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THE GEOMETRY OF DISCOTOPES

F. GESMUNDO - C. MERONI

We study a class of semialgebraic convex bodies called discotopes.
These are instances of zonoids, objects of interest in real algebraic ge-
ometry and random geometry. We focus on the face structure and on the
boundary hypersurface of discotopes, highlighting interesting birational
properties which may be investigated using tools from algebraic geome-
try. When a discotope is the Minkowski sum of two-dimensional discs,
the Zariski closure of its set of extreme points is an irreducible hyper-
surface. In this case, we provide an upper bound for the degree of the
hypersurface, drawing connections to the theory of classical determinan-
tal varieties.

1. Introduction

Discotopes are finite Minkowski sums of generalized discs in the real Euclidean
space. They were introduced in [1] for the combinatorial study of matroids
associated to subspace arrangements. They appeared in the context of convex
geometry in [22], where they provide an example of a semialgebraic convex
body having a non-semialgebraic fiber body.

In this work, we investigate geometric features of discotopes. Our study is mo-
tivated by the zonoid problem, introduced in [8], but already appearing in [5]:
this problem consists in determining whether a given convex body is a zonoid.
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These special convex sets play an important role in convex geometry, measure
theory, functional analysis and random geometry [7, 16, 30, 33]. More recently,
connections to enumerative geometry and real intersection theory were drawn
[10], which led to the introduction of the zonoid algebra in [9] as a probabilistic
version of cohomology.

Zonoids are limits, in the Hausdorff metric, of zonotopes. The latter are finite
Minkowski sums of line segments. Zonotopes are the only polytopes that are
zonoids. They are relatively well-understood: for instance, it is known that a
polytope is a zonotope if and only if all its 2-dimensional faces are (translates
of) centrally symmetric polygons [7, 28]. On the other hand, a simple charac-
terization of zonoids seems hopeless, and in full generality even the decidability
of the zonoid problem is not understood. We highlight two major difficulties.
In [34], it was shown that being a zonoid is not a local property in the sense
that for every convex body K, and every point p of its boundary ∂K, there is
a zonoid whose support function coincides with the support function of K in a
neighborhood of p. Moreover, in [35], it was shown that being a zonoid is not
a property characterized by projections; indeed there exist convex bodies which
are not zonoids but such that all their projections are zonoids.

Restricting to the subclass of semialgebraic convex bodies would potentially
make the problem easier. For instance, in the algebraic setting, the rigidity
of the Zariski topology implies that global properties can be checked locally.
The tameness of a particular class of semialgebraic zonoids was proved in [21].
However, the zonoid problem is open even in the simplest non-trivial case of
semialgebraic convex bodies in R3, see e.g. [32, Problem 12].

Discotopes form a special subclass of semialgebraic zonoids. They are a first
possible generalization of zonotopes, still amenable to be studied with tools
from algebra, geometry and combinatorics. A discotope is a finite Minkowski
sum of (generalized) higher dimensional discs: from this point of view, zono-
topes correspond to the special case of 1-dimensional discs.

In this work, we investigate a number of properties of discotopes. Section 2
provides the formal definition of discotopes and states some of their basic fea-
tures. In Section 3, we describe the facial structure of these convex bodies,
and we introduce a particular subvariety S of their (algebraic) boundary, whose
properties are further studied in the rest of the paper. Section 4 provides a full
characterization of S in a special range. Section 5 describes its role in the geom-
etry of the exposed points of the discotope. In Section 6, we study discotopes
that are Minkowski sums of 2-dimensional discs; we prove that in this case S is
an irreducible hypersurface and provide an upper bound for its degree. As a by-
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product of this result, we prove that certain non-generic linear sections of the
classical determinantal variety are irreducible and of the expected dimension.
Section 7 is devoted to the study of a specific example, the dice (see Figure 1),
which presents peculiar birational properties. Finally, in Section 8, we propose
some open problems and conjectures: in particular, Conjecture 8.2 predicts that
the variety S is irreducible under minimal assumptions.

Figure 1: The dice: the Minkowski sum of three discs in R3.

2. Setting

We recall some basic notions from convex geometry and we refer to [29] for the
theory. Let Sd−1 denote the (d −1)-dimensional sphere in Rd . Given a convex
body K ⊆ Rd , its support function is

hK : Sd−1 → R
u 7→ max{‹u, p› : p ∈ K},

where ‹· , ·› denotes the standard inner product of Rd . The support function of
K uniquely determines K; moreover, support functions are additive with respect
to the Minkowski sum, in the sense that hK1+K2 = hK1 +hK2 . The set Ku = {p ∈
K : ‹u, p› = hK(u)} is the face of K exposed by u; clearly Ku is a subset of
the topological boundary of K; if p ∈ Ku, we say that p is exposed by u. In
particular, if {p}= Ku, then p is called exposed point. Let ∂K ⊆ Rd denote the
topological boundary of K. If K is a semialgebraic convex body, then ∂K is a
semialgebraic set of codimension one in K.

Many geometric features of semialgebraic convex bodies can be studied with
tools from classical algebraic geometry. The algebraic boundary represents this
transition from real convex geometry to complex algebraic geometry. It is the
Zariski closure of ∂K in Cd , that will be denoted by ∂aK. A full dimensional
convex body K is semialgebraic if and only if ∂aK is a hypersurface [31, Propo-
sition 2.9].
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In this section we introduce discotopes and highlight some of their basic prop-
erties. Given n ∈ N, let D be the standard unit ball in Rn, that is

D = {(x1, . . . ,xn) : x2
1 + . . .+ x2

n ≤ 1}.

Fix n,d ∈N, n ≤ d, let B := {b1, . . . ,bn} be a set of linearly independent vectors
of Rd and let AB : Rn → Rd be the linear map mapping the i-th standard basis
element ei of Rn to bi. The generalized disc DB is the image of D via AB.
Throughout, generalized discs are simply called discs.

The topological boundary ∂DB is a real algebraic hypersurface in the linear
span ⟨B⟩: its ideal is defined by d−n linear forms determining ⟨B⟩ and a single
inhomogeneous quadric qB−1, where qB is the quadratic form associated to the
matrix (AB)(AB)

T . In particular, generalized discs are semialgebraic sets.

Remark 2.1. For every d and every choice of B, the generalized disc DB is
a zonoid. This is immediate from the fact that linear images of zonoids are
zonoids. In particular for d = 1, generalized discs are all the compact segments
centered at the origin; for higher d, generalized discs are ellipsoids centered at
the origin.

Definition 2.2. Given the generalized discs DB1 , . . . ,DBN in Rd , the discotope
DB associated to B= {B j | j = 1, . . . ,N} is their Minkowski sum

DB = DB1 + · · ·+DBN .

Write Di := DBi if no confusion arises. Let Nm be the number of discs of dimen-
sion m among D1, . . . ,DN . The type of the discotope DB is the integer vector
N = (N1, . . . ,Nd) ∈ Nd . Note that N = ∑Nm.

Usually, we will be interested in the case where the sets B j are chosen gener-
ically. More precisely, we say that a property holds for the generic discotope
of type N if the sets B for which it does not hold form a proper Zariski closed
subset of the set of all possible bases.

In the case N = (N,0, . . . ,0), all the generalized discs are segments centered
at the origin: the associated discotope is a zonotope centered at the origin [36,
Section 7.3]. The case N = (0,N,0) of discotopes in R3 was studied in [22]
in the context of fiber convex bodies. In [1], discs of higher dimensions were
considered, suitably rescaled so that their volume is normalized.

Discotopes can be realized as the image of the addition map restricted to the
product of the discs. More precisely, define Σ to be the (complex) addition map

Σ : (Cd)N → Cd

(ξ j) j=1,...,N 7→ ∑ξ j.
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Then, the discotope D associated to B is the image of ∏ j D j ⊆ (Rd)N under
Σ. In particular, the Projection Theorem for semialgebraic sets (see, e.g., [6,
Section 2.2]) guarantees that D is semialgebraic.

