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A CANONICAL RESOLUTION OF THE
SINGULARITIES OF A TRIPLE COVERING
OF ALGEBRAIC SURFACES .

GIANNI CIOLLI - LEONARDO MIHALCEA

We propose a canonical resolution of singularities for a triple covering
f : X — Y of algebraic surfaces, where X is normal and Y is smooth.

1. Introduction.

A canonical resolution of singularities for double coverings of algebraic
surfaces is described in [2].

If f: X — Y is such a cover, with X normal and Y smooth, then one
can blow up Y at the singularities of the branching curve, form a fibre square
and then normalize the new X we get in this manner. After finitely many such
transformations we get a new double cover f/ : X’ — Y’, with X" and Y’
smooth, plus X’ birational to X and Y’ birational to Y.

Essentially, this procedure is made possible by the very explicit local
equation of the double cover, 22 = F(x,y).

In the present paper we use a similar explicit local representation for triple
coverings — worked out by R. Miranda in [5] - to show that also in this case the
above procedure gives a canonical resolution.
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As pointed out by R. Miranda, this method fails when we are dealing with
quadruple coverings; we included an example in this respect.

This work is divided in two parts; “the hypersurface case” and “the general
case”, corresponding to our triple covering being locally represented by an
hypersurface or not (as discussed in [5]). The proof that the proposed algorithm
works is by induction.

We would like to thank the organizers of “Pragmatic 2001”, especially prof.
Alfio Ragusa, for providing us with the best possible conditions for studying and
enjoying our stay in Catania.

We would also like to thank prof. Ciro Ciliberto and prof. Rick Miranda
for their guidance through the preparation of this paper. We are also grateful to
Alberto Calabri, Mike Roth and Paolo Cascini for many useful discussions, and
to Stanca Ciupe for support.

2. Statement of the problem.

Let /' : X — Y be a triple covering of algebraic surfaces. Assume
Y to be smooth and X to be normal. This last condition implies that the
singularities of X must be isolated. In what follows we are actually interested
only in the behaviour of X near its singularities, so we can actually suppose that
Sing(X) = {Q}.

Moreover, we will suppose that our singularity is in the triple ramification
locus of the triple cover f. Indeed, over f(Q) we have three possibilities for
FHQ)):

(1) three points, corresponding to étale covering;
(2) two points, corresponding to étale & double covering;
(3) asingle point, corresponding to total ramification.

In the first case X must be nonsingular. In the second case, there exist a
neighborhood U of Q in X such that Jiv : U — f(U) is adouble covering; this
case is treated in [2], and is known to have a canonical resolution of singularities.
So we can assume that over f(Q) we have total ramification,

To start with, let’s observe that Q must lay over a singularity of the
branching curve € C Y ([1], thm. I1.5.2).

The canonical resolution of singularities that we propose is the following.

Let f : X — Y be as above. Blow up the smooth base ¥ at f(Q), and
continue blowing up until the reduced total transform of @ will have only normal
crossing divisors. This is possible by the Embedded Resolution of Singularities,
see e.g. theorem [3].

Form then the fiber product X = X xy ¥ asin figure 1, in which we denote
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Fig. 1. blow-up, fiber product and normalization

by C the total transform of . Consider then~the normalization v : X’ — X
the following proposition ensures that f’ := f o v is a triple covering (see also
[1], thm. II1.7.1).

Proposition 1. (refer to figure 1) Let f : X — Y be a triple covering of
surfaces, with Y smooth and X normal. Suppose that Y — Y is the blow-

up of Y in one of its points; put X =XxyYandletv:X — X be the
normalization. Then f ov:X' — Xisa triple covering.

Proof. We have to show that f” is a triple covering map, i.e. that it is flat and
finite of degree 3. Since f is finite of degree 3, f and then f’ will be generically
finite of degree 3. Then to complete the proof we have to show that f’ is finite
and flat.

