X, which is formed by all lines being limits of (y, z),
y,2€ X,y # z, while y and z tend to x;

(3) the tangent cone 7 X, which is formed by all lines being limits of (x, y),
ye X,y # x,while y tends to x;

Itis clear that 7, X C ©,X C T, X. In this section we introduced the osculating
cone of order 1 7! X,

Example 2. If X = Cone,(C) C PV is non-degenerate then

(1) T,X =PV,

(2) ©,X = Cone,(S(C));
3) T[;X = Cone,(C);

4) T, X = Cone,(T'C).

Proposition 5. For any point x € X one has TX C T!X € ©,X c T, X.

Proof. 1tis clear, thatif x € X is a smooth point, then all four objects coincide.
If x is a singular point, then by definition, 7! X is obtained as various limits of
Tle while y tends to x, y € X is smooth. Since T le = T,X, T!X consists
of lines which are limits of lines, tangent to X at y while y tends to x. So,
T!X C ©,X.

On the other hand, for any line / C 7/X, [ > x, there exists acurve K C X
such that x € K and 7K = [ (e.g. one can take general intersection of X with a
linear subspace of dimension codim X — 1 containing /). For this curve an easy
local computation shows that T/ K = T/K. Hence, | = T)K = T!K C T!X.

O

From now on, we put 7X = T'X. If for a point x € X the osculating cone
T} X is a linear space of proper dimension (dimy X), then we will call T*X also
osculating space of order k at the point x.
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One can see that the expected dimension for 74X is dim X + dim; X. If
dim T*X < 1 4 dimy X, then it is possible to give a full classification.

Proposition 6. Suppose that X C PN is a non-degenerate variety.

(1) Ifdim T*X = dimy X then T*X = PV,

(2) Ifdim T*X = 1 + dimy X then one of the Sollowing conditions holds:
(a) TkX =PV,
(b) one can find a (maybe empty) linear space M C PN and a curve C
such that X C Conepy(T™C) and dim M +m = dim; X — k — 1.

Proof.
1. This is evident.

2. If dimT*X = 1 + dimy X and 7*X # PV, then there exists only
one-dimensional family of different linear spaces TX, i.e. dim T*(X) = 1.
Put K = T¥(X) C G(dim X, N). For a general point & € K put ¥, =
(TH ) ¢ X, L, = (Urer, T*=1X). Then the codimension of L, in
Pdime X js at most 1. Really, take a general point x € Y, and use again the
local parametrization of X in a small neighborhood of x as in Proposition 2,
and suppose additionally that Y, is (locally) defined by the equation u, = 0.
By Proposition 2, L, contains the following points:

F(O)aFul(O),Fu,,(0)7~'-,FM1...M1u1(0)7FM[...ulun(o)5~-~aFun...Mn(o)
. (R N N e’

k-1 k-1 k—1

(because L, D Txk_lX) and points of type Fun ol (u(t)), where u; (t) = 0 for

i # jx and u; (t) = t, t € C! is a parameter from a small neighborhood of 0,
I < ji,....jkm1 = n,1 < jix < n (because L, D Ty"'"lX, y € Y,). Hence,
L, contains Fu,]...ujk (0). Varying the numbers ji, ..., jx one can obtain that
PmeX = TEX = (Lo, Fy, .. .u,(0)).
k
Put Z = Uo[E x Lo. By our construction, there exists » such that

Lo S"(| ] TF'%)

x€Y,

and for any v < r one has L, # S"(Uxeya Txk‘lX ). Therefore, for a general
point g € L, there exist points xo, ..., x, € ¥, and points py, ..., preT*1X,
pi € TE'X, 0 <i < r,such that g € (py, ..., p,). Arguing as it is usually
done in prooving Terracini lemma, one has 7, Z C (T,, T*"'X, ..., T, T*~'X).
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Moreover, for any i, 0 < i < r, T, T*'X C TrX. Since x; € ¥,,
Tx’jX = PdmX_ So, T, T*'X < PU™ X and T,Z ¢ PI™ X Hence, we have
an one-dimensional family of linear spaces L, such that for a general point
q € L, one has T,Z depends only on o (Z = J,.x La). According to the
classification of one-dimensional families of linear spaces (see e.g. [7,2.4]),
there exist a linear space M, a curve C, anumber / andamap ¢ : K — — > C
such that Ly = (M, T ,,C) and dim L,, = dim M +/ + 1. Moreover, Pdm X —

(M, qu(*;f)C) and dimy X = dim M + [+ 1 + 1. Since T*¥X = Coney (T ),
X C Coney(T"'7KC). Putm =1+ 1 —k. Then X C Coney(T™C) and
dimg X = dim M+14+14+1 =dim M+(m—1+k)+1+1 = dimM+m+k+1,

ie.dmM+m =dimy X —k — 1. O
The following fact is well-known (e.g. [7], 5.37).

Corollary 3. If X C PV is a non-degenerate surface such that dimTX = 3,
then N = 3, X = Cone,(C) or X = TK, where p € PV is a point, C and K
are curves.

4. Curves.

Theorem 1. Suppose that C C PN is a non-degenerate curve. The va-
riety T¥C is non-h-defective for every h and k, ie. dim SHTFC) =
min N, kh +k +2h + 1 forallk >0, h > 0.

Proof.  We prove this fact by induction on 4. For & = 0 by Proposition
4, dimT*C = min{N, k + 1}. Suppose, that T*C is non-h-defective. We
claim that 7*C is non-(h + 1)-defective. Since 0 = Sp(TkC) = min{N —
dim S"(T*C), dy(T*C)}, one has either S*(T*C) = PV or d,(T*C) = 0. In
the first case S"*1(T*C) = PV, and T*C is non-(h + 1)-defective. In the
second case, by Proposition 1 applied to X = TC and m = h + 1, we have
dim7(T*C) = dimT*C — dpy 1 (T*C) + dp(T*C) = k + 1 — dyy 1 (T*C).
But n(T*C) = T*(x(C)), and dimn(T*C) = dim T¥(n(C)) = min{N —
dim S"(T*C) — 1,k + 1} = min {N — (kh +k+2h +1) — 1,k + 1}. Hence,
dp 1 (T*C) = k+1—dim 7 (T*C) = k+1— min {N—(kh+k+2h+2), k+1} =
max{kh + 2k + 2h + 3 — N, 0}, dim S"*Y(T*C) = (k + D(h +2) + h +
1 — dypy (TFC) = kh + 2k 4+ 2h + 3 — max{kh + 2k + 2h +3 — N, 0} =
min{N, (k + 1)(h +2) + h + 1}. ]



212 ANDREY INSHAKOV

5. General property of surfaces with defective tangential varieties.

Theorem 2. Suppose that 8,(T X) > 0. Then for general points xy, . .., xp €
X, pos.o o, ph€TX, pi €T, X,0<i<h, qge{po...,pn) the linear space
TqS”(TX) osculates X at the points xq, ..., x, of order 2 (in other words,
(Tp,TX,..., T, TX) = (T2X, ... YzTX))

Xy,

Proof. By Proposition 2, T2X D T, TX for 0 < i < h. By the Terracini
lemma 7, 8"(T X) = (T, TX, ..., T, TX). Hence,

T,8"(TX) =(T,,TX, ..., T,,TX) C (T?X,..., T>TX).

Po X0 L 9

So, it is enough to show that for any i, 0 < i < h, one has T2X C
(T, TX,..., T, TX) = T,S"TX).

If d1m2 X =4 or 3, then dimy X = dim T X and T2X = T, TX. Really,
if dim 7X = 4 then dimy X > 4 and, hence, dim, X = 4 If d1m TX = 3, then
by Corollary 3 X C P3, X = Cone,(K ) or X = TK for a certain curve K
and a point ¢. In all these cases one can see that dimy X = 3 = dim 7' X. Since
TIX =T, TX, T2X C (T, TX, ..., T, TX).