Since Minkowski sums of zonoids are zonoids, every discotope is a zonoid.
In particular, discotopes form a class of semialgebraic zonoids and one may
wonder whether all semialgebraic zonoids centered at the origin arise in this
way. This is not the case. An example of a semialgebraic zonoid which is not
a discotope is the unit ball of the L4-norm {x4

1 + x4
2 ≤ 1} in R2: indeed, there

is no discotope in R2 whose boundary is an irreducible curve of degree 4, see
Remark 6.6.

We point out that a discotope is full dimensional if and only if ∑ j⟨B j⟩= Rd . In
particular, a necessary condition for this to happen is that ∑

d
1 mNm ≥ d. For a

generic discotope this condition is also sufficient. We always assume that D is
full dimensional: this is not restrictive as one can always restrict the analysis to
the linear span H = ∑ j⟨B j⟩= ⟨D⟩.

3. The faces of the discotope

In this section we give a characterization of the exposed faces of discotopes.
Moreover, we introduce a complex algebraic variety associated to a discotope,
called its purely nonlinear part, which will be the main object of study in the
rest of the paper.

Consider the discotope D = D1 + . . .+DN . For every disc D j, let C j = Sd−1 ∩
⟨D j⟩⊥, that is the unit sphere of dimension d − dimD j − 1 consisting of direc-
tions orthogonal to D j. Let U = Sd−1 \

(⋃
j C j
)
, which is Zariski open in Sd−1.

If u ∈ U , then for every disc D j the face Du
j exposed by u is a single point.

As a consequence, if u∈U , then the face of the discotope Du consists of a single
point. To see this, let p = ∑ξ j ∈ Du be a point of the face exposed by u. Then

hD(u) = ‹u, p› = ∑
j

‹u,ξ j› > ∑
j

‹u, ξ̃ j›

for any other ξ̃ j ∈ D j. Therefore Du = {p} and hence p is an extreme exposed
point of D.

On the other hand if u /∈ U , let J ⊆ {1, . . . ,N} be the maximal subset of indices
such that u ∈

⋂
j∈J C j; then u⊥ contains ∑ j∈J⟨B j⟩. In this case the face of D

exposed by u is (a properly translated copy of) a smaller discotope D′, given by
the Minkowski sum of the discs D j for j ∈ J. From this description, one verifies
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a property that holds more generally for zonoids: every proper face of a zonoid
Z is a translate of a zonoid of lower dimension, which is a summand of Z.

In particular, the exposed faces of D of dimension k are given by

∑
j∈J

D j +∑
i/∈J

{pi}

where pi ∈ ∂Di are certain suitable points and J is such that dim
(

∑ j∈J⟨B j⟩
)
= k.

Remark 3.1. A discotope D of type N = (N1, . . . ,Nd) is the Minkowski sum of
a zonotope Z given by N1 segments and a discotope D′ of type (0,N2, . . . ,Nd):

D = Z+D′.

Since the convex hull of a Minkowski sum equals the Minkowski sum of convex
hulls, the discotope D is the convex hull of copies of D′ placed at the vertices
of Z . As a consequence, many of the geometric properties of D only depend on
analogous properties of D′. For instance, the algebraic study of extreme points
of D can be reduced to the one of extreme points of D′. This can be visualized
in the following example.

Example 3.2. Let D1,D2,D3 be the discs in R3 defined by

D1 = {(x1,x2,x3) : x3 = 0,−1 ≤ x1 = x2 ≤ 1},
D2 = {(x1,x2,x3) : x1 = 0,x2

2 + x2
3 ≤ 1},

D3 = {(x1,x2,x3) : x2 = 0,x2
1 + x2

3 ≤ 1}.

Consider the associated discotope D = D1 +D2 +D3, shown in Figure 2, left.
Faces of dimension 0,1 and 2 are represented in red, green and blue, respec-
tively. The red points are exposed and arise as ξ1+ξ2+ξ3, for certain ξi ∈ ∂Di.
Every green segment arises as D1 + ξ2 + ξ3, for certain ξi ∈ ∂Di. The four
blue discs (only two of which are visible) come in pairs: two are obtained as
ξ1 +D2 +ξ3 and the other two as ξ1 +ξ2 +D3, for certain ξi ∈ ∂Di.

As observed in Remark 3.1, D = Z +D′ where Z = D1 is a zonotope and
D′ =D2+D3 is a discotope with N1 = 0, shown in Figure 2, right. The algebraic
boundary ∂aD′ consists of five irreducible components: four planes and the
quartic surface

S = {x4
1 −2x2

1x2
2 + x4

2 +2x2
1x2

3 +2x2
2x2

3 + x4
3 −4x2

3 = 0}.

The latter is the Zariski closure of the set of extreme points of D′. Instead, the
Zariski closure of the set of exposed points of D is the union of two copies of
S, translated by the extrema of D1, i.e., the vectors ±(1,1,0).
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Figure 2: Left: a discotope of type N = (1,2,0). Right: a discotope of type
N = (0,2,0). Faces of dimension 0 are in red, faces of dimension 1 are in green
and faces of dimension 2 are in blue.

Next, we associate to D an complex algebraic variety that contains all extreme
points of the discotope.

Definition 3.3. Let D∂ = Σ
(
∏ j ∂D j

)
⊆ D. The purely nonlinear part of the

discotope D is
S =D∂ ∩∂D,

the Zariski closure of D∂ ∩∂D in Cd .

By definition if p is an extreme point of D, then p ∈ S. Therefore, by the
Krein–Milman Theorem [3, Section II.3], D = conv(S ∩∂D) is the convex hull
of S ∩∂D.

In particular, S carries all the information regarding the extreme points of D.
In general, the variety S may have several irreducible components, possibly of
different dimension. In fact, it is a priori not clear whether S coincides with the
Zariski closure of the set of exposed point of D. We will prove some results
in this direction in Section 5. In particular, Corollary 5.5 guarantees that when
the discs are chosen generically, S has dimension d − 1 (possibly with lower
dimensional components) in Cd if and only if the following non-degeneracy
condition holds:

d

∑
m=1

(m−1)Nm ≥ d −1. (1)

Notice that this condition implies the non-degeneracy condition ∑
d
1 mNm ≥ d for

the discotope, and it is immediately satisfied if Nd ≥ 1.

Remark 3.4. In the special case of discotopes of type N = (0, . . . ,0,N), all the
boundary points of D are exposed and therefore S coincides with the Zariski
closure of the set of exposed points. Further, ∂D is smooth (see, e.g., [4]), which
guarantees that S is irreducible: indeed, if it was reducible, any two irreducible
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components would intersect on ∂D, in contradiction with its smoothness. Fig-
ure 3 shows a discotope D obtained as the sum of three ellipses in R2. The
topological boundary ∂D is smooth and coincides with one of the connected
components of the real locus of ∂aD. These properties are further discussed in
Section 6.

Figure 3: A discotope of type N = (0,3). Its algebraic boundary is an irreducible curve
of degree 24. The dashed curves represent the real points of the algebraic boundary that
are not part of the topological boundary.

4. Joins of quadrics

If (1) holds with the reverse inequality, then we characterize the purely nonlinear
part S as an affine version of the geometric join of the quadrics ∂aDi. The theory
is developed classically in the projective setting, see, e.g., [25, Chapter 1] and
[15]. In this section we translate some of these projective notions to the affine
space and apply them to S.

Given two (complex) projective varieties X ,Y ⊆ Pd , their join is the projective
variety J(X ,Y ) = {p ∈ ⟨x,y⟩ : x ∈ X ,y ∈ Y}. We are concerned with the proper-
ties of the join summarized in the following lemma, which is a consequence of
[18, Example 18.17].

