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ON THE TRANSVERSALITY OF RESTRICTED
LINEAR SYSTEMS

ANITA BUCKLEY - MARINA ZOMPATORI

In this paper we prove a generalization of the Transversality Lemma
first proved by Hirschowitz [5] and later by Ciliberto and Miranda [1]. We
plan to use this lemma to calculate the dimensions of linear systems of
plane curves with homogeneous vanishing conditions, using a degeneration
technique developed by Ciliberto and Miranda!.

Introduction.

In order to study linear systems of plane curves of the type £L;(m"),
i.e. systems of plane curves of degree d going through n points in general
position with multiplicity at least m at every point, it is often useful to consider
degenerations of the plane itself, of the bundle ¥(d) and of the position of the
points. One possible approach is to degenerate the plane by blowing up general
points on the central fiber of P? x A, where A is a disc centered at the origin
as follows.

Consider V. = P? x A and its projections p; : V — A and
p2 i V. — P2, Denote V, = P? x {t}. Consider n general points in the plane V,
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and blow V up at these points. We get a new threefold X equipped with maps
f:X—=V,andw = piof:X — A, which gives a flat family of surfaces
over A. If we denote by X, the fiber of 7 over t € A, then for ¢ # 0, X, is
just a plane P2, whereas X, consists of the proper transform of Vj, which we
denote by Y, and of n copies of P2, The n disjoint copies of P? are the excep-
tional divisors and each of them intersects Y along an exceptional line. Using
this degeneration with an appropriate degeneration of the line bundle o(d), we
see then that the system we want to study is now obtained by glueing together
curves from the different P?s and curves from Y.

To understand the dimension of the resulting system, which will be a
specialization of £, (m"), we need to calculate the dimension of the intersection
of linear systems on Y and the systems on the planes.

If we think about the vector spaces of polynomials whose projectivizations
give the systems of curves described above, the problem becomes then finding
the dimension of the intersection of a vector space W, which in our application
corresponds to the restriction of curves on ¥ onto the exceptional lines, with
a sum of vector spaces U, @ ... @ U,, where each U; is the restriction onto
exceptional line E; of the system on the corresponding P2. This intersection
takes place in V; @ ... @ V,, where the projectivization of each V; is the linear
system of divisors of some degree k on P!,

In our application, all the copies of P2 in X, are obtained as exceptional
divisors from blow-ups at points in general position. In this setting, monodromy
considerations give us symmetry conditions on the space W, which, in a more
general case, have to be assumed.

We need the notion of transversal intersection, which we now define.

Definition 1. Suppose Vi, V, are two subspaces of a vector space V. Then
we say that Vy and V, intersect transversally if either dim(Vy N V) = 0 or
dim(V; N V,) = dim(V}) + dim(V;) — dim(V).

Hirschowitz [5] and later Ciliberto and Miranda [1] proved the following
result known as The Transversality Lemma.

Proposition 2. Let G = GL(2, C) be the automorphism group of C%. Let V be
the vector space whose projectivization is the linear system of divisors of degree
k on P'. Note that G acts naturally on V, and on linear subspaces of V of
any dimension. Then for any two linear subspaces W and U of V there is an
element g € G such that W meets gU transversally.

The purpose of this paper is to generalize the above result to an arbitrary
number of vector spaces using an inductive argument.
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Let Vi, fori = 1, ..., n be isomorphic vector spaces whose projectiviza-
tion is the linear system of divisors of degree k, and for each i let U; be a sub-
space of V;. The same group G = GL(2, C) is acting on every V;. Consider a
vector space W which is a subspace of V; @ ... @ V, andlet p; : W — V, be
the projection map to each component. The situation is shown in the following
diagram of vector spaces:

Ul @ U2. DD Un—l ©® Un

(&) N n n N
W < Vi &@ V, & Vo1 & V,
Our aim is to find elements g, ..., g, € G such that W and g U, & ... & g, U,

meet transversally in V; @...@ V,. This will not be possible for general W, U;
and V;. The result will hold if the vector spaces satisfy a quasi-symmetric
condition which we now define.

