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LINEAR SYSTEMS OF SURFACES WITH
DOUBLE POINTS: TERRACINI REVISITED

JOAQUIM ROE - GIUSEPPE ZAPPALA - SILVANO BAGGIO

In this paper we study the linear systems of degree m hypersurfaces in
IP*, with d fixed points of multiplicity e in general position, focusing on the
case n = 3, e = 2, i.e,, linear systems of surfaces in projective 3-space with
d double points in general position. The goal is to compute the dimension
of such systems. We present to modern readers a method due to Terracini,
showing its similarities and differences to recent approaches.

Introduction.

We work over an algebraically closed field K of characteristic zero. Given
a scheme X C P", we denote by Iy its ideal sheaf, and by Iy C K[P"] =
Klxo, ..., x,] its (saturated) homogeneous ideal. If / C K[P"] is a homoge-
neous ideal, I,, will be its component in degree m.

Given a finite set of points X C P”, let X¢ be the scheme consisting of
these points taken with multiplicity e (i.e., if I is the ideal sheaf defining X as
a reduced scheme, then X° is the subscheme of P" defined by 7¢). Thus, the
linear system of degree m hypersurfaces going through the points of X with

multiplicity at least e is Lye(m) := P((Ixe)m) = P(H°(2°(m))). When X is
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a general set of d points, the virtual and expected dimensions of .£y.(m) are
given by

VALye(m) = Vdyaolm) = (") —d(*"7) -1,

edLyc(m) = edpgelm) = max{vdyy,(m),—1}.
When e = 2 and n = 3 we shall write simply vd;(m) = vds.42(m) and
edg(m) = eds.y.(m). Remark that dimLy.(m) = vdy,.s (m) if and only if
h'(Xxe(m)) = 0. Following Terracini’s paper [6], we shall prove

Theorem 1. Let g, = min{d € Z|vd;(m) < 0}. Assume m > 5 and let X be a
general set of q,, points in P?. Then dimL x2(m) =ed, (m) = —1.

This is essentially the same as the main result of [1], [2] or [3], except
that the latter apply to P",Vn > 2. To prove Theorem 1, Terracini uses
semicontinuity by specializing X to G = A U B, where B is a general set
of points in a plane 7, and then implicitly applies the long exact sequence in
cohomology of

0 — Tpup(m —1) — Tg(m) — Iprng, (m) —> 0.

This is a very well known procedure nowadays, used in fact in all the above
mentioned papers, which allows to prove the result by induction on the de-
gree, if |B| is chosen so that HO(Zp:up(m)) = H(Ignp(m)) = 0 or
HY(T205(m)) = H'(Ip2nn1z (m)) = 0 (which is done by assuming the analo-
gous result known in P?). However, since the degree of B? N 1 is necessarily a
multiple of 3, there are cases where it is impossible to choose | B| in such a way.
For these cases, some further technique is needed, and at this point Terracini’s
method diverges from that of Alexander-Hirschowitz or Chandler. Indeed, mod-
ern authors use sophisticated tools such as the differential Horace method. The
approach presented here uses only the characterization of linear systems which
admit a double point in general position in terms of their Jacobian matrix.

The paper is divided into two parts, in which the two cases m ¢ (3), m € (3)
are separately dealt with. Proposition 1.1 gives the departure point for the
induction, which is done in Propositions 1.4 and 2.2, thus proving
Theorem 1.

This paper arises from the school PRAGMATIC 2001, held in Catania by
prof. Ciro Ciliberto and prof. Rick Miranda. We are very grateful to them
for their help and suggestions. Moreover we would like to thank prof. Alfio
Ragusa, the organizer of PRAGMATIC, who gave us the great opportunity to
attend this school.
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1. The “‘easy” case: m ¢ (3).

Assume that the dimension of linear systems with double points in P? is
known (as was known by Terracini, see [S], or use the result by Hirschowitz,
[4]), that is, assume we know that for a general set X of d points

dimdL x2(m) = edy.4.2(m)
except ford = 2, m = 2 and ford = 5, m = 4, in which cases
dimLy2(m) = 0.

Let R, = K[xo, ..., x,] be the polynomial ring in n + 1 indeterminates,
and write R, ,, for the vector space of the forms of degree m. Set

. n-+m
Fnm = dlmRn,m = ( n );

recall that, by definition, g,, = min{d € Z|vd,;(m) < 0}, so

Gm = [rzzim} ; define also 1, = 4qy, — 73,p.