Lemma 4.1. Let X ,Y ⊆ Pd be irreducible varieties. Then J(X ,Y ) is irreducible.
If X ∩Y = /0 then dimJ(X ,Y ) = dimX + dimY + 1. Furthermore, if dimX +
dimY +1 < d, then deg(J(X ,Y )) = deg(X)deg(Y ).

We prove an affine version of Lemma 4.1, which will be useful to prove Theo-
rem 4.3 below. Regard the affine space Cd as an affine open subset of Pd : for
an affine variety X ⊆ Cd , write X ⊆ Pd for its Zariski closure and X∞ = X \X
for its hyperplane cut at infinity. Given two affine varieties X ,Y ⊆ Cd , we say
that X ,Y do not intersect at infinity if X∞ ∩Y∞ = /0. For two varieties X ,Y ⊆Cd ,
write Σ(X ×Y ) = X +Y for the Zariski closure of their Minkowski sum: this
can be regarded as an affine version of the geometric join.
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Proposition 4.2. Let X ,Y ⊆ Cd be irreducible affine varieties, not intersect-
ing at infinity and such that dimX + dimY < d. Then Σ(X ×Y ) is irreducible,
dimΣ(X ×Y ) = dimX +dimY and degΣ(X ×Y ) = deg(X)deg(Y ).

Proof. The variety Σ(X ×Y ) is the closure of the image of the addition map
Σ : X ×Y →Cd defined by Σ(x,y) = x+y. Since X ,Y are irreducible, Σ(X ×Y )
is irreducible as well.

Let Z,Z′ be two 1-dimensional vector spaces and consider Pd+1 = P(Cd ⊕Z ⊕
Z′) with homogeneous coordinates x1, . . . ,xd ,z,z′. Reembed X ,Y in Pd+1 as
follows:

X → Pd+1 Y → Pd+1

x 7→ (x,1,0) y 7→ (y,0,1);

denote by X ,Y the closures (in the Zariski topology of Pd+1) of the two images.

Observe that X ,Y are disjoint. Indeed, if p ∈ X ∩Y , then in coordinates one has
z(p) = z′(p) = 0; hence p belongs to the intersection X∞ ∩Y∞ of the two hyper-
plane cuts at infinity, which is empty by hypothesis. Therefore X ∩Y = /0. By
Lemma 4.1, J(X ,Y ) is irreducible, with dimJ(X ,Y )= dimX+dimY +1. More-
over, since dimX +dimY +1 < d +1, we obtain degJ(X ,Y ) = deg(X)deg(Y ).

Now, one can check explicitly in coordinates that

Σ(X ×Y ) = J(X ,Y )∩{z = z′ ̸= 0};

in other words, Σ(X ×Y ) is an affine chart of the hyperplane section {z = z′} of
J(X ,Y ). Note that J(X ,Y )∩{z = z′} is irreducible. To see this, observe that in
the affine chart {z ̸= 0} it coincides with Σ(X×Y ) which is irreducible; therefore
other irreducible components would be supported at z = z′ = 0. However, there
is no line L = ⟨x,y⟩ with x ∈ X and y ∈ Y such that L∩{z = z′ = 0} ̸= /0, unless
x ∈ X∞ or y ∈ Y∞. This shows that J(X ,Y )∩{z = z′ = 0}= J(X∞,Y∞); since

dimJ(X∞,Y∞)≤ dimX∞ +dimY∞ +1 = dimJ(X ,Y )−2,

J(X∞,Y∞) is not an irreducible component of a hyperplane section of J(X ,Y ).
This proves that J(X ,Y )∩{z = z′} is irreducible, hence its affine chart on {z =
z′ ̸= 0} is irreducible as well. We conclude

dimΣ(X ×Y ) = dimJ(X ,Y )−1 = dimX +dimY,

degΣ(X ×Y ) = degJ(X ,Y ) = deg(X)deg(Y ).
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Applying Proposition 4.2 iteratively to the boundaries of the discs defining the
discotope, we obtain the following result.

Theorem 4.3. Let N = (0,N2, . . . ,Nd) ⊆ Nd be such that ∑
d
m=1(m− 1)Nm ≤

d − 1. Let D be a generic discotope in Rd of type N. Then S is irreducible of
degree 2N , where N = ∑Nm.

Proof. Let D1, . . . ,DN be the discs defining the discotope and let di = dim⟨Di⟩;
in particular dim∂aDi = di −1. For n = 1, . . . ,N, let

Xn = Σ

(
n

∏
i=1

∂aDi

)
.

First notice XN =S. The inclusion S ⊆XN is clear by the definition of S. For the
other inclusion, we show that there is a (real) Euclidean open subset U ⊆ ∏∂Di

such that Σ(U) ⊆ S; passing to the Zariski closure we obtain the equality. Let
ξ = (ξ1, . . . ,ξN) ∈ ∏∂Di, and for every i write Tξi∂Di for the (real) tangent
space at ξi; note dimTξi∂Di = di − 1, hence ⟨Tξi∂Di : i = 1, . . . ,N⟩ is a proper
linear subspace of Rd . Let u ∈ Rd be a unit vector such that the hyperplane u⊥

contains ⟨Tξi∂Di : i = 1, . . . ,N⟩. Up to replacing ξi with −ξi, assume ‹u,ξi›≥ 0.
Let p = Σ(ξ ) = ξ1+ · · ·+ξN . By definition p ∈ XN ; moreover p ∈ ∂D, because

‹u, p› =
N

∑
1

‹u,ξi› ≥
N

∑
1

‹u, ξ̃i› = ‹u, p̃›

for any other point p̃ = ξ̃1 + · · ·+ ξ̃N of D; this shows that p belongs to the face
of D exposed by u, and in particular to the boundary of D. Therefore p ∈ S. We
conclude XN = S .

Next, we show that for every n, Xn−1 and ∂aDn have no intersection at infinity,
for a generic choice of the discs. Having empty intersection at infinity is an
open condition on the parameter space of the embeddings of the discs; hence,
in order to show that there is no intersection at infinity for a generic choice of
embeddings, it suffices to exhibit a choice for which this property is verified.

By assumption, ∑
N
1 (di − 1) ≤ d − 1; let δ = max{0,

(
∑

N
1 di
)
− d} and notice

δ ≤ N − 1. Then, one can choose the embeddings of D1, . . . ,DN so that the
following properties hold:

▶ if n = 1, . . . ,δ +1, then the dimension of ⟨D1, . . . ,Dn−1⟩∩⟨Dn⟩ coincides
with dim(⟨Dn−1⟩∩ ⟨Dn⟩) and it is exactly 1,

▶ if n = δ +2, . . . ,N, then ⟨D1, . . . ,Dn−1⟩∩ ⟨Dn⟩= 0.
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With this choice of embeddings, we show that for every n, Xn−1 and ∂aDn

have no intersection at infinity. Write Xn−1,∞ and ∂aDn,∞ for the two compo-
nents at infinity; they are subvarieties of P(⟨D1, . . . ,Dn⟩). Their intersection is
a subvariety of P(⟨D1, . . . ,Dn−1⟩)∩P(⟨Dn⟩) = P(⟨Dn−1⟩∩ ⟨Dn⟩). If n ≤ δ +1,
P(⟨Dn−1⟩∩ ⟨Dn⟩) is a single point, and such point does not belong to ∂aDn,∞; if
n ≥ δ +2, then P(⟨Dn−1⟩∩ ⟨Dn⟩) is empty. This proves the claim.

To conclude, we use induction on n to show that dimXn = ∑
n
i=1(di − 1) and

degXn = 2n. The statement is clear for n = 1. Assume n ≥ 2. We have Xn =
Σ(Xn−1 × ∂aDn). Since Xn−1 and ∂aDn do not intersect at infinity, Proposition
4.2 applies, hence

dimXn = dimXn−1 +dim∂aDn =
n−1

∑
i=1

(di −1)+(dn −1) =
n

∑
i=1

(di −1),

degXn = degXn−1 ·deg∂aDn = 2n−1 ·2 = 2n.