Consider the case dimy X = 5. Since d,(TX) > 0, 3k < h: dp(TX) > 0,
di—1(TX) = 0. dim SYT X)—dim S*~ 1 (T X) = (Sk+4—dp (T X)) —(5(k—1)+
4—dy (T X)) = 5—di(TX) < 5. Take a general point g € (py, .. ., Pr—1) and
a general point g € (po, ..., pr). Then by the Terracini lemma 7, SENTX) =
(TpoTX, ..., Ty TX), T,,SMTX) = (T, TX,...,T, TX).

Therefore, dlm( T, S*NTX), T,,TX)—dim T, S" '(TX) = dim 7,S*(T X)~—
dim 7, §%~ I(TX) = dim SY(T'X) — dim §*- ‘(TX) 5 — di(TX). Hence,
dim T, Sk 1(TX)ﬂT,,,&,TX =4—-5—-di(TX)) =di(TX)—1 > 0. Letus vary

Dk € Tka Then all tangent spaces 7),, T X under the projection from T, X will
be mapped to tangent lines to some comc in the plane mrr, X(TiX ). So, in order
for T, S*~1(T X) to intersect 7,,, T X in a linear space of dimension d; (T X) — 1
for general py € T,, X we need either dim 7, S ' (TX) N Ty X = du(TX) — 1
or dim 7, S*"(TX) N T2X = d(TX). In the first case dp(TX) — 1 <
dim7,, X = 2, di(TX) < 3. After the projection 7 from T, ST X) we
have dim T o) w(X) = 2 — (dp(TX) — 1) — 1 = 2 — dp (T X). Since x; € X
is general, dimn(X) = 2 — d(TX). If dy(TX) = 3 or 2 then 7(X) is
an empty set or a point respectively, and T”(x )n(X ) = (X)) = Ty (X).
Hence, 7 (T2 X) = 7 (T, X), and T2X C (T, S*"NTX), T, X) = T,S*(TX).
If di(TX) = 1 then #(X) is a curve, dim 7?2 2T (X) = 2. Therefore,
dim(7,, S*"/(TX), T2X) < dim T, S*"(TX) + 3, and dim T, S*"/(T'X) N
szkX > 2. Butin this case for general p; € T,, X, dim T, S*" (T X)NT,, TX >
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1 because T, TX is a hyperplane in 72 X. Since dim 7, S* (T X) N T, TX =
dy(TX)—1,d(TX) > 2, which is not the case.
If dim 7, S*~!(TX) N T2 X = di(T X), then

dim(T,, S*" (T X), T2 X) = dim T, $*""(T'X) + 5 — dp (T X) =

(Sk+4) +5 - di(TX) = dim T, S*(T X).

Since (Tq,S"“l(TX), TkaX) D (T, S"_l(TX)TkaX) = quS"(TX),
(T, ST X), T2X) = T,,85(TX), and T2 X C T,,S*(TX).

Using the symmetry and that T, SMTX) D 1, SK(T X), one can obtain that
sz,-X - TqSh(TX) for any i, 0 < i < h and, hence, TqSh(TX) osculates of
order 2 to X at the points xo, ..., Xp. O

Corollary 4. §,(TX) > 0 iff min{5h + 4, N} — dim(T2 X, ..., T2 X) > 0.
Moreover, in this case 8,(T X) = min{5h + 4, N} — dim(szoX, .., T*X).

A
Proof. By the Terracini lemma, one has for general points pg, pi, ..., py €
TX and ¢ € (po,...,pn), that T,8"(TX) = (T,,TX,...,T, TX) and
dim SM(TX) = dim(7,,TX, ..., T, TX). Suppose that xq,...,x, € X are
points such that Vi, 0 < i < h, p; € T,,X. Then by Proposition 2
Vi, Tp,.TX C sz." Hence, 6,(TX) = min{(h + 1)dimTX + h, N} —
dim(7,,TX, ..., T, TX) > min{5h + 4, N} — dim(T2 X, ..., T2 X). So, if

min{5h + 4, N} — dim(T2 X, ..., T2 X) > 0, then §,(T X) > 0.

X0

By Theorem 2, in the case when 6, (7' X) > O one has

(Tp,TX, ..., T, TX) =(T2X,...,T*X)

X0 > T X

and, hence, &, (TX) = min{5k + 4, N} —dim(T2X,..., T2 X) > 0. O

> T Xy

6. Examples of surfaces with defective tangential varieties.

General examples 6.1.
Proposition 7.

(1) If X = v3(P?) C IP°, then TX is I-defective and 8, (T X) = 1;

(2) If X C Coner(TC), where L C PV is a linear subspace, 0 < dimL <
h—1, Cisacurve, N > dimL +4h + 5, n;(X) = TC, X # TK
for any curve K, h > 1, then T X is h-defective and §,(T' X) = min{h —
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dim Ly,in, N — dim L,,;,, — 4h — 4}, where L,y is such a linear space of
minimal dimension;
(3) If X C Coner(C), where L C PN is a linear subspace, 0 < dim L < 24,
Cis acurve, N > dimL + 3h + 4, X # Cone,(K) for any point
p and any curve K, h > 1, then TX is h-defective and §,(TX) =
min{2h + 1 — dim L,;,, N — dim L,,;, — 3h — 3}, where L,,;, is such
a linear space of minimal dimension;
(4) X = Cone,(C), where p € PV is a point, C is a curve, N > 3h + 3, then
T X is h-defective and 8,(T X) = min{N — 3h — 3, h}.
Proof. 1. X = v3(P?) C P?, h = 1. Let us show that for general points xg, x; €
X one has dim(7?X, T2X) = 8. For any hyperplane H C P?, v; (X N H) is
a cubic. Moreover, H O T2X iff the cubic v;'(X N H) has multiplicity 3 at
the point v;'(x) € P2 Hence, H D (T2X, T?X) iff the cubic v; (X N H)
has multiplicity at least 3 at the points vy !(xo) and vy Yxp), i e. vy "X nH
is a triple line (v (xo), v3"'(x))). Since the map v3 : P2 — — = P9 is defined
by the complete linear system of cubics in P?, there exists a unique hyperplane
H with this property. So, dim(szoX , TxZIX ) = 8. Therefore, by Corollary 4,
§1(TX) =min{5-1+4, N} —dim(T2 X, T2 X) = min{9,9} -8 =9 —8 = 1.
2.If X C Coner(TC), 7 (X)=TC and X # TK for any curve K, then
dim 7 X = 4. Really, if dim 77X = 3 then by Corollary 3 X is a surface in P3,
a cone Cone,(K), or X = TK for a certain curve K. The first is not the case
because N > dim L + 4k + 5 > 5. The second is not the case because for any
linear space L, . (X) could be a curve or a cone over a curve, but not 7C. The
last is not the case by the hypothesis.
Since X C Coner(TC) and 7, (X) = TC, for a general point p € TX
one has 7 (T,TX) = Ty nT7wL(X) = TpnT?*C = T;C, where y € C
is a point such that 7, (p) € TfC. Hence dim 7, (7T,TX) = dim Ty3C = 3,
and, since dim7,7X = dim7TX = 4, dimL N T,TX = 0. Suppose
that L has minimal possible dimension. Since dimL < A — 1, for general
points po, ..., py € TX one has dim(L N 1,,TX,...,.LNT,TX) <h -1,
and (L N Tp,TX,...,L N T, TX) = (LNT,TX,...,L N 1,,TX) for
some m < h; so, for general p, € TX one has LN T, TX € (LN
Tp,TX,...,L N T, TX). Put M = (LNT,TX,...,L N T,,TX). Then,
for a general point p € TX, dim M N T, TX = 0 and dimmy(T,TX) = 3.
So, dim Ty (X) = dimmy(TX) = 3, and by Corollary 3, 7y (X) is a
surface in P, a cone over a curve, or TX for some curve K. But M C L,
N > dim L +4h+5 and 7r; (X) = 7.,y (73 (X)) is TC, so, my (X) can only
be TX for some curve K. Hence, X C Coney(TK ). Since L has minimal
dimension and M € L, one has M = L. Therefore L = (LN T, TX,...,LN
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1,,TX) = (LNT,TX,...,LNT,TX) and L C (T,,TX,..., T, TX).
So, dim(7,,TX,...,T,,TX) = dimL + 1 + dim(Tj)C,...,Tj}C), where
Y0, ---»yn € C are points such that 7 (p;) € TyziC (0 < i < h). Since
N >dimL+4h+5,dm(C) = N—-dimL~1> (4h+5)—1=4h+4. So,
by Theorem 1, dim(Ty30C, cee Ty3hC) =min{N —dim L — 1,4h + 3} = 4h + 3.
Therefore 6, (T X) = min{5h +4, N} —dim(T,,,TX, ..., T,, TX) = min{5h +
4, N} —(dimL + 1+ (4h +3)) = min{5h +4 —dim L — 1 — (4h + 3), (N —
dimL) —1— (4h +3)} = min{h —dim L, N — dim L — 4h — 4}.