Note that 0 < 1, <3 and 74,4 — I'nm—1 = Fy—1,m for every m, n. The first step
to prove Theorem 1 is given by the following proposition.

Proposition 1.1. Let X be a general set of qs points in P3. Then
dimL 2 (5) = —1.

Proof.  Suppose that there is a surface, of degree 5 in P* with gs = 14 double
points in general position. Then by semicontinuity there is a surface S° C P3 of
degree 5 having a set A of 7 double points general in P? and a set B of other 7
double points general on a general plane 7. In this settlement S° must contain
m. Infactif w ¢ S°, then & NS> would be a quintic of 7 with 7 general double
points. But in P?, dimLz:(5) = edy.72(5) = —1 so such a quintic does not
exist. Then S° = 7 U §* where S* is a surface of degree 4 passing through
A% U B. But, by using similar ideas one sees that dim £4:(4) = ed;(4) = 6,
and, by the genericity of m, the surfaces of degree 4 having double points in
A cut on 7 a linear system of quartics of the same dimension, therefore none
of them passes through all the points of B (since they are 7 general points), a
contradiction. |

The following lemma of linear algebra is surely not new. However, as we
have not been able to find a suitable reference, we include a brief proof.
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Lemma 1.2. Let E be a vector space, and let F\, ..., F, C E be a finite set of
linear subspaces. Then

k k | k
Zdimf} fdim(ﬂF;) +(k—1)dim(ZF,->.
i=l1 i=1

i=]

Proof.  We proceed by induction on k. The case k = 1 is trivial and the case
k = 2 is the well known Grassmann formula. If k¥ > 2 we have

k k—1
Y dimF, =) dimF; + dim F

i=1 i=1

k-1

k-1 -
5dim<ﬂf}> +(k—2)dim<ZE> + dim F,

i=] [

i=1
k k-1 k—1
=dim(ﬂﬂ> +dim(ﬂF,~+Fk> +(k—2)dim<ZFi)
i=1

i=l i=1

k k k
_<_dim<ﬂF,-> +dim<ZF,-) +(k—2)dim<ZF,~>,
. =1 i=1

i=1
as wanted. O

Lemma 1.3. Suppose that there are no hypersurfaces of degree m > 0 with d
points of multiplicity > e in general position. Then d’ = d + vdy.q..(m) + 1
points of multiplicity e in general position impose independent conditions on
hypersurfaces of degree m. In other words, denoting by I the ideal sheaf of a
general set of s points in P", h°(1¢(m)) = 0 implies h' (1¢,(m)) = 0.

Note that hO(If,(m)) = 0 implies vd,.4.(m) < 0, so d’ < d. Terracini
proved this simple lemma in the case n = ¢ = 2, and used it also when n = 3,
e = 2. We give here a general proof, which follows his and uses linear algebra
only.

Proof.  Obviously we can assume d’ > 0. We shall prove that Vs < d’, and for
a general set Y of s points of P, dim £Ly.(m) = vd,. .(m), using induction on
s. For s = 0 the claim is obvious.

The induction step goes as follows. The hypothesis of the lemma says that
for a general set X of d points, dim Ly(m) = —1; i.e., Iy.(m) = 0. Let
A C X be a subset of s — 1 points of X (which are therefore general). The
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induction hypothesis is that dim £ 4¢(m) = vd,.;_; .(m), and we shall prove
that for every point p € X \ A, dim o geyype (m) = vd,;.5 . (m). Indeed, for each
p ofthed — s + 1 points in X \ A there is an inclusion

Tpeype(m) C Ipe(m),
and on the other hand

() Laeups(m) = Ix(m) = 0.

PEX\A
Applying lemma 1.2 we obtain
Z dim 7 peype(m) < (d — 5) dim ( Z IAeU,,e(m)> , SO
PEX\A peX\A
(d — s+ 1) dim Lgeype(m) < (d — s)dim I4e (m) = (d — 5)(Vdy5-1.(m) + 1),
Now an elementary computation shows that
(d = $)(Vlyis—1.0(m) +1) = (d — 5 + DVdnse + 1) = Ve — 1,

and the hypothesis that s < d’ implies —vd, 4. — 1 < d — s, so putting
everything together we obtain

. d—s
dlmoﬁAeUI,e(m) < Vdn;_\.,e + 1+ m —-1< Vdn;s,e +1;
as we know that dim £ geype (m) > vd,.; ., the claim follows. O

Proposition 1.4. If m > 5 is not multiple of 3 and, for a general set of g,_,
points Y C P3, dim Ly(m — 1) = —1 then for a general set of q,, points
X c P3, dim Lx(m) = —1.