Definition 3. The diagram (®) is quasi-symmetric if it satisfies the following

two properties:
(a) if there exist an integer r, 1 <r < n, and elements gy, ..., g in G such
that
(Pl, ey pr)W N (glU] S...0 grUr) = {0}
then there exist g, ..., g, in G such that
P, prD)WN U ... D g, Uyt =1{0)
as well;
(b) suppose that for 1 < r < n, there is an r-tuple of elements gy, ..., g such
that the intersection
(p],---’pr)Wm(glUl ®-‘-®grUr)

is transversal and nontrivial. Define

W' = (p1eo p) 1 POW N (81U @ .. @ g, U]
and assume that for some g, the intersection
priatW N g 1Uppy = {0)
then there exist g1, ..., g, in G such that

P, )W N QU ... ® g Uryr) = {0}
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1. Proof of Transversality Lemma for any n.

Theorem 4. If the diagram (#) satisfies the quasi-symmetric condition, then
there exist elements g\, . .., g, € G such that W and

glUI ®"'®gnUn

meet transversally in Vi@ ... @ V,.

The aim of this section is to prove the Theorem 4. We prove it using
induction on n. The case n = 1 is given by the Proposition 2. Its proof can
be found in [1] on page 199.

Assume that the statement holds for n — 1. If
(P1s o PadOW N (UL @ ... ® gy Un—y) = (0},
then by condition (a) the intersection of
W withg U &...® g U,

for some g ..., g, € G, is also {0}. In this case we get transversal intersection.
Next define ‘ ’

Wi=(p1, s 2a) 7 (P1s PaDW N QU @ . @ gy Uy .
Note that W; equals
WNgUi®.. @ g 1Up 1 ®V,) =
{(vi,...,0)eW |vegUVi= l,...,n—1}.
Its dimension is given by the following formula,
(1) dim W, =

dim(kef(Pl, ey pn—l)) + dlm((l’la v pn—I)W N glUl D...0 gn»lUn—l)-

By applying the Transversality Lemma for n = 1, (Proposition 2), to p,(W))
and U,, subspaces of V,,, we can find an element g, € G such that pn (W) and
8nU, meet transversally. Suppose they meet trivially, then by condition (b) there
exist g1, ..., g € G such that
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So in the case p, (W) N g, U, = {0}, we again get the desired transversality.

The only case we still need to analyze is when the above transversal
intersections are non trivial.
Define
W2 = (pulw) ™ (P (W) N g, Uy)
which equals to WN(g,U;®...®g,U,). Its dimension is given by the following
expression,

2 dim W, = dim ker(Pnlw,) + dim(p, (W) N 8nUn).

Observe also that dim(W N (g,U, @ ... ® g,U,)) = dim W,. By transversality
in the case n = 1, having already examined the case of trivial intersection, we
have
dim(p,(W,) N g,U,) = dim p,(W;) + dim U, — dim V,,.
By formula (2), we get the following identity,
dim(W,) = dim ker(py|w,) + dim(p,(W))) + dim(U,) — dim(V,).
Now note that dim (ker(p,|w,)) + dim(p,(W;)) = dim W;. Therefore
dim W, = dim W; + dim U, — dim V,,. By formula (1), we derive the following
expression for dim W,,
dmW, = dim ker(py,...p,_1)
+dim((p1, ... pa-)W) N g1U1 @ ... & gn1Up—y)
+dim U,, — dim(V,,).
Since we have already considered the case
(PI, e pn—l)W N (glUl D...PH gn—lUn—-l) = {O}’
we can now assume that this intersection is not zero and apply the transversality
lemma in case n — 1. This gives

dim ker(py, ... pp—1) +dim(py, ... pp_i)
+ dmU; +...+dimU, —dimV; — ... —dim V,,.

Finally, dimker(py, ... ps—1) + dim(py, ... pp—1)(W) add up to dim(W) and
the expression above reduces to

W)

dmW +dimU, +...dimU, —dimV; — ... —dim V,,.
We have dim(W N (g1U; @ ... ® g,U,)) = dim W, and is therefore equal to
dimW +dimU; +...dimU, —dimV, — ... —dim V,,.

This implies that the two spaces W and g, U, ®. . .® g, U, intersect transversally-
inV; @...® V,, which completes the proof. O
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2. Application to systems of plane curves..