3. If X C Coner(C) and X # Cone,(K) for any curve K and any point
p,then dim7X = 4. Really, if dim 7 X = 3 then by Corollary 3 X is a surface
in P2, a cone Cone,(K),or X = TK for a certain curve K. The first is not the
case because N > dim L + 34 + 4 > 4. The second is not the case because of
the hypothesis. The last is not the case because if X = TK C Cone,C, then
for a general point x € K, 7, (7T, K) C w1 (X) = C is a point or a line. Since C
isnot aline (dim(C) = N —dimL — 1 > 3h +3 > 3), 7, (T K) is a point. So,
71, (K) is a point and X is degenerate, which is not the case.

If X C Coner(C) then for a general point p € T X one has 7, (7T,TX) =
Ta,yT7L(X) = TpypTC = T?C, where y € C is a point such that
71 (p) € T,C. Hence dim (7,7 X) = dim Ty2C = 2, and, since dim 7, TX =
dimTX = 4, dimL NT,TX = 1. Suppose that L has minimal -possible
dimension. Since dimL < 2h, for general points pg,...,p, € TX one
has dim(L N T, TX,...,.L N T, TX) < 2h, and (L N T, TX,...,L N
Lo TX)N(LNT,TX) # 0. Wdim(L N T, TX)N(LNT,TX,...,LN
Tp,,TX) = 1, then LNT,TX C (LNT,TX,...,L N T, TX) and
dm 75, Tn(X) = dimn(7T,TX) = 4 —1—1 = 2, where «w is the
projection from (L N 7, TX,...,L N T, TX) C L. Since p, € TX is a
general point, w(X) is a curve. Since L has minimal dimension, dimL <
dim(LNT,TX,...,LNT,,_TX).So, L=(LNT,TX,...,LNT,, TX)=
(LNT,TX,...,LNT,TX).

If dim(L N7, TX)N(LNT,TX,...,LNT, TX) = 0, one has
dim T,y T (X) = dimn (7, TX) = 3, where 7 is the projection from
(LNT,TX,...,LNT, TX) C L. Since p, € TX is a general point,
dim7(TX) = 3. So by Corollary 3, 7(X) is a surface in P3, Cone, K, or
T K for some curves C and K and a point g. But since X C Coney(C) and
N > dimL + 3k + 4, n(X) C Coney)(C), m(X) can only be of the type
Coney(K), and (L) = q because L has minimal dimension. So, 7 (L) =
q € TnpyTn(X) = n(T,,TX), and L C (T,,TX,(LNT,TX,...,L N
T, TX) =(LNT,TX,...,LNT,TX).

So, L = (LNT,TX, ..., LNT, TX). Hence,dim(T, TX, ..., T, TX)=
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dimL + 1 + dim(TyzoC, e Tyzl C), where yo, ..., y, € C are points such that
nL(p,) €T1,C (0 <i < h). Since N > dimL + 3h + 4, dim(C) =

CdimL - 1 > 3h + 3. So, by Theorem 1, dim(72  \C,..., T2 C) =
mm{N dim L — 1, 32 +2} = 3h 4+ 2. Therefore Sh(TX) min{Sh +4, N} —
dim(7,,TX,..., T, TX) = min{5h + 4, N} — (dimL + 1 + B3h + 2)) =
min{5h+4—dimL——3h—3, N—-dimL—-3h—-3} =min{2h+1~dimL, N —
dim L - 3k — 3}.

4. If X = Coney(C), then TX = Cone,(TC) and SMTX) =
Conep(Sh(TC)) By Theorem 1, the dimension of S*(TC) is always equal
to the expected one, therefore, since C € PV~! is a non-degenerate curve,
dim $"(TX) = 1 +dim S*(TC) = 1 +min{N — 1, 34 +2}. So, dim S"(TX) =
min{N, 3h + 3} = 3h + 3. Hence §,(TX) = min{N,3(h + 1) + h} —
dim S*(TX) = min{N, 4h + 3} — 3h — 3 = min{N — 3h — 3, h}.

Proposition 8. The different classes of surfaces described in Proposition 7 have
empty intersection with each other even for different values of h.

Proof. 1t is clear, that the surfaces described in items 1 and 4 cannot belong to
other classes.

Assume that there exists a surface X C PV such that the following
conditions hold:

2. X C Coney, (TCy), where L; C PV is a linear subspace, 0 < dimL; <
hy—1,Cyisacurve, N > dim L, +4hy + 5, 7, (X) = TCy, X # TK
for any curve K, hy > 1;

3. X C Coney,(Cy), where L, C PV is a linear subspace, 0 < dim L, <
2hy, Cyisacurve, N > dim L, + 3hy + 4, X # Cone,(K) for any point
q and any curve K, hy > 1.

Then, as we saw above, for a general pointxe X, peTX,dim L, N1, TX =0,
dmZL,NT,TX = 1.

If LyNT,TX C Ly, then for L = L; N L, one has dim L N T,TX =0
and 3 = dimnm (7,TX) = dim TnypTrp(X) = dimTwp(X), where 7,
is the projection from L. Hence, by Corollary 3, 7 (X) is a surface in P?,
T'C or Cone,(C) for a certain curve C and a point r. Since dimm; (PY) =
N —dmL -1 > N —dimL, —1 > 4h; +5 > 9, n;(X) cannot be
a surface in P2, Moreover, since L C L, after taking the projection from
7 (Ly), one has 7y, )7 (X) = 7., (X) = TCy. So, X = TC. On the
other hand, since L C L,, after taking the projection from 7, (L;), one has
T (L) TL(X) = 7, (X) = Cy, ie. 7y, 1)TC = C,. Hence, for a general
point y € C, T,C N (Ly) # @. So, Tr.(LyC 18 @ point, but not a curve, which
is impossible.
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Therefore, L, N T,TX ¢ L,. Hence, after the projection from L, one
has 7, (L) N T,,Lz(p)Tan(X) =m,(Li NT,TX) # @. Since 7,,(X) = Ca,
Ty, nTr,X = TyZCZ for a certain point y € C,. Since p € T X 1s a general
point, 7z, (L) N Ty2C2 # { for a general point y € C;. So, after taking the
projection from 7r;,(L;) one has dim; nan(L,)(Cz) = dimnan(L,)(Tsz) <
2 — 1 = 1. By Proposition 4, (”an(Ll)(CZ)) < 1. Hence, the codimension of
m1,(Ly) in 7y, (PV) is not more than 2, which is equivalent to dim(L;, Lp) >
N — 2.

But on the other hand from the restrictions for L, one has N > dim L; +
4hy+5>dimL, +4(dimL;+1)+5=5dimL;+9ordimL; < ¥2. From
the restrictions for L, one has N > dim L, +3h, +4 > dim L, + 3‘-ﬁ—"5£1 +4 =
SdimLy + 4 or dimL, < 24, So, dimL; + dim L, < %2 + 204 =
AT o SNLS — N—3and dim(Ly, Lp) < dim Lj+dim Lo+1 < N=3+1 =

5
N — 2. This contradiction proves our Proposition. O

6.2. Smooth examples There exist smooth varieties among the surfaces with
defective tangent surfaces described in Proposition 7.

(1) X = v3(P?) (this example was known to Bronowski, see [2,3]).