Proof. Note that if m is not multiple of 3 then r, ,, is multiple of 3.

Let G = AU B be a set of points such that |A| = g, — 4* and |B| = &=,
and such that the points in A are general in P* and the points in B are general
in a plane # C P?. By semicontinuity, it is enough to prove that there is no
surface S, deg S™ = m, such that G> C §™. If ¥ ¢ S™ then the plane curve
S™ N 7 should contain Blzn i.e. it should contain %— general double points of

P2. Butin P?, dim Lz (m) = ed,, 2 ,(m) = —1, s0 necessarily 7 C §™. So
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§™ = §"" U with deg "' = m — 1. Moreover S”~! contains the schemes
A? and B.

Since by hypothesis there is no surface of degree m — 1 with ¢,,_, double
points in general position, then, by Lemma 1.3, g,,_; + vdg, (m — 1) + 1
points of multiplicity 2 in general position impose independent conditions on
surfaces of degree m — 1. Since vd,,_ (m — 1) + 1 = r3 g — 4qn-1 =
r3m—1 — 4’-3"1% = —Np-1 = —3 we have that d < g,,—; — 3 points of
multiplicity 2 in general position impose independent conditions on surfaces of
degree m — 1.

Now we have

¥3 m—1 3. 1,
X = gt — 1A = [ 20 ] [ ] 4 B

4 4

73 m—1 + =1 _ r3m + Nm + Fa.m .
4 4 3
—I2.m + Nm—1 — Nm 2m _
4 3=

2  Amet Z0m 153 4
12 4 4 4
for m > 8. Moreover x; = 21 —30+12 = 3, therefore x,, > 3 for every m > 5
and m not multiple of 3. Since |A| = @u_1 — Xm < Gm-1 — 3, A? imposes
independent conditions on surfaces of degree m — 1. Let £ = L 42(m — 1) be
the linear system of surfaces of degree m — 1 containing A. Then

1 r
dim £ = r3m—1 — 4Al — 1= 3,m—1 _4l-r34’11-| +4—2§;ﬂ —l=
I rz’
F3m—1 " 3m = Nm +4% - 1= —éin' — Nm — 1.

&L cuts on 7 a linear system of curves, of degree m — 1, L) whose dimension
is < %"l — nm — 1. Since the points in B are in general position, they impose
|B| = %— independent conditions on £, ; so the subsystem of £, of the curves
through B has dimension < —7,, — 1 < 0, a contradiction. O
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2. The “hard” case: m € (3).

As already mentioned in the introduction, if m is a multiple of 3 the method
of the previous section does not work, because then r; , is not a multiple of 3,
so one needs some extra subtlety. Terracini obtains the needed information via
a nice lemma on Jacobians of linear systems. As was the case for Lemma 1.3,
the following lemma is valid in IP" for arbitrary n with the same proof Terracini
gave for particular cases in 3.

Letnow R = K{[xp, ..., x,] be the polynomial ring in n+1 indeterminates,
and write R, for the vector space of the forms of degree m. If Gy, ..., G; € Ry,
are linearly independent forms spanning a linear system £, we denote by
Jac(Gy, ..., Gy) their Jacobian matrix. Note that the rank of the Jacobian
matrix evaluated at a given point does not depend on the set of generators
Gy, ..., Gs; € R, but only on the linear system £, and that it is maximal for
a general point (i.e., on a dense open set of P*); thus we define the rank of the
Jacobian of £ (at a general point) as rank ;£ := rank Jac(Gy, ..., Gg). Itis not
hard to see that rank ;£ < dim .£ if and only if for every point p € P"* there are
hypersurfaces in £ with multiplicity at least 2 at p.

Lemma 2.1. Let L be a linear system in P" with dim L < n, and let 7 C P"
be a hyperplane. Assume

1. rank; £ < dim £,
2. dim(L —~ ) =dimL — 1.
Then rank (L — )z < dim(L — 7).