As we described in the Introduction and more precisely in [7], we need
the generalized transversality lemma in order to study the dimension of linear
systems of plane curves of some degree with base points of equal multiplicity.

By a degeneration of the plane and of the linear system itself, as explained
in [7], we get the following diagram of vector spaces.

L (m™) ® L (m™) R < Ly(m"™)

Li(k") —" HOOp, (k) © H'On(k) @---© HOO, k).

Here L (m") is the linear system of plane curves of degree k with n, generic
base points all of multiplicity m and similarly L, (k™) denotes the linear system
of plane curves of degree d with n; base points in general position all having
the same multiplicity k.

This is how these systems arise in the application we are interested in:
the environment we’re in consists of the union of a variety Y, obtained as the
proper transform of the plane blown up at n; generic points, and n; copies of the
projective plane IP;, obtained as exceptional divisors in our construction. Each
IP; intersects Y along a line E;. We not only degenerate the plane but also the
bundle Op:(d), by pulling it back to the variety obtained by blowing up and
twisting by O(kY). The system whose dimension we want to compute contains
exactly the curves that are deformations of plane curves in L, (m™"?). It is given
as a fibered product of the systems L;(m") on P; and the system Ly (k") on
Y. The restrictions of these systems to the lines E; gives divisors of degree k on
the line. In other words, the system is obtained by “pasting” together the system
from Y and the systems from the planes P; along the lines E;. Details about
this construction, which is a degeneration technique introduced by C. Ciliberto
and R. Miranda in order to study systems of plane curves, can be found in [7].

By restricting to exceptional lines E; we therefore get the following
diagram

Uy @ U, @ Uy, & U,
N N n n,
W V1 (%) V2 H--- &b Vn,—l ) V,,_I

on which we want to use the transversality lemma.
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3. Systems of plane curves satisfy quasi-symmet}ic condition.

Our goal is to apply the transversality lemma to the above diagram. We
need to show that it satisfies the quasi-symmetric condition.

Note that for a general number of points in P2, there exists no automor-
phism on P? permuting these points. In order to get the symmetric group action,
we need to enlarge our ambient set-up and use monodromy.

Consider the product of n; copies of the plane, P> x ... x P?, and its
subset D := {(xy,...,x,,) | 31 <i < j < ny such that x; = x;}. Then denote
B=P*x...xP)\D.

Next consider the product B x P? x A, where A is a disc centered at the
origin. Such product comes equipped with a projection to B which has sections
01y« 0p,y.

We blow up B x P? x A along these sections and thus obtain the space
X. Such space comes naturally with projection 7r; : XX — A. Consider
Xo :=m, 1(0), a reducible scheme that consists of the exceptional subschemes

P1, ..., Pu, and of Y, which is the direct transform of B x P2 x {0}.
YUI' P = Xo C X —2 s A
blow-up
f BxP’x A
B = B

Also denote by &;, the bundle »; N Y.

Remark. Note that the fiber over each b € B is the same construction we
describe in [7], where we just take P x A and blow it up at n; points in the
central fiber. In the same construction, we also need to degenerate the bundle
Op2(d), by pulling it back to the three-fold obtained by blowing up and twisting
it with O(Y). We proceed in a similar way now in our more general situation.

Let 7 be the natural map n : X — P2,
Let ¥ be the following sheaf on X,

F =1"0p(d) @ Ox(kY).

If we restrict ¥ to the central fiber Xy, we obtain a sheaf F(d, k) such that
F ly= Oy(dn*L — Z:’;l k&) and F |p= Op (k).
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Denote by f the map from Xy to B and consider the following sheaves on
B,

W= fulF (d, k) Iy, Ui = fuF(d k) |p and Vi i= f,F(d, k) |g .
Our situation is now described by the following diagram of bundles over B,

u[ @ uz @"'@ uiﬂ—l @ ull|

TR

W'——C—> vl @ rV2 D---D vnl—l @ vn]

where r, r; are restrictions to &;.
The global sections of these sheaves over b € B are,

Wy = HO(Yy, Odn*L = Y kE;p)), Vip == H(E;, Opity)

and
Uiy = HO(P,y, Op2(k)),

where we also require that the sections in U;; vanish with multiplicity m at
each of n, generically chosen points.