(2) If X = Scrollyy_yx, k = 3(h + 1), then X C Cone,(C) for C = v (P
and a certain L ¢ PV, dim L = 2k —1; dim; X = 4. One has &, (T X) =
min{2(h+D+1—-Q2h—-1), k+Q2h—-1D+1)—(2h—-1)=3(h+1) -3} =
min{2 +2, k —3h —3 — 30+ 1}, and 8, ;(TX) > 0iff 0 < [ < =3¢+,

3) If X = Scrollyyy, k = 3(h + 1), then X C Coner(C) for C =
v (P and a certain L < PY, dimL = 2h; dimy X = 4. One has
Spt(TX)=min{2(h +1)+1—=2h, (k+2h+1) —2h —=3(h +1) -3} =
min{2/ + 1, k — 3k —3 — 31 + 1}, and 8,1, (T X) > 0iff 0 < | < L2040,

4) If X = Scrollpop_1x N G, where k > 3(h + 1), G C P¥ is a non-
degenerate general hypersurface, then X C Coner(C), for C = v (P
and a certain L ¢ PV, dimL = 2h; dimy X = 5. As we saw above,
Sp(TX) = min{2l + 1,k —3h — 3 — 31 + 1}, and 8,4,(TX) > 0 iff
0<li< "‘3(3————’”'—” Particularly, for # = 1 we obtain 1-defective surface X
with §|(TX) = 1, X C Coner(C), where L is a plane.

7. Main theorem.
Let X be a non-degenerate surface in PN, N > 2.

Theorem 3. The tangential variety TX to a surface X C PN has positive h-
th-defect iff the pair of X and h is one of the pairs described in Proposition
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Corollary 5. The tangential variety TX C PV to a surface X ¢ PN is h-
defective iff X is one of the following surfaces:

M) vPHCP h=1;8(TX)=1:

(2) Cone,(C), where p € PV is a point, C is a curve, N > 7, h = 1;
SuUTX) = 1;

(3) a non-degenerate subvariety of Cone (T C), where L C PV is a linear
subspace, diim L = h—1, C isa curve, N > 5h-+4, such that T (X)=TC
and for any (even empty) linear subspace | C L, dim T (X)) > 3;
Sn(TX) = 1;

(4) a non-degenerate subvariety of Coner(C), where L C PN is a linear
subspace, 2h — 1 < dimL < 2k, C isa curve, N > dim L + 3h + 4,
such that for any linear subspace | C L dimm(X) = 2; §,(TX) =
min{2h +1 —dim L, N — dim L — 3k — 3}.

8. Prdof of Theorem 3, the case dim 7'X = 3.

In this case by Corollary 3, X is a surface in IP3, a cone Cone,(C) over a
curve C, or X = T K for a certain curve K.

I.LIFX CP3then TX = P3 = S"(T X), and the dimension of SMTX) is
equal to the expected one for any .

2. If X = Cone,(C), then as we saw in the proof of Proposition 7, item
4, dim S"(TX) = min{N, 34 + 3} and 8,(TX) = min{N,3(h + 1) + h} —
dim S"(TX) = min{N, 4h + 3} — min{N, 3k + 3}. Therefore 8§, (T'X) > O iff
N >3h+3 (N >3h+4).

3. If X = TK then TX = T2K, which is always non-i-defective by
Theorem 1.

9. Proof of Theorem 3, the case dimT'X =4, h = 1.

By Corollary 2 applied to k =n = 2, 4 < dim, X < 5.

Consider general points x,y € X, pe T, X, r € 1,X, g € (p,r). Since
81(T'X) > 0, by Theorem 2 T, S(TX) = (T2?X, T}X), and dim(T2X, T}X) <
min{9, N}.

Hence, dim 72X N TyZX = dim7?X + dim Ty2X — dim(T?2X, Tsz) >
2dimp X — min{9, N} + 1 = max{2dim, X — 8, 2dimy X —N+1}. Fixxe X
and consider the projection 7 from T2X,mw : pN — — > pN—dim X—1 _ Then for
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a general point y € X, 77, w(X) = 7 (T}X), so dim T, (X) < dimy X —
max{2dimy; X —8,2dimy X —N+1}—1 = min{7—dimy X, N —dim; X -2} <
7—dimy X <7—4=23,

If dim ij( 7 (X) < 1, then 7(X) = (m(X)) = dim 7}, 7(X), and
X C (T2X, T7X). Hence, dim(T?X, T;X) = N, which is 1mp0531ble because
dim(T2X, TZX) < min{9, N}.

If dim T2 )T (X) = 2, then 7(X) is a curve. Since dim 7, 7(X) <
min{7 — dlsz N —dimpy X —2} < N—dimy X —2, N > dimy X 4. More,
dm 72X NT7X =dim 7} X — dim 77 7 (X) — 1 = dimy X — 3.

In the case dim Tff y)TL'(X) = 3, m(X) is a surface. Since dim ij(y)n(X) <
min{7 — dimy X, N —dimy X —2},7 —dimy X >3 and N —dimy X —2 > 3,
which is equivalent to dimy X < 4 and N > dimp X + 5. Since dimp X > 4,
dimy X =4 and N > 9. More, dim TxZXﬂT2 = dim 77X —dim Tﬂ(y)n(X) —
1 =dimpX~-3-1=0.

9.1. dimz(X) = 1. In this case N > dimy X + 4, dim 72X N 72X =
dimz X —3.

Proposition 9. [If dim 7 (X) = 1, then one of the following conditions holds:

(1) X C Coner(C),dimL =dimy X — 3, Cisacurve (N > dimy X + 4 =
dimL + 7);
2) dimy X =5, N =9, X = v3(P?).

Proof. Consider a general fiber K = X N (x~!(z(y)) \ T2X) for a general
point y € X. Take another general point z € K ¢ X. If K ¢ TZZX
consider the projection 7’ = mp2y. Since dim T’X NT?X = dimy X — 3
and z € 7 (7w (y)) D T2X, dimT2X N Jr_l(n(y)) = dimp X — 2, and
dimm/(m 1 (m(y))) < dlmn”l(n(y)) dlm(TszT[_l(ﬂ'(y))) 1 =dimp, X+
1 — (dimy X —2) — 1 = 2. So, 7'(K) lies in a plane, but it is also a subset of
the curve 7/ (X). Hence, /(K) is a subset of 7/(X) N/ (w ~' (7w ())), which is
a finite number of points. So, for every component K; C K one has 7/(K;)
is a point and K; is also a component of a fiber under the projection from
TZZX . More, the linear span of such a component has codimension at least 2
in w1 (7 (y)), so its dimension is at most dimy X + 1 — 2 = dimy X — 1.

Now take all components of all fibers under all projections from TyZX for
a general y € X. By taking the closure, we obtain the family £ of curves on X.

Lemma 1. dim£ < 2. Ifdim £ = 1, then X sits in a cone over a curve with
. the vertex of dimension dimp X — 3.
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Proof. If for general component K of the fiber under the projection T2y one
has K C TZX for z € K, then K does not depend on x € X. So, in this case
dim.L = 1 K ¢ TZZX then primarily, after taking all components of all
fibers under all projections from 72X for a general x € X, we can obtain a
family of dimension no more than 3. Since every component of a general fiber
is also a component under the projection from the osculating space related to a
general point of this component, dim £ < 2.

Suppose now, that dim £ = 1. This means that through a general point
y € X there passes only finite number of fibers. Take one such fiber K.
Then for a general point x € X, K C (y, T?X). So, for general z € X,
K C (y,T?X) N (y, T2X). We will show now that (y, T2X) N (y, T2X) =
(y, T}X N T?X). Assume the opposite. Then there exists a line [ > y,
lnT2X # @ and INT?X 3 @, but INT2X # INT2X. Hence, T2XN(y, T2X) D
T2X N T2X and dim T?X N (y, TZX) > dim TZX NT2X = dimy X — 3. So,
dim TZX N (y, T2X) > dimy X — 2 and after the projection from (y, T2X) (to
P —dim, X~ ~2) one can get that the osculating space to the image has dimension
dimy X — (dimy X — 2) — 1 = 1; so the image is a line in PV —dimX-2 554
N =dimy X + 2 + 1 = dimy X + 3, which is not the case.