Proof. Take coordinates such that the hyperplane 7 is defined by xo = 0, and
let s = dim J£. By the second assumption, the linear system £ is spanned by

F,xGy, ..., xoG, for some F € R,,, G; € R,,_, such that xy does not divide
F. Therefore by the first assumption the matrix

Fxo G'1 +x0(Gl)x0 Gs +x0(Gx)x0

Fx, xO(Gl)x; te XO(GS))q

Fx,, xO(GI)x,, e xO(Gs)x,,

has not maximal rank, i.e., its maximal minors vanish. Expanding these minors
according to powers of xy and collecting terms with xé", one sees that the
maximal minors of
0 G, e G
F/\/'l (G/I)Al e (G/S)X]

F. (GDx, - (G,

Xn
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must vanish, where for every form P (xy, ..., Xn),weset P'= P(0,xq,...,x,).
Now applying the Euler identity, also the maximal minors of

—mF’ 0 . 0
F;I (G,] )X| te (G;),ﬁ
F. (GDx, -+ (G,
must vanish. But F’ # 0, because x, does not divide F , SO the maximal
minors of , ,
(Gl)xl e (Gs)xl
(Gll)x,, e (G;)x"
vanish, i.e., Jac(G1, ... G}) does not have maximal rank. As G}, ... G’ obvi-

ously span (£ — )|z, We are done.

Proposition 2.2. Let m be multiple of 3 and assume that either m = 6 or for
a general set of q_y points Y C P3, dimLy(m — 1) = —1 and, for a general
set of Gm—a points Z C P3, dim L7 (m — 2) = —1, then, Jfor a general set of q,,
points X C P3, dim Ly (m) = —1.

Proof. Let G = AU B be a set of points such that |A| = g,, — 22=! — 1 and

[B| = r“’3_1, and, such that the points in A are general in P? and the points in B
are general on a plane 7.

First we would like to compute the dimension of the linear system f =
L2(m). Of course we have that dim £ > r3m—1—4|G| =3 - n,,. We shall

show that the equality holds. Let

m— m -1
D =gy — A= [RE] - [Ba ] BT

4 4
F3m—1 + Nm—1 . 3.m + Nm m— 1 | =
4 4 3
r2.m -1 Nm—1 _77m+3
12 4 '
Note that 5%"—1 = g and that h‘—an—” > 0580 x,, > 4 foreverym > 9, m

multiple of 3. Moreover xs = 3, so x,, > 3 for every m > 6, m multiple
of 3. Then, since by hypothesis there is no surface of degree m — 1 with g,,_;
double points in general position, using Lemma 1.3 we get that A% imposes 4|A|
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independent conditions on the linear system of the surfaces of degree m — 1. So,
writing £ = £L42(m — 1) we have

r3m — 1
dim £y = r3peg — 1= 4|4 = 22— 42—,
Moreover
r3m+nm r2m_‘1 r3m——2+77m-—-2
Al - -2 = - - - -1 . =
{ | dm-2 4 3 4
3r3,m - 3r3,m—l + 373,;71—1 - 3r3,m-—2 - 4r2,m + 3(77m - 77171—2) -8
12 -
3r2,m—1 —m + 3(‘77171 - 77m—2) -8 . m2 -1 + 3(T’m - nm—Z) -8 .
12 12 -
2 _ _ 2 2
m Mm — Nm—2 — 3 > m 6 m

— T T - - = —_—— 0 >
2T 4 237 b

ie. |A| > gn-2 for every m. On the other hand, for m > 9, m multiple of 3,
the assumptions say that there is no surface of degree m — 2 with g, double

points in general position, so dim£42(m — 2)) = —1. For m = 6 we have
|A] = 21 — 9 — 1 = 11 and there is no quartic surface with 11 double points
in general position, so dim £ 42(m — 2) = —1, for every m > 5, m multiple

of 3. Now let £} be the linear system of plane curves of degree m — 1 cut
by £ on 7. If dim £} < dim <L, then there is in £; a surface containing
and consequently there should be a surface of degree m — 2 containing A2, a
contradiction. So we have that dim .£] = dim .£,. Moreover, since the points
in B are in general, position, the curves of £} through B form a linear system
L (B) whose dimension is dim £} — |B| = 2 — 1, and the surfaces of .£;
through B form a linear system £(B) of the same dimension. But

d1m£Bz(m) = edZ;IBl,Z(m) = max{rzym — 3|B| -1, —1} =0

so we have only one curve in 7 through B? and consequently dim.£ <
2—1n+1=3-—n,ie. dimL = 3 —n,. Moreover L is generated by
7L (B), whose dimension is 2 — 7,, and by one surface not containing .