Here Y,, E;; and P;;, are the fibers over b € B of ¥, & and %
respectively. Note from the construction that Y, is the proper transform of
the plane blown up at n; generic points, and P;, is a projective plane which
intersects Y, along a projective line E;;,. Using the terminology of linear
systems this can be expressed as

Wy = La(k™), Vip = H%(O, (k) and U; , = Ly (m™).

So over each b € B, we have the construction that arises in diagram () on page
6.

Recall that we want to calculate the dimension of the intersection in
P} Vip. Restricting to E; , leaves us with the following inclusions:

Uyp & Uy @ -+ @ Up—ip & Unwp
N N N n
Wy <> Vip, & Vo, @ -+ @ Voot & Vi

Next we describe group action on it: Let § be a family of groups G := GL,(C)
over B defined by

Autg (i 70, 1) |g) x ... x Autg(f F(0, 1) le,, -
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The symmetric group S,, acts on § by acting both on B and on the copies of
GL,, so that if _ ‘
( 12 ... )
g =
gy 0y ... Op,

is an element of S,, then (b,g) = (b1, ..., by 81, ..., &n,) is sent to

0 (b, 8) = (bo), b, ;80 -+ 80, )-
The construction of bundles U; and ‘W and the symmetric group action
induce isomorphisms

Usi, @1,ebn)) = Uity enbny) 0 po, Weoy, o,y S piWe,

13 (O1seeny sloy ) T 20 TT A0y 0py ) T LT (Dgy ey (7,1])’

where p; is the restriction map p; : W — V;.

The aim of this construction is to prove that vector spaces U;, V;, W
satisfy quasi symmetric condition defined in 3. We first check condition (a):

Choose
o = 1 2 ... r r+1 ... ni
“\2 3 ... r+1 1 YA

If there exists (b, g) € § such that

P, PIWe N (U, ® ... gU,,) =0
then there exists an open set A C ¢ with the same property. Choose an element
(b1, ..., by, 81, ..., &n,) in the intersection of open sets #4 N o ~'(4). Then
@1y P Wory N (80 Uto) @ .. D 8o, Urory) =0

since o (b, g) € ». But this is isomorphic to
(Pal soves Do )W D (&, Ua'],b D...0 gcr,Ua,,b) =

(P2s o s P OWe N (202, @B ... B g1 Upy ) = 0.

The obvious inclusion

Pl s PrrdWe N (g1U1, @ ... B g1 Urp1 ) C
(P1s s DIOIW N (U, B ... B g U p))®
(P2, Pry)Wp N (2Us s @ ... B 841U, 415)) = 0.

proves condition (a).



242 ANITA BUCKLEY - MARINA ZOMPATORI

For condition (b) assume that there exists (b, g) € § for which

1o pIIWe N (UL, D ... D g Urp)

is transversal and nonzero, and

Pr+1 w'n gr+1Ur+I,b = 0.
Recall that W' is defined to be

(pl’ ,Pr)_l[Pl, .o 7erb n (gIUl,b &D... @grUr,b)]-

Then there exists an open set ¢ < § with the same property. o~ !(@) is
also open. For every element (by,...,by,,; &1,..., 8, ) in the intersection
CNo (@) we get v

PretW' N go Urgio) =0,

where
W' =Pty D)7 P oo s PrWoir) N (80, Utoto) ® - - - D 86, Uroy)]-
This is true since o (b, g) € C. Using above isomorphisms we get
W = (Poys s Do) [Poys -+ s Po, Wo N (80, Uoy p @ - .. ® 80, Us, )],

which we denote by W. Cleatly p,1W” = po., W and go,,, Uri100) =
8041 Us, b This implies

Pors W N 8o, Usypro = Praa W' N 8o, Urit o) = 0.
Finally take (b, g) e CNa (@) N...N oM (C) where
U(,.)=<1 2 i rHl L n1>.
1 2 ... r+1 ... i R 3
For every element

weW,N(gU1p®...0 g+1Urs16)

we get pry1W € Pryi W' N gr4+1Ur415 which is by assumption 0. On the other
hand p;w € p; W N g;U; , which is again 0, since o® e . We proved that

w=(p1,..., preDw = 0.

This verifies condition (b) in the definition of quasi-symmetry.
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