So, (y, T2X) N (y, T?X) = (y, T?X N T2X) and the subspace (y, T2X N
T2X ) contains (K), i. e. Tr2xnr2x (K) is a point. Varying y € X one can obtain
that dim 7w72xq725(X) = 1, and X sits in a cone with the vertex 72X N 72X
of dimension d1m2X — 3 over a certain curve C. If X C ConeM(Cl)
0 < dimM < dimpX — 3, then T?X = ConeM(szC), where j € C,
x € (M, j), and dimp, X = dim TXZX = dimM + 1 + 2 < dimy X, which is
impossible.

Lemma 2. Ifdim £ = 2, then dimy X =5, N = 9 and X = v3(P?).

Proof. Through a general point x € X there passes an one-dimensional sub-
family of «£. We saw, that all curves from this subfamily are components of
fibers under the projection 7 from 72X . Hence any fiber under this projection
contains x. Take now a general hyperplane H D T2?X. Then H N X con-
tains deg 7 (X) fibers, passing through x. So, the multiplicity i of H N X at
x is at least deg  (X). On the other hand, by Proposition 2, since H O T2X,
= 3;since H 4 T2X, u < 4. So, ,u_3anddeg7t(X) < =3. Smce
7(X) is irreducible and non- degenerate in PN~-4mX-1 "N _ dim, X — 1 > 3,
deg m(X) = 3, N = dim; X + 4. Moreover, for general K, K, € £ one has
K1 N Ky # @, and if x € K; N Ky, x is general for X, then after the projection
7 from T7X it appears that 7 (K ) and 7 (K>) are points on vs(P'). Hence, K|
and K, are linearly equivalent. Moreover, if H C PV is a hyperplane, H N X
is linearly equivalent to 3K, K € L.
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Now we prove the irreducibility of a general fiber of 7. Through the
point x there passes only one component of every fiber because of the same
multiplicity counting. Now, take all components, passing through x. The
closure of the variety swept out by them is 2-dimensional, so it is X. Hence,
a general point of X lies on a component, containing x, of the corresponding
fiber. So, such components are fibers themselves.

Show now that for a general point z € X the intersection TZX M X consists
of a finite number of points. Assume the opposite. Then T2X DC,C,isa
curve. One has 7(C,) C n(T2X NX) = T]TZ(Z)JT(X) N JT(X) = 7(z), because
7(X) = v3(PY). So, C, € n~1(n(z)). For a general point y e 7~ ((2)) N X
we also have C, ¢ 7w '(n(y)) = 7w (n(z)). Since X N 77} (n(2)) is a
curve, C, = C,. Varying x,z € X one can obtain that for general points
z,ye X, C, = C,. Put C = C, for general y € X. So, for general
points y,z € X, C C T}X, C C T}X and C C T;X N T}X. Since
dim 77X N 72X = dimy X — 3 and dim(C) > 1, after the projection 7 c,
one has dimp; X — 2 > dim T &) TC) (X)>dimy X — (dimp X —3) —1 = 2.
If dimy 7y (X) = 2, then C = mcy(X) is a curve and X C Conec)(C"),
dim (C) < dimy X — 3. In this case dim £ = 1, which is impossible. So,
dim2 T[(C)(X) = d1m2X -2 ;ﬁ 2. HCI’ICE, d1m2 X = 5 and d1m2 JI(C>(X) = 3.
Moreover, since dim 72X N 72X = 2 and dim (C) = 1, (C) # T} X N 12X
and T(C)(y)n y(X) N T(C)(Z)n(c)(X) #* (. Since dimTrw C)(X) = 3, by
Corollary 3, ¢y (X) = Cone,(C’) for a certain point p and a curve C’. Hence,
X c cone,,(cl) (p)(c'), dimmy(p) = 141 = 2. And again we obtain that
dim £ = 1, which is not the case. So, TZZZX N X for a general point z € X does
not contain curves.

The case dim, X = 4. X C P8, for general points x, y € X, dim 72X N
Tsz = 1, fibers under all projections from 72X for general x € X are
irreducible space curves (in general) and make a 2-dimensional linear system
Lon X.

Consider a general curve K € /£ and a general point ¢t € X \ K. Since KX is
not a fiber under rwy2y, 772y (K) = v3(PY). But dim(K) < 3, so, K = v3(P!).

Since 7 (X)'is a curve, dim TXZX N T,X = 0 for a general point y €
X. Consider the projection 7’ from 7,X. So, for a general point y € X,
dim T, XNT}?X = Oand 3 = dim 7’ (T7X) = dim Tz(y)yr (X) = dim, 7/ (X) =
dim T'n’ (X). Hence, by Corollary 3, 7/ (X) is a surface in P3, Cone,(C)orTC
for a certain point p and a certain curve C. Since dim(n’(X ) =8-2—-1=
5 > 2, 7/(X) cannot be a surface in P2, Moreover, for a general curve K € .£,
K>x, K =uv(P") and T, K C T, X. So, n/(K) is a line or a point. If 7/(K)
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is a point, then 7'(X) is a curve, deg 7/(X) = 5— 1+ 1 = 5. Arguing as
above, one can obtain that for any hyperplane H C 7,X the multiplicity of
H N X at x is not less than 5, but by Proposition 2 it should be equal to 2. So,
7'(X) is a surface and 7/(K) is a line. Moreover, the line 7/(K) contains the
point 7 (T Kyen (T2X ). So, m'(X) is swept out by one-dimensional family
of lines intersecting the line 7 (T2X ). If n/(X) = T'C, then this family of lines
has to be the family of tangent lines to C. So, all tangent lines to C intersect the
line JT’(szX ). Hence, C is a plane curve and 7n/(X) = TC is a plane, which
is impossible. Therefore, 7/(X) = Cone,(C). Consider the 3-dimensional
linear subspace L, = n’”l(p). One has 7, (X) = C is a curve. So, for any
hyperplane H O L, the multiplicity of H# N X at x is at least deg C. Since
dim(C) = 8 —3 — 1 = 4, deg C > 4. By Proposition 2, H D T?X. Therefore,
L, D T}X and dim3 X < dim L, = 3 < 4 = dim, X, which is impossible.

So, dim; X = 4 is not the case.

The case dimy X = 5. X C P, mr2x(X) is a twisted cubic, fibers under
the projections from 72X for general x € X are irreducible curves in P* (in
general) and make a 2-dimensional linear system .£ on X.

Consider a general curve K and a general point t € X \ K. Since K is not
a fiber under w72y, w2y (K) = v3(PY). So dim(K) > 3, and dim(K) is equal
to 3 or 4. Consider these cases.

The case dim(K) = 4. Put (K) N T?X = pg, pg is a point. Then
o (K) = mrax(K) = m2x(X) is a twisted cubic. For a general point
yeK, m, (7 () = (pk, y) and 7, (7, () = (K) N TrTz (g (y)) =
(K) N (K, TPX) D (K) N (K}), where K| € £, Ky 3 y is the corresponding
fiber under the projection from 7,>X. So, for two (general in £) curves K
and K, the linear subspaces (K) and (K,) intersect each other at most by a
line. Moreover, K N (px,y) C X N (pg,y) = X N (K) N (K}, T2X)) C
X0 (K, T?X) = K; U(XNT?X). So, Ky D ({px,y) N K)\ T2X.

Assume that px € K. So, px € X and pg € T2X N X. As we saw above,
T2X N X does not contain curves. Hence, p, = px does not depend on K and
depends only on 7. Since for a general point t € X, p, C (K)N(K;) for general
curves K, K| € £, there exists a line / C P such that [ 5 p, for a general point
t e Xorp = p; doesnotdepend on ¢ € X. In the first case after the projection 7,
from [ one has for general K, K, € .£ the intersection 7;(K) N7;(K;) cannot be
empty, and dim(K') N (K;) = dim Cone;({m;(K)) N (7 (K)))) > 14+14+0 =2,
which is not the case. If p = p, does not depend on ¢, then 7*X 3 p and after
the projection 7, : P9 — — > P8 one has dim, ,(X) =dimT (I)(er(X)) =
dim n,,(T X) =4 and nTz (,,I)(X))(NP(X)) = nTzX(X) is a twisted cubic. As
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we saw above in the case dim, X = 4, this is impossible.