For n = N, we obtain the desired result for S.

Example 4.4. Consider the following discs in R6:

D1 = {(x1, . . . ,x6) : x3 = x4 = x5 = x6 = 0,x2
1 + x2

2 ≤ 1},
D2 = {(x1, . . . ,x6) : x1 = x2 = x5 = x6 = 0,x2

3 + x2
4 ≤ 1},

D3 = {(x1, . . . ,x6) : x1 − x3 = x2 = x4 = 0,(x1 + x3)
2 + x2

5 + x2
6 ≤ 1}.

Let D = D1 +D2 +D3. This discotope is full dimensional but the condition
(1) holds with reverse inequality: indeed, 1+1+2 < 5. Thus, by Theorem 4.3,
S = ∂aD1 +∂aD2 +∂aD3 is irreducible, of codimension 2 and degree 8. Its ideal
is generated by one cubic and three quartic polynomials:

4x2
1x3+4x2

2x3−4x1x2
3−4x1x2

4+x1x2
5−x3x2

5+x1x2
6−x3x2

6+3x1−3x3,

16x4
3+32x2

3x2
4+16x4

4+8x2
3x2

5−8x2
4x2

5+x4
5+8x2

3x2
6−8x2

4x2
6+2x2

5x2
6+x4

6−40x2
3−24x2

4+6x2
5+6x2

6+9,

16x4
1+32x2

1x2
2+16x4

2+8x2
1x2

5−8x2
2x2

5+x4
5+8x2

1x2
6−8x2

2x2
6+2x2

5x2
6+x4

6−40x2
1−24x2

2+6x2
5+6x2

6+9,

16x2
1x2

3+16x2
2x2

3+16x2
1x2

4+16x2
2x2

4−4x2
1x2

5−4x2
2x2

5−4x2
3x2

5−4x2
4x2

5−4x2
1x2

6−4x2
2x2

6−4x2
3x2

6−4x2
4x2

6+

x4
5+2x2

5x2
6+x4

6+16x1x3x2
5+16x1x3x2

6−12x2
1−12x2

2−16x1x3−12x2
3−12x2

4+6x2
5+6x2

6+9.

5. Exposed points of the discotope

In the rest of the paper, we assume that (1) is satisfied. Recall that all extreme
points of D, hence all its exposed points, are contained in S. In this section, we
prove that they form a full dimensional subset of the boundary of the discotope;
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in particular, at least one irreducible component of S of dimension d −1 is the
Zariski closure of a subset of exposed points. Further, we prove that exposed
points are generically exposed by a unique vector in Sd−1. First, we give a
general result which will be useful in the following.

Lemma 5.1. Let K1, . . . ,KN be convex bodies in Rd . Consider a point p =
p1 + . . .+ pN ∈ ∂K where K is the Minkowski sum of the Ki’s, and assume
that pi is a smooth point of ∂Ki for every i = 1, . . . ,N. Fix u ∈ Sd−1. Then
Tpi∂Ki ⊆ u⊥ for every i if and only if p belongs to the face of K exposed by u.

Proof. Assume Tpi∂Ki ⊆ u⊥ for every i for some u ∈ Sd−1. Then one of these
vectors u satisfies pi ∈ Ku

i for every i. As a consequence, p ∈ Ku. Conversely,
let p ∈ Ku. Therefore, hK(u) = ‹p,u› = ∑

N
i=1 ‹pi,u› and for every i and every

p̃i ∈ Di,
‹pi,u› ≥ ‹p̃i,u›.

Hence hDi(u) = ‹pi,u›. There are two possible situations: either u ⊥ ⟨Di⟩, or pi

is exposed by u. In both cases it is clear that Tpi∂Ki ⊆ u⊥.

Proposition 5.2. Let Σ : ∏∂aDi → Cd be the restriction of the addition map to
the algebraic boundaries of N generic discs. Assume that (1) holds with strict
inequality. Then

Σ
−1(S)⊆ crit(Σ) .

Here crit(Σ) denotes the critical locus, that is the set of points ξ ∈∏∂aDi where
the differential dξ Σ does not have full rank.

Proof. Since (1) holds with strict inequality, for a generic ξ ∈ ∏∂aDi the dif-
ferential dξ Σ is surjective. By density, it is enough to check that dξ Σ is not
surjective at the real points of Σ−1(S). For every ξ ∈ ∏∂Di, the image of the
differential dξ Σ is the sum Tξ1∂D1 + · · ·+TξN ∂DN . If Σ(ξ ) belongs to the face
Du, then by Lemma 5.1 Tξi∂Di ⊆ u⊥ for every i. In particular the differential is
not surjective, hence ξ is a critical point of Σ. Passing to the Zariski closure, we
obtain Σ−1(S)⊆ crit(Σ).

The next result identifies a region of ∂D of points exposed by a unique vector
of Sd−1.

Lemma 5.3. Let D be a generic discotope such that condition (1) is satisfied.
Let p ∈ D∂ ∩∂D. The following are equivalent:

• there exists a unique u ∈ Sd−1 such that p ∈ Du;

• p = ∑
N
i=1 ξi for some ξi ∈ ∂Di such that codim

(
∑

N
i=1 Tξi∂Di

)
= 1.



THE GEOMETRY OF DISCOTOPES 155

Let Ω be the set of points that satisfy either (hence both) these conditions; then
Ω is non-empty and Euclidean open in D∂ ∩∂D.

Proof. The equivalence of the two conditions follows from Lemma 5.1. To
show that Ω is non-empty, we construct a point in the following way. Consider
u ∈ U and let p = ∑

N
i=1 ξi = Du. For the sake of notation, write Tξi = Tξi∂Di.

Suppose that Lξ = Tξ1 + . . .+TξN is a subspace of codimension c ≥ 2. Since u ∈
U , for every i we have ⟨Di⟩ ̸⊆ Lξ . Condition (1) implies that, up to relabeling,
Tξ1 ∩

(
Tξ2 + . . .+TξN

)
= L′ ̸= {0}. Let L′′ be a complement of L′ in Tξ1 , so that

L′+L′′ = Tξ1 and L′∩L′′ = {0}.

Consider the set of points ξ 1 ∈ ∂D1 such that T
ξ 1

⊇ L′′; let ξ = (ξ 1,ξ2, . . . ,ξN).

For a generic choice of such ξ 1 there exists u ∈ U such that L
ξ
⊆ u⊥. Therefore

the point p= ξ 1+ξ2+ . . .+ξN is an exposed point of D. Moreover, if ξ 1 ̸=±ξ1
then codimL

ξ
≤ c− 1. Repeating this argument one constructs a point ξ such

that codim(Tξ1 + . . .+ TξN ) = 1. The condition that this codimension is 1 is
Zariski open, hence Ω is Euclidean open in D∂ ∩∂D.

Recall the following property of the support function of a convex body K, see
[29, Corollary 1.7.3]. The support function is differentiable at u ∈ Sd−1 if and
only if the face Ku is a unique point; this point coincides with ∇hK(u). In
particular, hD is differentiable at all points of U . This will be useful in the next
result, to prove that the set of exposed points of D is full dimensional in its
boundary.

Proposition 5.4. In the hypotheses of Lemma 5.3, there exists an open dense
subset U ′ of U such that ∇hD|U ′ is one to one.