To complete the proof it is enough to show that there are no surfaces in
£ having a further double point in general position or equivalently that the
jacobian matrix of £ has maximal rank.

If n,, = 3 or n, = 2 itis trivial. Let us suppose that n,, = 1 and that the
jacobian matrix of £ has not maximal rank. Then using Lemma 2.1 we obtain
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that the jacobian matrix of the linear system .£}(B) has not maximal rank. But
dim £1(B) = 2 — 1, = 1, a contradiction.

Finally let us suppose that 7,, = 0O and that the jacobian matrix of .£ has
not maximal rank. Then dim£}(B) = 2 — n,, = 2, and by Lemma 2.1, the
jacobian matrix of £/ (B) has not maximal rank, so all the curves in £L(B) are
reducible. Then the surfaces in £ cut on every general plane 7 a linear system
&Ly, dim &£} = |B| + 2, such that all the jacobian matrices of the 2-dimensional
linear systems determined from it by fixing | B| general points have not maximal
rank. Consequently the curve of L' obtained by fixing |B| + 2 general points is
reducible, therefore every curve in £/ is reducible. Then all the surfaces in £,
have reducible plane section, so they are reducible. It follows that either £, has
a fixed component or it is a pencil involution.

More detailed explanation. If £ has a fixed component S¢, degS? = d,
then by the genericity, the points in A should be either all double, or all simple,
or §% does not pass through A. They cannot be double for S¢ because does not
exist any surface of degree less than m — 1 through A%. If they were simple
then the surfaces in the movable part of £y, of degree m — d — 1, should pass
through A also. So we should have simultaneously

r3qa—1>1A]l and r3-g-1 —1>|A| + |B|+2
i.e.

room — 1
3

(2) 3.4 2 gm — and 3 m—d—1 = Gm + 2;

. ‘L. . . . 3
but these inequalities are incompatible. In fact, since r3,, < (—”—’{A and
&)

gm = =;* for every m, they imply that
(d+2)3 3.m rom — 1 (m_d+1)3 r3.m
—re . — : d s 2;
G > 2 3 an z > 1 +
ie. s ,
7 4+ 2m* — 6
2P >tz mmt
4
and . ) ;
from which we get
3 3

(d+2)3>mT and (m—d + 1) > mT;
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so we have m "
——l<m—-d<m—-—=+2

&7 7

and comparing the first with the last term we obtain

3
3/2 —1

moreover if m = 6, gg¢ = 21 and the inequalities (2) imply

m < < 12;

(d+2)°>621-9 =72 and (7—d)? > 6(21 +2) = 138,
i.e. simultaneously d > 2 and d < 2;if m = 9, go = 55 and we get
(d+2)° > 6(55—18) =222 and (10 —d)® > 6(55+2) =342

i.e. simultaneously d > 4 and d < 4.

If S9 does not pass through A then there should be a surface of degree
n—d—1<n— 1 passing through A?, again a contradiction.

If £, were a pencil involution then its jacobian matrix would not have
maximal rank, so |A| 4+ 1 double points in general position should impose on
|@ps(m — 1)] less than 4(JA| + 1) independent conditions. But using (1) and
recalling that 7,, = 0 we have

rom— 1 Nm—1+ 3 27 3
-1— (A 1) =—= —1>
dm—1 (| [+ ) 12 4 - 12 4

Thenif 0 < NMm—1 < 2, qm—-1 — (|A| + 1) > NMm—1> if Nm—1 = 3 thenm > 9 and
q —_— | P —_— 5 > n) s
! ! 12 4 !

soin any case g1 — (|A|+1) = 0, = —vds,,, _, 2(m—1); then we can apply
Lemma 1.3 and we obtain that |A| + 1 general double points impose 4(JA| + 1)
independent conditions on surfaces of degree m — 1, a contradiction. O
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