So, px ¢ K and K, D Upk,y) ﬂK)\T2X = (pk,y) N K. Also
since 7, (K) = v3(PY), npK (o (M) N K = (pg,y) N K contains at least 2
different points for a general point y € K. Hence, (K) N (K;) = (K N K 1) 18
a line. Moreover, K and K are fibers under the projection from TzX because

y € Ky, y € K. Two fibers can intersect only in the points of T2X N X, which
does not contain curves, and if K, € £ is another fiber under thls projection,
then KN KN K, = KNKj,ie. theset K; N K depend only on y € K N K.

Hence if we vary ¢ € X, the fibers of the projection Ty 0 K — = = uy(P)

remain the same and T,ZX 3 pk. Take 4 general curves K, K3, K3, K4 € £ and
consider the lines (K; N K5) and (K3 N K4). Take a curve Ks € L, containing a
point from KN K, and a point from K3NKy. So, Ks D K |NKy, Ks D K3NK,
and the lines (K| N K,) and (K3 N K4) meet at Pk, Hence, we have a family
of lines meeting each other. Since X ¢ P2, the point px does not depend on
K e L. Put p = pyx. Again after taking the projection m, from that point
p we obtain that dim, 7,(X) = dim T [(I)er(X) = dimn,(7?X) = 4 and
Ty ()(”P(X))(YKP(X)) = T2y (X) is a twisted cubic. As we saw above in the

case dim; X = 4, this is impossible.

So, dim(K) = 4 is not the case.

If dim(K) = 3, then K = v3(P!). Also, JTIZXIK is an isomorphism, and
#K N Ky = #(K) N (K;) = 1, where K| € £ is a general fiber of T2y, and
the corresponding intersection is transverse. More, if we vary curves K and K Is
the point K N K will also vary. Take two general curves K, K, € £ and put
M = (K, K;). Then dimM = dim(K;) + dim(K,) — dim((K;) N (K;)) =
343~ 0 = 6. Consider the projection 7y, : P9 - — > p2 from M. For a
general curve K € £, dimM N (K) > 1. So, m(K) is a point or a line. In the
first case also 7 (X) = 7y (K) is a point, which is not the case. Hence, Ty (K)
is a line. Since my (X) is non-degenerate, 3 (X) = P2, Moreover, since for
a general hyperplane H C IP° the section H N X is linearly equivalent to 3K
and my (K) is a line, JTM is defined by a linear system of cubics on P%. But

dim HO(P?, Op2(3)) = (2) = 10 and we need (7, LP?)) = PO. Therefore,
n;,l is defined by the complete linear system of cubics on P? and X = v3(P?).
O

9.2. dimm(X) = 2. In this case dimy, X = 4, N > 9, for general points
x,ye€X,dmT?X NTX =0, dim T} ,m(X) =3.

Proposition 10. If dim 7 (X) = 2, then one of the following conditions holds:
(1) X C Coner(C), where L is a plane, C is a curve (N >dim L + 7);
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(2) X C Cone,(TK), where p is a point, K is a curve (N > dim p + 9).
Proof. Start our proof by the following lemma.

Lemma 3.

() If Ap e PV, szX > p for general x € X, then X C Cone,(TC) for a
certain curve C.

(2) If 3L C PV, L is a plane, dim TX2X N L > 1 for general x € X, then
X C Coner(C) for a certain curve C.

(3) 1t is not the case that there exists a linear space M C PN, dimM < 6,
such that for general x € X, dimM NT?X > 2.

Proof.

1. After the projection from p one has for a general point x € X,
dim Tffp(x)np(X) = dimnP(TfX) = 3. Hence by Corollary 3, p(X) is a
surface in IP3, Cone,(C) for a certain point ¢ and a certain curve C, or TC
for a certain curve C. In the first case N = 4, which is not the case. In
the second case 72X always contains the line np“l(q), so for general y € X,
dim 72X N T}X > 1, which is not the case. So, 7,(X) is 7C, and X C
Cone,(TC).

2. After the projection from L one has for a general point x € X,
dim T,,ZL(X)”L(X) = dimer(szX) = 2. Hence, 7, (X) is a plane or a curve
C. In the first case N = 5, which is not the case. So, 7, (X) is C, and
X C Conep(C).

3. After the projection from M one has for a general point x € X,
dim T”ZM(X)JTM(X) = dimnM(szX) = 1. Hence, my(X) is a line. In this
case N < 8, which is not the case. O

By construction, 7 (X) is a non-degenerate surface in PV —dim X-1 _ pN-5
N—-5>9-5=4, So,dmTn(X) > 2. But3 = dianz(y)n(X) >
dim 7' (X). Therefore dim 7w (X) = 3. By Corollary 3, 7 (X) is a surface
in P3, Cone,(C) or TC. Since m(X) is non-degenerate, 7 (X) cannot be a
surface in P°. So, w(X) has the following property: it is swept out by an
one-dimensional family of lines [,, « € R, € G,(1, N — 5), dimR, = 1,
and for a general point z € [, one has T, (X) = Td‘, Tzzzr(X) = Taz, where
T}, T? C PN~ are certain spaces non dependent on the position of z inside /,,
dim7) =2, dim7? = 3.

Take the preimage of one such line: K = X N (w~1(l,) \ T2X) for a
general point o € Ry, K C 7 NT?), dimz~1(T?) = 8. Take a general
point z € K C X. Then n~'(I}) = (T?X, T2X). Consider the projection
' = mrz2x. Then ' ((T?X, TZZX)) = 7' (T*X) = Tf;Z for some B € R, C
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G,(1, N —5).So,if K ¢ Tsz, then 7/(K) = lg. So, we need to consider two
cases: K ¢ T?X and K C T2X.

The case K ¢ T7X. We have at most 2-dimensional family £ of
preimages of such lines under all projections from 7,2X, ¢ is a general point
in X.

If dimL = 2, take a general point y € X and consider the preimage
K = XN (w='(,) \ T2X) for I, > 7 (y). Suppose z € K is a general point.
Since 7 (T}X) = T} and codim [, in T2 is equal to 2, dim 72X N (K) <
dim 72X Nmw~'(l,) =2. K isnota plane curve or a line because K 7 T*X
and dim T?K = 2. Since T?X N (K) D T2K, dim 72X N (K) = 2 and
T?X N JT"’(Z ) = T?K. We saw that JTT2X(K) is a line. So, dim(K) = 4.
Take now Tx = UZGKnSmOO,h(X)TX C n"l(T ). Since codim 7.! in 7.2 is
equal to 1, dim T2X Al JT_I(T ) = 3. More, for a general point ¢ € T,X one
has 72X N Jr“'(T ) C T,Tk. Since dimT?X Nz NT)) = 3 = dim Tk,
T2X ﬂ aNThH = T,Tx. Consider now the projection 7" = Tr2g. Since
dim(K) = 4, dim7’K N T?K = 0. Since 72K = T2X N '(ly) C
T’X Na NT) = T,Tk, dimT}K N T,Tx > 0. Hence, dimn"(Tx) =
dlmn”(T Tx) =dimT, Ty — 1 — dlmT KNT, Ty <2. Since dimn”(X) >
dim Tr2x (X) = 2 and y and z are general points in X (it is possible to make
points y, z € X general, because dim £ = 2), dim 7" (X) = dimn"(7,X) = 2
and dim7”(7T,X) = dim7"(Tx). Hence, n”(T,X) = 7" (Tx) and the subspace
M=gx"" l(yr”(TK)) of dimension 5 has the following properties: Tx C M, i.e.
for a general point z € K one has 7,X C M; dim TzXﬂM =dimT,TXNM >
dim7,;Tx "M = dimTx = 3. Hence, dim T2X N'M > 3 too. Therefore,
dimz2x(M) < 1, and dim n7 25 (T X) < 1, Wthh is not the case because
y,Z€ X are general.