Proof. Fix u ∈ U and denote by pu the point of the discotope exposed by u.
Let ξi ∈ ∂Di be the unique point of the i-th disc such that hDi(u) = ‹ξi,u›;
then pu = ∑

N
i=1 ξi. The tangent space Tξi∂Di = u⊥ ∩ ⟨Bi⟩ is a (dimDi − 1)-

dimensional subspace of u⊥. Because of the non-degeneracy condition (1), there
exists a Euclidean open and dense subset U ′ of U such that for all u ∈ U ′

N

∑
i=1

Tξi∂Di = u⊥. (2)

If u ∈ U ′ then the support function of the discotope is smooth in a neighborhood
of u, because hD(u) = ∑hDi(u) and the hDi’s are smooth in a neighborhood of
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u. Hence we have the following map

∇hD|U ′ : U ′ → ∂D
u 7→ ∇hD(u) = pu.

Its image lies inside Ω because of (2). Since these are exactly the points exposed
by only one direction, ∇hD|U ′ is one to one.

From Proposition 5.4, we see that ∇hD(U ′) is a set of exposed points which is
open in ∂D; in particular it has dimension d −1. Moreover, ∇hD defines a dif-
feomorphism between U ′ and its image, therefore ∇hD(U ′) consists of smooth
points of ∂aD. A consequence of this is that the Zariski closure of the exposed
points (or equivalently of the extreme points) contains at least one irreducible
component of S of dimension d −1. This leads to the following result.

Corollary 5.5. Let D be a generic discotope such that the non-degeneracy con-
dition (1) holds. Then S has at least one irreducible component of dimension
d −1 and this is an irreducible component of the algebraic boundary ∂aD.

In general, it is not clear whether S has multiple irreducible components, pos-
sibly even of different dimension. Indeed, the set D∂ = Σ

(
∏ j ∂D j

)
, introduced

in Definition 3.3, may intersect positive dimensional faces of D. This might
produce lower dimensional components of S. However, we expect this not to
be the case, as stated in Conjecture 8.2.

We conclude this section pointing out that in general some boundary points
of D can be exposed by more than one vector. These can be identified by
the following condition. Set Li = ⟨Di⟩, so that L1, . . . ,LN are N generic lin-
ear subspaces of Rd . Consider the hyperplanes H = u⊥ ⊆ Rd for u ∈ U ; hence
dim(H ∩Li) = dimLi −1 for every i. A point p = Du is exposed by more than
one vector if and only if H satisfies

dim((H ∩L1)+ . . .+(H ∩LN))≤ d −2. (3)

Indeed, when (3) holds, there exists a linear subspace V of dimension at least
one such that H = (H ∩L1)+ . . .+(H ∩LN)+V . By perturbing V we obtain a
family of hyperplanes that expose the point p. The condition (3) can be formu-
lated in terms of a degeneracy property of an associated polymatroid, but a full
characterization seems difficult in general. In the case N = 2, boundary points
exposed by more than one vector always occur; the hyperplanes exposing them
are characterized in the following example.

Example 5.6. Let d1 = dimD1, d2 = dimD2. By the non-degeneracy condition
(1), d1 + d2 ≥ d + 1. Let Li = ⟨Di⟩; by genericity dim(L1 ∩L2) = d1 + d2 − d.
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For a hyperplane H such that dim(Li ∩H) = di −1, we have

dim((L1 ∩H)+(L2 +H)) =

(d1 −1)+(d2 −1)−dim(L1 ∩L2 ∩H) =

{
d −2 if L1 ∩L2 ⊆ H,
d −1 otherwise.

Therefore, a point p ∈ D exposed by a hyperplane H such that L1 ∩ L2 ̸⊆ H,
is exposed only by such hyperplane. On the other hand, if p is exposed by a
hyperplane H with L1 ∩ L2 ⊆ H, then there is a cone of hyperplanes H̃ with
L1 ∩L2 ⊆ H̃ exposing p as well.
The case d = 3, d1 = d2 = 2 is shown in Figure 2, right. This discotope D′ is
defined in Example 3.2; in this case L1 ∩L2 is the vertical x3-axis. The plane
{x3 = 0} is partitioned into four 2-dimensional cones and every u in the interior
of the same cone exposes the same point. These four exposed points are the
pairwise intersection of two adjacent blue discs.

6. Two-dimensional discs in Rd

In this section, we consider discotopes D ⊆ Rd of type (0,N,0, . . . ,0) ∈ Nd ,
that are realized as sum of 2-dimensional discs. If N ≤ d − 1, the variety S is
described by Theorem 4.3. Thus assume that N ≥ d − 1, which ensures that
dimS = d − 1. We will prove that the purely nonlinear part S is irreducible,
hence it is the Zariski closure of the extreme points of D. In addition, we will
provide an upper bound for the degree of this component of the algebraic bound-
ary.

Theorem 6.1. Let D be a generic discotope of type (0,N,0, . . . ,0) in Rd , with
N ≥ d −1. Let S be the purely nonlinear part of D. Then S is irreducible, and
coincides with the Zariski closure of the set of extreme points of D. Moreover,

deg(S)≤ 2N ·
(

N
d −1

)
.

Let D1, . . . ,DN be 2-dimensional discs in Rd in general position. For every
j = 1, . . . ,N, consider the (complexification of the) embedding A j : C2 → Cd

defining the generalized disc D j; let B j = {b( j)
1 ,b( j)

2 } be the associated basis of
the image of A j. Then the product ∏

N
j=1 ∂aD j is the image of the restriction of

A = A1 ×·· ·×AN to ∏{c2
j + s2

j = 1} ⊆ (C2)N . Here (c j,s j) are the coordinates
on the j-th copy of C2. Consider the addition map

Σ : ∂aD1 ×·· ·×∂aDN → Cd .
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The critical locus of the restriction of Σ◦A is the variety defined by the ideal

I = ∆+
(
c2

1 + s2
1 −1, . . . ,c2

N + s2
N −1

)
⊆ C[c1,s1, . . . ,cN ,sN ] (4)

where ∆ is the ideal of the d ×d minors of the N ×d matrix

M =


b(1)2 c1 −b(1)1 s1

...

b(N)
2 cN −b(N)

1 sN

 .

This is the (transpose of the) matrix representing the differential of the restric-
tion of Σ ◦A. Since A is a linear embedding, critΣ is irreducible if and only if
crit(Σ◦A) is irreducible, and their degrees coincide.

We will prove the irreducibility of critΣ and compute its degree by first studying
the variety V(∆). We show that it is irreducible and that its degree coincides with
the one of the classical determinantal variety of N ×d matrices of submaximal
rank. This is a consequence of Lemma 6.3, which provides a more general
result on special linear sections of the determinantal variety. This topic is object
of classical study, see [12], [13, Section 6B]. However, these results rely on a
specific condition, called 1-genericity, which is not satisfied in our setting.

We state the following version of Bertini’s Theorem for projective varieties,
which can be obtained from [20, Theorem 6.3] applied to the special case of
quasi-projective varieties.

Lemma 6.2. Let X be an irreducible projective variety. Let L be a line bun-
dle on X defining a map Φ : X 99K Ph0(L)−1 such that dimΦ(X) ≥ s+ 1. Let
D1, . . . ,Ds ∈ |L| be generic elements of the linear system defined by L. Let
Y = D1 ∩ ·· ·∩Ds and let B be the base locus of L. Then Y \B is irreducible of
codimension s in X.

Proof. The proof follows from [20, Theorem 6.3 (4)] applied to the quasi-
projective variety X̃ = X \B and the morphism Φ|X̃ .

Informally, this result guarantees that the intersection of generic divisors is ir-
reducible and of the expected codimension outside of the base locus of the line
bundle.

We use Lemma 6.2 to prove that certain non-generic linear sections of the clas-
sical determinantal variety are irreducible and of the expected dimension. Let
Matn×m denote the (complex) vector space of n×m matrices and let

Mn×m
r = {A ∈ PMatn×m : rank(A)≤ r}
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be the r-th determinantal variety. Use coordinates xi j on Matn×m, where xi j is
the entry at row i and column j.