Finiteness of f’ follows from the following

Theorem 1. (Chevalley, [6] p. 124). Let f : X — Y be a proper morphism
with finite fibers. If Y is a Noetherian scheme, then f is finite.

f is proper, so also f is proper (properness is preserved by base change).
Being normalization a finite map, also f” is proper. f has finite fibers, thus also
f and then f have finite fibers. Y’ is Noetherian because Y is such. Hypotheses
of theorem 1 are thus fulfilled, and f’ is proven to be finite.

To prove that f’ is flat we can use the following

Theorem 2. ([4]). Let f : X — Y be a morphism with X Cohen-Macaulay
and Y smooth. If all the fibers of f have the same dimension, then f is flat.
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Indeed, our surface is Cohen-Macaulay since it is normal, ¥ is smooth and
f' is finite; hence all of its fibers are O-dimensional. O

As a consequence we can thus make the following

Assumption. f : X — Y is a triple covering, X is normal, Y smooth,
Sing(X) = {Q}, f is totally ramified over f(Q), the singularities of the
branching curve C are only nodes with multiplicity (that is, the reduced branch-
ing curve has only double points).

Our claim is that we can resolve these nodes by blowing them up and
“partially normalizing” X along some of the exceptional divisors that we get, or
along suitable divisors corresponding to the tangents at the nodes. Since at the
end we get a new branching curve which is smooth, the corresponding X must
be nonsingular and thus normal.

So far we have worked without any assumption on Y, except smoothness.
To make the computations a little less cumbersome, we assume initially that
Y = A?, since the result we want to prove is local in nature; later we will show
that the general case can be worked out quite similarly as this one.

3. The hypersurface case.

Assumption. Since now — and unless otherwise specified — we assume that
f X — Y is the triple covering such that Y = Ai‘y, X = {2+ 3zg(x, y) +
2h(x,y) =0} C Aiy’z, [ is given by the projection and the branching curve
has an unique singularity at (0, 0) which is a reducible node with multiplicity.

By using Cardano equations, together with the fact that (0, 0, 0) € Sing (X)
is totally ramified, we get that

g(0,0) = h(0,0) = %(o, 0) = %(O, 0) =0.
ox y

In this case, the equation of the branching curve is given by A : g3 +h2 = x™m yn
near (0, 0); by making a renormalization we can actually write
A g+ h?=x"myn,

Let p be a polynomial; with ord p we denote the multiplicity of p at the origin.
If ord p = d, then by writing p = p;+. .. we mean that p, is the lowest-degree
nonzero homogeneous part, that is, the dots denote the sum of all monomials
having degree greater than d. Using this notation, we define F,, and F,, by

g=F, +... and h=F,+....
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Definition 1. The node-order of ¢ € X is the order of f(q) in the branching
curve of the covering f. ’

We will use induction on n + m = N, the node-order of (0, 0, 0); that is,
we will resolve the singularity (0, 0, 0) supposing that any singularity go € X,
for any covering fy : Xo — Yo whose node-order is smaller than N has a
canonical resolution.

Proposition 2. Let X, Y, f, N be as described above. Then there exists a se-
quence of blow-ups of points and partial normalizations along suitable divisors
such that the corresponding node-orders are all strictly smaller than N.

Proof. 'The proof is split in some cases; nevertheless, before examining them
in detail, it is useful to state notations and to make some general computations.
Let ¥ = BLY; ¥ is covered by two affine charts. In the chart C, given
by
Oy : Aiy, — Y

(x,t) = (tx,1)

the equation defining X in the pull-back is
X, 22 +3zg(tx, 1) + 2h(tx,1) =0;

by defining gy, i, with g(tx,t) = t" g, (x,¢) and h(tx,t) = t"h,(x, t) we get
the equations
X, 22 4+32t"g, +2t"h, =0,

Gy : t3”-‘gi +t22p? = xmtN = 0.

Let E be the exceptional divisor and k € N, £ > 0. The partial normalization
v along —kE is dual to the substitution v : % +> z, after which we obtain the
equations

(1) Xyt 2+ 3arm gy + 270, =0,

@; . t3n|-6kgi + t2nz*6kh§ — xth—6k =0;
doing the same computations in the other affine chart

. 2
oy A7, e Y

t,y)y = (t,ty)
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we get the equations

X’y A 3zt”“2kgy + 2x”2_3khy =0,

e; : t3nl_6kg$ + t2n2-—6kh§ — l.N—ékyn — O.