So, dim«£ = 1, and for a general point t € X we have TtZX N (K)
has codimension 2 in (K). Since for general y € X, dim 72X N TyZX = 0,
dim(K) < 4. If dim(K) = 4, then dim7>X N (K) = 2, and by Lemma
3 this is impossible. If dim(K) = 3, then we obtain a family of lines of
type 77X N (K). If for general ¢,y € X one has T2X N T?X ¢ (K), then
dim(K, T2X) N T2X > 2, which is impossible by Lemma 3. If for general #, y
one has T2X N Tsz € (K), then all lines of type 7>X N (K) pass through a
certain point p € PY orlie in a plane L C PY. By Lemma 3, X C Cone,(TC)
or X C Coner(C).

IfdimL =1 and dim(K) < 2,then K C TZZX for a general z € K, which
is not the case.

The case K C T7X. Since 72X N T2X is a point and 72y (K) is a line,
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dim(K) < 2. If dim(K) = 2, then (K) D T?X N T?X. Take K| C T?X N X,
which is the preimage of the corresponding line under the projection my2y.
K # K, because K C T?X, K; C T2X and dim 72X N T2X = 0. We
also have dim(K) = 2 and (K;) D szX N TZZX. So, (K) N (K,) # ¥ and we
have a family of planes, intersecting each other. Then (see e.g. [8]) these planes
either lie in P’, either intersect one fixed plane L by lines or pass through one
point p. By Lemma 3 X C Cone,(TC) or X C Cone(C).

If dim(K) = 1, then X is swept out by one-dimensional family of lines
R Cc G(1,N).

Lemma 4. If X C PV is swept out by one-dimensional SJamily of lines,
dim 72X N Tsz = 0 for general points x,y € X and N > 9, then either
X C Cone,(TC) or X C Coner(C) where p € PN is a point, L PN isa
plane, C is a curve.

Proof. For general « € R put 7, = Uzel,nsmooth(x)T; X 1s a linear space,
2 <dim7, < 3. If dim7, = 2, then dm7TX < 24+ 1 = 3, which is
not the case. So, dim7, = 3. Since for a general point y € R, one has Ty1
is a plane and T),l = n(T,) for some a € R, szX NT, # @. Now take a
general point o € R and consider the projection from 7, to PY~*. Then again
by Corollary 3, 77, (X) is a surface in P3, C one,(K), or T K for a certain point
g € PV~* and a certain curve K. Since N > 9, then the first is not the case. In
all other cases again for a general line / € 77, (X) and for general points s, €1,
Iimr, (X) = Tymr,(X). So, for general B € R, dimmr, (Tg) = 2. Hence, for
general o, B € R, T, N Tp # . Knowing that consider again the projection 77, .

If 77, (X) = TK, then w7, (Tp) is a osculating plane to K of order 2 for
general 8 € R. For general y € R, dim T, (1p) (70, (1)) = dimy Trg, (T5) (K) =
min{2, dim 70, (7, (77, (PV)} =min{2, (N -3—-1)—2—1} = min{2, N — 7}
by Proposition 4. Since N > 9, dim Ty, (1) (7T, (1)) = 2 = dimmnyg, (T,).
Hence, 7, (Tp) N7y, (T,) = @. Since Ty NT, # @, TN T, C T,. So, there
exists a point p € PV such that for general « € R and general z € [, one has
TZZX D T,>p. By Lemma 3, X C Cone,(TC) for a certain curve C.

If w7, (X) = Cone,(K) then for general 8 € R, m7,(T) o q. Hence,
after projection from g one has m (77, (X)) = K and ey, (Tg)) is a
tangent line to K. Since dim(K) = (N -3 —-1)—~1 = N —5 > 4, for
general B,y € R, m,(nr, (Tp)) N ny(mr, (T,)) = B. But T N 7T, # @. So,
(Tg N7y, 1(q)) N, N Ty, l(q)) # (), and we have an one-dimensional family
of lines (T N T, 1(q)), B € R, intersecting each other. Hence, either there
exists a point p € PV such that for general 8 € R, p € Ty or there exists a
plane L C P¥ such that for general B € R, dimL N Tg = 1. By Lemma
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3, in the first case X C Cone,(TC), in the second case X C Conep (C). If
X C Cone,(TC), then 7, (X) = TK for a certain curve K, which is not the
case. So, X C Coner(C). O

10. Proof of Theorem 3, the case dim7X =4, h > 1.

Lemma 5. Suppose that X is non-degenerate, T X is not-1-defective, h > 2
and for a general point p € TX one has JITPTX(X) C Coner(TC) C PM,
where C is a curve, dimL < h —2, Ny > dim L +4h + 1, 7. (7wr,rx (X)) =
TC. Then X C Coney(TK) C IPN, K is a curve, dimM < h — 1,
N >dimM +4h + 5, ny(X) =

Proof. Since nr,rx(X) C Cone (TC) c PN, for a general point x € X
one has L N T? x0T rx(X) # @. So, JTTTX(L) N T2X # @. Denote

Ty TX(L) by L,. For another general point g € T'X take also L, = T, TX(L)

for the corresponding L. Then also L, N T2X +# ¢ for general x € X,
dimL, = dimL,. More, dmL, = d1mL+5 N =N +5 >dmL +
4h + 6 Since dirnytL (T,TX) = dim Ir, T, (X) = dimTm,, (X) =

dim 7' (r, (7, rx(X)) =dimT(TC) = d1mT2C =3, L,NT,TX # @. Also
L, ﬂTTX#Q) and since L, D T,T X, L, :)TTXandTTXﬁTTX ]
(TX is not-1-defective), one has dlmL DL > 1. As we saw above, 7y (X) =

TC. If for general x € X, szXﬂLq A Lp, then 7p,(Lg) N T L, (x)ytLP(X) % .
But 72 )7Ly (X) = TC, where y € C is a point for which 7, (x) € T, C. So,

L, (Lq)ﬂT3C # ) for general y € C. Therefore dimjs Ty, (L, y(€C) < 2. Hence,
by Proposmon 4, dlm(n,,, (L, y(©)) < 2. So, dlan (Lg ) > (N —dimL,

1)—3> (d1mL+4h+6) (dmL +5)—1 ——3 = 4h — 3. Ontheother
hand, dim 7y, (L,;) = dim L, —dimL,NL,—1<(dmL+5)—-1-1=%
(h —2+5 -2 =h+1. So, wehave4h—3 < h+1,0orh < %,
which is not the case. Therefore, for general x € X, T?2X N L, C L,.
So, if we take M = L, N Ly, then dimmy (T2X) = dimm, (T?X) =
dim 7?2 )L, (X) = dimpTC = 3, and dlmT (x):’Z’M(X) = 3. Hence,

7Ly (x
by Corollary 3, my(X) is a surface in P3 or Cone,(K) or TK, where K is
a curve. Since 7y, ) (@u(X)) = TC, ay(X) = TK for a certain curve
K. Let us calculate the dimension of M. Since L, D T,TX, 7y, (Ly) D
Tryy iy T7L, (X) = Txy, @T?C, and dimmy (Lg) > dim T2c = 3. So,
dim M <dimL,-3—1= (dimL+5)—-3-1=dimL+1 <h-2+1=h—-1;
dexmL+4h+6_>_(dlmM—l)+4h+6_d1mM+4h+5 O

WIn

Lemma 6. Suppose that X is non-degenerate, T X is not-1-defective, h > 2
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and for a general point p € TX one has nr,rx(X) C Coner(C) C PN,
where C is a curve, dimL < 2h — 2, N; > dimL + 3h + 1. Then
X C Coney(K) C PN, K isacurve, dimM < 2h, N > dim M + 3k + 4.