Lemma 6.3. Let m,n,r ≥ 2 be integers with r < m,n. Let s be an integer 1 ≤
s < r. For i = 1, . . . ,n, let ℓ(i)1 , . . . , ℓ

(i)
s be generic linear forms on Matn×m only

involving the variables {xi j : j = 1, . . . ,m} of the i-th row. Let

Yn×m
r =Mn×m

r ∩
{

A ∈ PMatn×m : ℓ(i)p (A) = 0 for i = 1, . . . ,n, p = 1, . . . ,s
}
.

Then Yn×m
r is irreducible and of codimension ns in Mn×m

r .

Proof. For i = 1, . . . ,n, let

Γi = {A ∈ PMatn×m : ai j = 0 for all j = 1, . . . ,m}

be the linear subspace of matrices having zero i-th row. Let Γ =
⋃n

i=1 Γi.

For t = 0, . . . ,n, let

Y(t) =Mn×m
r ∩

{
A ∈ PMatn×m : ℓ(i)p (A) = 0 for i = 1, . . . , t, p = 1, . . . ,s

}
;

we have Mn×m
r = Y(0) ⊇ Y(1) ⊇ ·· · ⊇ Y(n) = Yn×m

r .

Let Φi : PMatn×m 99K Pm−1 be the projection on the i-th row; Φi is a rational
map, whose indeterminacy locus is Γi. Let Li = Φ∗

i O(1) be the pullback of the
hyperplane bundle on Pm−1: global sections of Li are linear forms only involv-
ing the variables of the i-th row; in particular the base locus of Li is exactly
Γi.

For a fixed n, we use induction on t to show that Y(t) is irreducible up to com-
ponents contained in Γ, in the sense that Y(t) \Γ is irreducible.

If t = 0, then Y(t) =Mn×m
r is irreducible. If t ≥ 1, then Y(t) is the intersection of

s divisors D1, . . . ,Ds ∈
∣∣Li|Y(t−1)

∣∣ on Y(t−1), where Dp = {ℓ(t)p = 0} and Li|Y(t−1)

is the restriction of Li to Y(t−1). By the induction hypothesis, Y(t−1) is a union
of irreducible components, only one of which is not contained in Γ.

In order to apply Lemma 6.2, we need dimΦt
(
Y(t−1)

)
≥ s + 1. In fact we

show that Φt
(
Y(t−1)

)
= Pm−1. If t ≤ r, this is clear because for every choice of

the first t rows, the corresponding matrix can be completed to a rank r matrix.
If t > r, notice that every r-dimensional subspace E ⊂ Cm can be realized as
the span of the first t − 1 rows of a matrix in Y(t−1). Since s < r, for every
i = 1, . . . , t − 1 the intersection of E with the subspace of Cm cut out by the
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linear forms ℓ(i)1 , . . . , ℓ
(i)
s is non-trivial. Consider the matrix A ∈ Y(t−1) whose i-

th row is a generic element of this intersection for i < t, and suitably completed
to a rank r matrix. By the genericity of the linear forms the span of the first t−1
rows of A is exactly E. Fix now v ∈Cm and let E be an r-dimensional subspace
containing v. The associated matrix A constructed above can be chosen so that
the t-th row coincides with v. In this way, Φt(A) = v and dimΦt

(
Y(t−1)

)
=

m−1 ≥ s+1 follows.

Therefore Lemma 6.2 applies and we obtain that Y(t) is irreducible up to com-
ponents contained in the base locus of Li, that is Γi ⊆ Γ. This proves the desired
property for Y(t) and, in particular, shows that Yn×m

r is irreducible up to com-
ponents contained in Γ.

For every t, let Y (t) be the component of Y(t) not contained in Γ. In particular,
Y (t) is not contained in the base locus of Li|Y (t−1) ; therefore, by Lemma 6.2, it
has the expected codimension. This provides codimMn×m

r
(Y (t)) = ts.

Finally, we prove that in fact Yn×m
r does not have components contained in Γ,

thus it is irreducible. This is proved by induction on n. The base case of the
induction is n = r. In this case Mn×m

r is the whole space PMatr×m and Yn×m
r is

the transverse intersection of ns linear spaces. Therefore it is irreducible.

Let n > r. Suppose by contradiction that Yn×m
r has at least one component,

denoted by C, contained in Γ. Then C ⊆Γi for some i; without loss of generality,
suppose i = n. Identify Mat(n−1)×m with the subspace of Matn×m having the n-
th row equal to 0. Under this identification, the component C is contained in
Y(n−1)×m

r , so dimC ≤ dimY(n−1)×m
r . By the induction hypothesis, Y(n−1)×m

r is
irreducible, so it coincides with its only component not contained in Γ and in
particular it has the expected codimension in M(n−1)×m

r . We obtain

dimC ≤ dimY(n−1)×m
r = dimM(n−1)×m

r − (n−1)s

= r((n−1)+m− r)− (n−1)s

= r(n+m− r)−ns− (r− s)

= dimMn×m
r −ns− (r− s).

This implies codimMn×m
r

(C) > ns in contradiction with the fact that Yn×m
r is

cut out by ns equations in Mn×m
r . We conclude that Yn×m

r has no components
contained in Γ; thus it is irreducible.

Remark 6.4. In Lemma 6.3, it is not necessary to have the same number of
linear relations on every row. The same argument applies if, on the i-th row, one
has si linear relations, with si < r for every i. Then Yn×m

r is irreducible and of
codimension ∑si in Mn×m

r .
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Lemma 6.3 shows that linear sections of the determinantal variety only involv-
ing a single row are generic enough in the sense that they preserve irreducibility
and have the expected dimension. We apply Lemma 6.3 to the variety V(∆): in
this case r = d −1 and s = d −2.

Proposition 6.5. The variety crit(Σ) is irreducible, of dimension d − 1, and
degree 2N

( N
d−1

)
.

Proof. Since A = A1 × ·· ·×AN is a linear embedding, it suffices to prove the
statement for crit(Σ◦A), that is the variety defined by the ideal I in (4).

By Lemma 6.3, the variety V(∆) ⊆ C2 × ·· · ×C2 is irreducible of dimension
N + d − 1. Consider its closure in P2 × ·· · × P2, where the j-th copy of P2

has homogeneous coordinates [c j,s j,z j]. For every j = 1, . . . ,N, the polynomial
c2

j + s2
j − 1 on C2 defines a homogeneous quadric {c2

j + s2
j − z2

j = 0} on P2.
This gives a generic element of |OP2(2)|, which pulls back to a generic element
Q j ∈ |O(P2)N (0, . . . ,0,2,0, . . . ,0)|. Recursively applying Lemma 6.2, for every
j we have that V(∆)∩Q1 ∩ ·· · ∩Q j is irreducible of dimension N − j+ d − 1.
For j = N, we obtain the irreducibility of V(∆)∩Q1 ∩·· ·∩QN .

As a consequence, crit(Σ◦A) = V(I) is irreducible of dimension d −1. In par-
ticular, the intersection of the determinantal variety V(∆) with the quadrics is
dimensionally transverse. Moreover, V(∆) is arithmetically Cohen-Macaulay,
see e.g. [2, Chapter 2]. Therefore [14, Corollary 2.5] guarantees

deg(crit(Σ◦A)) = deg
(
V (∆)

)
·

N

∏
i=1

deg(∂aDi) =

(
N

d −1

)
·2N .

Proof of Theorem 6.1. The irreducibility of crit(Σ) implies the irreducibility of
its image under the addition map Σ, that is the purely nonlinear part S. By the
linearity of Σ, we obtain an upper bound on the degree of S:

deg(S)≤ 2N ·
(

N
d −1

)
.

From the discussion in Section 5, the set of extreme points of D is contained in
S and contains a Zariski dense subset of (at least) one of the components of S.
By irreducibility, we conclude.

We end this section with some observations in the case of discotopes of type
N = (0,N) in R2. In this case ∂aD = S, which is an irreducible curve of degree
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2N ·N. The real points of critΣ come naturally in 2N−1 connected components,
described as follows. Given a line ℓ ⊆ R2 through the origin, there are exactly
two points ±pi on each ellipse ∂Di such that T±pi∂Di is parallel to ℓ. The
choice of these signs (up to a global sign) determines locally a parametrization
of the real points of critΣ, which has 2N−1 connected components. After the
projection to R2, many components of the real points of critΣ can be mapped to
the same connected component of the real points of S. This can be visualized
in the example in Figure 3, where the red curve S is union of 22 = 4 subsets
homeomorphic to circles: these are the images of the 4 connected components
of critΣ. Exactly one of them is the topological boundary of D.

Furthermore the degree of the map Σ : crit(Σ) → S is odd. By a density argu-
ment, this can be computed considering the fiber over a generic point p ∈ ∂D.
This contains a single real point (ξ1, . . . ,ξN) where ξ j ∈ ∂D j is the unique point
exposed by the vector u ∈ S1 which exposes p; the non-real points of Σ−1(p)
come in pairs of complex conjugates, therefore there is an even number of them.
We conclude that the fiber Σ−1(p) consists of an odd number of points, hence
the degree of Σ is odd.

Remark 6.6. In the case d = 2 the degree of the critical locus of Σ is 2N ·N
and the degree of the map Σ : critΣ →S is odd. Write N = 2κ ·M, with M odd.
Then deg(S) is necessarily an odd multiple of 2N · 2κ . A consequence of this
is that the unit ball of the L4-norm {x4

1 + x4
2 ≤ 1} is not a discotope. If it was a

discotope, it would be of type (0,N) for some N ≥ 2. But this discussion shows
that no curve of degree 4 is the boundary of a discotope of type (0,N) in R2.

7. The Dice

In this section, we provide an extended analysis of the algebro-geometric fea-
tures of the surface S ⊆ C3 for a specific discotope of type N = (0,3,0). In
particular, we will show that S is birational to a smooth K3 surface, realized as
a divisor of multidegree (2,2,2) in P1×P1×P1. This example was first studied
in [22, Section 5.3] in the context of fiber bodies: it provides a semialgebraic
convex body having a fiber body which is not semialgebraic. Notice that, up to
changing coordinates, the generic case of a discotope of type N = (0,3,0) can
be reduced to the case where the three generalized discs of interest lie in the
three coordinate hyperplanes. We further restrict to the case of three unit discs:

D1 = {(x1,x2,x3) : x1 = 0;x2
2 + x2

3 ≤ 1},
D2 = {(x1,x2,x3) : x2 = 0;x2

1 + x2
3 ≤ 1},

D3 = {(x1,x2,x3) : x3 = 0;x2
1 + x2

2 ≤ 1}.
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Let D ⊆ R3 be the resulting discotope and let S ⊆ C3 be its purely nonlinear
part. By [22, Section 5.3] and Theorem 6.1, S is an irreducible surface of degree
24. Its defining polynomial FS has 455 terms. Because of the symmetries of the
problem, all the monomials appearing in FS are squares. Since S is the image
of a polynomial map, FS can be computed via elimination theory [11, Section
4.4, Theorem 3]. More precisely, consider the ideal

J = I +
(
(x1,x2,x3)−

3

∑
i=1

b(i)1 ci +b(i)2 si

)
⊂ C[xi,ci,si : i = 1,2,3]

where b(1)1 = b(3)2 = (0,1,0), b(2)1 = b(1)2 = (0,0,1), b(3)1 = b(2)2 = (1,0,0) and I is
the ideal in (4). Then FS is the unique (up to scaling) generator of J∩C[x1,x2,x3]
and it can be computed using a computer algebra software, e.g., Macaulay2
[17].

One can verify that the surface S is singular in codimension 1. The singular
locus is highly reducible and has degree 294. Our next goal is to construct a
desingularization of S. Consider the rational parametrization of the (complex)
circle ψ : t 7→ (1−t2

1+t2 ,
2t

1−t2 ). Let Σ ◦ (ψ1 ×ψ2 ×ψ3) be the composition of the
addition map with the parameterization of the three circles ∂aDi; explicitly

C×C×C
ψ1×ψ2×ψ3

99K ∂aD1 ×∂aD2 ×∂aD3 → C3

(t1, t2, t3) 7→


 0

1−t21
1+t21
2t1

1+t21

 ,

 2t2
1+t22

0
1−t22
1+t22

 ,

 1−t23
1+t23
2t3

1+t23
0




(( x1
x2
x3

)
,
( y1

y2
y3

)
,
( z1

z2
z3

))
7→

(
x1+y1+z1
x2+y2+z2
x3+y3+z3

)
.

The differential of the composition is

M(t1, t2, t3) =


0 1−t2

2
1+t2

2

−2t3
1−t2

3
−2t1
1+t2

1
0 1−t2

3
1+t2

3
1−t2

1
1+t2

1

−2t2
1+t2

2
0


so that the critical locus is the hypersurface in C3 determined by the vanishing
of

det(M(t1, t2, t3)) =
1

(1+ t2
1)(1+ t2

2)(1+ t2
3)

[
(1− t2

1)(1− t2
2)(1− t2

3)−8t1t2t3
]
.

(5)
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The map Σ ◦ (ψ1 ×ψ2 ×ψ3) extends to a regular map ϕ : P1 ×P1 ×P1 → P3;
from (5), we obtain that the critical locus of this extension is the surface S̃ of
multidegree (2,2,2) defined by the equation

(s2
1 − t2

1)(s
2
2 − t2

2)(s
2
3 − t2

3)−8s1s2s3t1t2t3 = 0,

where [si, ti] are homogeneous coordinates on the i-th copy of P1.

Theorem 7.1. The surface S̃ is a smooth K3 surface. The map ϕ is a birational
equivalence between S̃ and S. In particular S̃ is a desingularization of S .

Proof. The smoothness and the irreducibility of S̃ are verified by a direct cal-
culation.

It is a classical fact that a smooth divisor of multidegree (2,2,2) in P1×P1×P1

is a K3 surface. For completeness, we give an explicit proof. Let OS̃ and ωS̃
be the structure and the canonical sheaves of S̃, respectively. We verify the two
conditions ωS̃ ≃OS̃ and h1(OS̃) = 0, characterizing a K3 surface.

First, we prove ωS̃ ≃ OS̃. This follows from the classical adjunction formula,
see, e.g., [14, Proposition 1.33]. Since S̃ is a smooth divisor of multidegree
(2,2,2), we have

ωS̃ =(ωP1×P1×P1(2,2,2))|S̃ =(OP1×P1×P1(−2,−2,−2)⊗OP1×P1×P1(2,2,2))|S̃

which is in fact OS̃ . In order to show h1(OS̃) = 0, consider the restriction exact
sequence of S̃:

0 →IS̃ →OP1×P1×P1 →OS̃ → 0.

Again, since S̃ is a smooth divisor of multidegree (2,2,2), we have IS̃ ≃
OP1×P1×P1(−2,−2,−2); passing to the long exact sequence in cohomology, we
have

· · · → H1(OP1×P1×P1)→ H1(OS̃)→ H2(OP1×P1×P1(−2,−2,−2))→ ·· ·

By Künneth’s formula, h1(OP1×P1×P1) = 0. Since OP1×P1×P1(−2,−2,−2) =
ωP1×P1×P1 , by Serre duality we obtain that h2(OP1×P1×P1(−2,−2,−2)) coin-
cides with h1(OP1×P1×P1) = 0. We conclude h1(OS̃) = 0. This shows that S̃ is
a K3 surface.