Proof. Since 7 (mr,rx(X)) = C, for a general point x € X one has L N
an )T, Tx(X) # B. So, T (L) N T2X # @. Denote T by (L) by
Lp. For another general point ¢ € TX take also L, = Tr, rx (L) for the

correspanding L. Then also L, N T2X # @ for general x € X, dimL, =
dim L,. More, dimL, = dimL +5 N = Ny, +5 > dimL + 3k +
1 +5 =dimL + 3k + 6. Since dimrm, (7,TX) = dim TﬂL @ T, (X) =
dim Tny,(X) = dim T(er(nT rx (X)) =dimTC = 2, dlmL NT,TX = 1.
Also d1mL NT,TX = 1, and since L, D ,7TX, L, D TTX and
I,TXNT, TX = @ (T X is not-1- defective) one has dimL NL, > 3. As
we saw above 7, (X) = C. If for general x € X, T2X ﬂ L, gZ L,, then
my,(Ly) N T2 v, (X) # @. But T? 7L, (X) = T}C, where y e C,

7L, (X 7L, (x
y = m,(x). So, m,(Ly) N T2C # ) for general y € C. Therefore
dim, T, (L(/)(C) 1. Hence by Proposmon 4, dlm(nn w)(C)) = 1. So,
dimmy, (L)>(N dim L, —1)-—2>(d1mL+3h+6) (dimL + 5) —
1 —2 = 3k ~2. On the other hand, dimn,, (L;) = dimL, — dimL, N
L,—1<dmL+4+5-3-1<2h-2+5-3—-1 = 2h—1. So,
we have 3h — 2 < 2h — 1, or h < 1, which is not the case. Therefore,
for general x € X, T2 X N L, C L,. So, if we take M = L, N L,, then
dimmy (T2X) = dlan (TZX) d1mT o7TL, (X) = d1m2C = 2, and

dim Tn wm(X) = 2. Hence, my(X) = K is a curve. Let us calculate
the dlmensmn of M. Since L, D T,TX, 7, (Lg) D T,,L @Tm,(X) =
T, TC, and dimmy (Lg) > dlmTC =2, So dimM < dlmL -2—-1=
d1mL+5 2—~1=<2h—-245-2—1 =2h. Attheend, N > d1mL+3h+6 >

dmM—-5+2+1)+3h+6=dimM + 3h + 4. O

Proposition 11. Suppose that for a non-degenerate surface X C PV the h-
defect 6,(T X) > 0, h = 2. Then one of the following conditions holds:

(1) X C Coney(TC), where L. c PV is g linear subspace, dimL <h — 1, C
isacurve, N > dimL + 4h + 5, n; (X) =

(2) X C Coner(C), where L C PV is a linear subspace, dim L < 2h, C is a
curve, N > dim L + 3h + 4.

Proof. Take general points x, ..., x, € X, po, ..., pp € T X such that Vi, 0 <
i <h,p CT.,X,q € (po,...,ph 1) 9 €{(q1, pr). By the Terracini lemma
TqSh(TX) =(TpTX,...,T,, TX), T, Sh-YTX) = (T, TX, ..., T, TX).
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The case §;(7X) > 0. By the proved part of Theorem 3 (the case & = 1)
either X = v3(P?), either X C Cone,(TC) (wy(X) = TC, X # TK) or
X C Coner(C),dimL < 2.

If X =u3(P?) c PPthenVh > 1, SH(TX) =P, 6,(TX) =0.

If X C Cone,(TC), mp(X)=TC, X # TK,then TX = Cone,)(T C).
Hence, S*(TX) = Cone,(S"(T*C)). Since C < P!, by Theorem 1,
dim S*(T?C) = min{N — 1,dimT?C - (h + 1) + h} = min{N —1,4h + 3}
and dim S*(TX) = min{N — 1,4h +3} + 1 = min{N, 44 + 4}. Therefore
Sp(TX) = min{N, 5Sh + 4} —min{N, 4h + 4} and §,(TX) > Oiff N > 4h + 4,
i.e. N >4h+5=dim{p} +4h +5.

- It X C Coner(C), dimL < 2, then for a general point p € TX,
dm7,TXNL = 1 [dimnx (T,TX) = dim Ty, (,,TC = 2). fdimL = 0
then dim7X = 3, which is not possible. If dimL = 1 then 7,7X D L, we
will consider this case next. If dim L = 2 and for general points pg, p; € T X,
L #(LNT,, TX,LNT, TX),then M = LNT,T X does notdependon pe T X
and X C Coney (K) for a certain curve K, put L = M. So, we can assume that
L= (LNT,TX,LNT,TX). Therefore in any case for h > 1,7, SMTX) =
(T, TX,. T,,, TX) D L. Hence, T, SMTX) = nL (ﬂL(<Tp0TX
T,,hTX))) =, ¢ Tr, o TC, ..., nL(,,,)TC)) =, (T,,L(q)Sh(TC)) Smce
dim(C) = N —dim L — 1 by Theorem 1, dim T,,L(q)S (TC) =dim SM(TC) =
min{N — dimL — 1 2(h + 1)+ h} = min{N —dimL — 1,3k + 2} and
dim S"(TX) = dim7m; (T, (hS"(TC)) = dimL + 1 + mm{N —dimL —
1,3h + 2} = mm{N dimL + 32 + 3}. So, §,(T'X) = min{N,5h +
4} — dim TqSh(TX) = min{N, 5h + 4} — min{N, dim L + 3k + 3}. Since
dmL+3h+3 <"+ 1)+3h+3=4h+4 < 5h+4, §,(TX) > 0iff
N >dmL+3h+3,i.e. N>dimL + 3h + 4.

The case §;(TX) = 0. If d\(TX) > O then N = dim S} (T X). Hence
PY = SN (T'X) = S"(T'X), which is not the case because §,(TX) > 0. So,
d(TX) = 0. Then by Proposition 1 for Y = 7X, m = 1 and a point p € T X,
Sh—1(Trr,rx (X)) = p(T'X) > 0.

Let us use an induction on 4. Suppose that 2 = 2. Then §, (Trr,rx(X)) >
0. By the proved part of Theorem 3 (the case 4 = 1) either TnT rx(X) =
v3(P?), either Trr,rx(X) C Cone,(TC) (wp (T, rx(X))=TC, TT[T x(X)
# T K) other Trr,rx(X) C Cone (C),dimL < 2.

If nr,rx(X) = v3(P?) then dlmzm 7x(X) = 5. Hence, dimy(X) = 5.
By Theorem 2, T,S*(T X) contains T2 X for 0 SI<2UTZXNTIX =9,
then after the projection m from (TZX T?X) we have d1m7r(Tx20(X)) =

> S xy

dim 7, S*(TX) — dim(T2X, T2 X) — 1 = min{N,5 - 2 + 4} — 6,(TX) —

L

11 = 1 = min{N — 12,2} — 6,(TX) < 1. Therefore dim Tz(x)(n(X)) <
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I, and n(X) = (X)) = 2(x0)(7r(X))- So, PN — 71"1((7[(X))) _
7 Ty (T(X)) = (TRX, T2X, T2X) = T,5%(T'X) and SXTX) = PV,

But this is not the case because §,(TX) > 0. Hence, T2X N T2X #* 0
and T2X N T2X # () for general points x,y € X. Take p € T, X Since

dim an rx(y)(”TpTX(X)) =5, Tsz NT,TX = @. Therefore, my rx(T2X),
which is a point, belongs to 7z, TX(TzX) = Tfr ) TT,rx(X). So, for a

general point y € X, mp7x(T2X) € T? yTr,rx (X). But if mp7x(X) is

7,7 (¥
v3(%), this is not so.

If w7,7x(X) C Cone,(TC), dim(zy 7x(X)) = dim{p} +4-1+5 =9,
7,(X) = TC, then by Lemma 5 applied to # = 2, X C Coney(TK),
N >dmM+4-2+5,dmM <2—-1,7y(X)=TK, K is a curve.

If nr,rx(X) C Coner(C), dimL < 2 = 2.1, dim(zr,rx(X)) >
dim L+7, then by Lemma 6 applied to & = 2, X C Coney (K), dlmM <2. 2
N >dimM +3-2+44, K is a curve.

So, the statement is proved for & = 2.

In the case 2 > 2 Lemmas 5 and 6 give the proof of the step from z—1to .
d

11. Proof of Corollary 5.

To prove Corollary 5 one should notice that by definition 7 X is A -defective
iff 8,(TX) > 0 and not 6,_;(T'X) > 0, apply Theorem 3 and Proposition 8.
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