It remains to show that ϕ : S̃ → S is a birational equivalence. This follows
again by a direct calculation and by linearity of the addition map. Indeed, the
set of critical points of the addition map Σ : ∂aD1×∂aD2×∂aD3 →C3 is clearly
birational to S̃. Moreover, Theorem 6.1 implies that this set, regarded as a
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subvariety of C9 = C3 ×C3 ×C3, is a surface of degree 24. Since Σ : C9 → C3

is linear, the degree of the image of (the birational copy of) S̃ is at most 24;
moreover, if equality holds, then Σ is generically one-to-one [23, Theorem 5.11]
and it defines a birational equivalence between the critical locus and its image.
Since deg(S) = 24, we conclude.

The subdivision of R3 into its eight orthants induces a subdivision of the bound-
ary of the dice, hence of the set of its exposed points, i.e., S∩∂D. Each of these
eight regions can be parametrized by the corresponding arcs on two of the three
∂Di’s.

Let p ∈ S ∩∂D be written as p = ξ1 +ξ2 +ξ3, with ξi ∈ ∂Di. We parametrize
the boundaries of the discs via angles θ1,θ2,θ3 as follows:

∂D1 = {(0,0,1)cosθ1 +(0,1,0)sinθ1 : θ1 ∈ [0,2π]},
∂D2 = {(1,0,0)cosθ2 +(0,0,1)sinθ2 : θ1 ∈ [0,2π]},
∂D3 = {(0,1,0)cosθ3 +(1,0,0)sinθ3 : θ1 ∈ [0,2π]}.

Then the coordinates of ξ3 can be expressed as algebraic functions of the coor-
dinates of ξ1 and ξ2. More precisely, from the equation of the determinant (5),
we deduce

cosθ3 =± |sinθ1 sinθ2|√
cos2 θ1 cos2 θ2 + sin2

θ1 sin2
θ2

,

sinθ3 =± |cosθ1 cosθ2|√
cos2 θ1 cos2 θ2 + sin2

θ1 sin2
θ2

.

(6)

If (θ1,θ2) = (k π

2 ,(k+1)π

2 )× (l π

2 ,(l+1)π

2 ), then there are exactly two possible
choices of the signs in (6) such that ξ1 + ξ2 + ξ3 ∈ S. This subdivides the real
points of S into 32= 4 ·4 ·2 regions. Exactly eight of these regions cover S∩∂D
and they are identified by the condition that ξ1,ξ2,ξ3 belong to the same (closed)
orthant.

8. Conclusions

We summarize our main results concerning the purely nonlinear part of a generic
discotope.

• S is the Zariski closure of the set of exposed points of D for the following
types:

▶ N = (0,N,0, . . . ,0) with N ≥ d −1;

▶ N = (0, . . . ,0,N).
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• S is irreducible in the following cases:

▶ if (1) holds with the reverse inequality, in which case deg(S) = 2N ;

▶ N = (0,N,0, . . . ,0) with N ≥ d − 1, in which case deg(S) ≤ 2N ·( N
d−1

)
;

▶ N = (0, . . . ,0,N).

In this section, we discuss some open problems, and observations directed to-
ward future work.

A first question one should address regards an analogue of Theorem 6.1 when
discs of dimension higher than two are involved. We present an example to
explain some of the difficulties.

Example 8.1. Let D1 = {x4 = 0,x2
1+x2

2+x2
3 = 1}, D2 = {x1 = 0,x2

2+x2
3+x2

4 =
1} be two 3-discs in R4 and let D= D1+D2. This discotope is full dimensional
and dimS = 3. The ideal of the critical locus of the addition map can be com-
puted via a determinantal method similar to the one discussed in Section 6. We
obtain the equation of S,

x4
1+2x2

1x2
2+x4

2+2x2
1x2

3+2x2
2x2

3+x4
3−2x2

1x2
4+2x2

2x2
4+2x2

3x2
4+x4

4−4x2
2−4x2

3=0,

which is irreducible of degree 4. The boundary ∂D contains translates of the
3-dimensional discs: two translated copies of D1 at x4 = ±1 and two trans-
lated copies of D2 at x1 = ±1. The four points of their pairwise intersec-
tions are the only points exposed by more than one vector: these points are
(1,0,0,1),(−1,0,0,1),(−1,0,0,−1),(1,0,0,−1) and they are, respectively, ex-

Figure 4: Parametrization of S ∩ ∂D with two of the three circles. Given a pair of
generic (grey) points on the pink and green circle, there is a unique (white) point on the
yellow circle, such that their sum is an extreme exposed point of D (black).
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posed by the cones

C1 = {x2 = x3 = 0,x1 > 0,x4 > 0},
C2 = {x2 = x3 = 0,x1 < 0,x4 > 0},
C3 = {x2 = x3 = 0,x1 < 0,x4 < 0},
C4 = {x2 = x3 = 0,x1 > 0,x4 < 0}.

Notice that for every i and for every u ∈Ci, the hyperplane u⊥ contains ⟨D1⟩∩
⟨D2⟩, as observed in Example 5.6.

We point out that the determinantal method mentioned above to obtain the equa-
tion of S is not as straightforward as in the case of 2-dimensional discs. Implic-
itly, this method relies on a parametrization of the tangent bundle of the product
∂aD1 ×·· ·× ∂aDN , in order to impose that the differential of the addition map
has submaximal rank. For higher dimensional spheres this parametrization can-
not be global since their tangent bundles are not trivial, unlike the case of the
circle. Nevertheless, in the cases where it can be computed explicitly, the hy-
persurface S is irreducible, hence it is the Zariski closure of the set of exposed
points of D. We propose the following:

Conjecture 8.2. Let D be a generic discotope of type (0,N2, . . . ,Nd). Then S
is irreducible.

Theorem 4.3 proves the conjecture if (1) holds with the reverse inequality. Re-
mark 3.4 proves the statement in the case (0, . . . ,0,N), and Theorem 6.1 in the
case (0,N,0, . . . ,0).

In general, we expect the critical locus of Σ to be already irreducible, and the
addition map Σ to be a birational equivalence between critΣ and S. Were this
true, in the case of 2-dimensional discs, the upper bound in Theorem 6.1 would
be an equality. For higher dimensional discs, even under the assumption that the
critical locus is irreducible, computing its degree is not trivial and it would be
interesting to address it via the classical Giambelli-Thom-Porteous construction,
applied to the product of the tangent bundles of the spheres ∂aDi.

The geometric features highlighted in this work can be used as necessary condi-
tions for a convex body to be a discotope: for instance, there are restrictions for
the degrees of the Zariski closure of the set of exposed points. An important fu-
ture step would be to understand a characterization of discotopes among zonoids
or more generally among convex bodies, in the spirit of the zonoid problem. We
identify two problems in this direction.

Problem 8.3. Let K ⊆ Rd be a convex body and D ⊆ Rd be an n-dimensional
(generalized) disc. Determine whether D is a Minkowski summand of K, in the
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sense that there exists a convex body K′ ⊆ Rd such that K = K′+D.

Problem 8.3 is understood in the case where D is a disc of dimension 1, i.e. a
segment [7, Lemma 3.4]. We state the next problem in the language of [9].

Problem 8.4. Characterize the set of random vectors of Rd whose associated
Vitale zonoid is a full dimensional discotope in Rd .

Finally, we expect discotopes not to be spectrahedra, except possibly for small
special cases, for instance when N = 1. However, they are spectrahedral shad-
ows [27] since they are defined as Minkowski sums of spectrahedra. In Section
3 we observed that D is the convex hull of the semialgebraic set S ∩ ∂D. We
propose the following conjecture, which is verified in the cases that we can
compute explicitly.

Conjecture 8.5. The discotope D is the convex hull of the real points of S.

This would provide examples of real algebraic varieties whose convex hull is a
spectrahedral shadow. This topic has been studied for instance in [24, 26] and
is related to the Helton–Nie conjecture [19]. Such questions draw connections
between discotopes and the world of convex algebraic geometry, optimization
and semidefinite programming.
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