We will call fundamental transformation each step of the above type, that is: the
composition of the blow up in (0, 0), the greatest partial normalization which
can be done and the restriction to both the affine charts.

Each fundamental transformation gives us two affine triple coverings,
respectively given by the pair (gy, k) = (""g,, " %h,) over A2, and
by (g5, h}) = (1"~*g,, t"*p ) over A7 . With the pair (new g, new h)
we will denote one of those two pairs, and (new N) will be the corresponding
node-order of (0, 0). '

Case 1: 3n; = 2n,. We have N > 3n; = 2n, = 6k for some positive integer
k. After a fundamental transformation we look in a chart, say in C,, and we get

gi + h,% — xth—6k

as the equation of the branching curve. v

If that transformation doesn’t break the equality, that is, if 3 ord(new g)=2
ord(new #), then we repeat the fundamental transformation; we remark that in
this case (new g) = 0 and (new 4) = 0 are exactly the equations of the proper
strict transforms of the curves g=0,A=0.

This shows that we have two possibilities:

e after finitely many steps both (new g) = 0 and (new /) = 0 are nonsingular.
This means that (e.g. in C,) 2£(0, 0) and %(O, 0) cannot both be zero, so
the ramification above (0, 0) is not total, and we are done (see the remark
at the beginning of the hypersurface case).

e after a finite number of steps the equality doesn’t hold anymore: for
example, 3 ord(new g) <2 ord(new k). We first notice that, since we
were getting proper transforms (until last step), we getord(new g) < ord g
and ord(new %) < ord h; since the first inequality is forced to be strict, the
degree of the branching curve at this step will be 3 ord(new g) < N, and
we are done by induction. The other inequality is treated in an analogous

manner.

Case 2: 3n) <2ny N =3n, and C : xMyt = (F,,,)3 = (x¥yh)3; remembering
(1) we blow up and normalize, with k = | ¥ | = L5
In the chart C, we get

Cp (M) =0,
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If ny = 2k, this curve is smooth; so we can assume that n; = 2k + 1 and
C, (x%t)> = 0. If a + 1 < n; we are done by induction; otherwise, since
a+ B =n;and a, B > 0, we necessarily have o = 2k and B = 1, that is

e: x%*y =0, C.: x* =0,

We have N = new N; two possible cases arise:

o x? divides g. Since x® divides x%y3, x divides both g3 and
g + h* = x8y3 thus x6)h? i.e. x3|h. A routine computation allows
to verify that, instead of the substitution % > z, we can do the (greater)
partial normalization which corresponds to the substitution L= z. So
we perform this alternate partial normalization and we get a branch curve
C/ : x563 = 0 in which the node-order of (0, 0) is strictly less than N.

o x? does not divide g. This means that g contains a nonzero term of
type cy?® or cxy?; it is trivial to note that such a term has been transformed
into a term of (new g) which has strictly smaller degree. Now, since
ord(g? + h2) = ord(x®1?) is odd, it can’t be that 3 ord g/ > 2 ord 4’; so
either we fall in case 1 (=) with (new N) < N or we fall again in this case:
3ord g, < 2ord hy with N = new N = 6k + 3. The previous argument
ensures that after a finite number of steps each one falling in this case we
have ord( new g) < 2k + 1; thus new N = 3 ord(new g) < 6k -+ 3 and we

are done by induction.

In the other chart C, the situation is completely symmetrical, so the proof is
identical provided that we rename some symbols accordingly.

Case 3: 3n) > 2n,N = 2n3 and C : x™y" = (F,,)* = (x*y#)?; we blow up
and normalize with k = | & | = | 2.

We look only into C,; for the other chart a symmetrical proof holds. The
branching curve is given by

C,: ()2 = 0.

Since if ny = 3k this curve is smooth, we have two possible subcases.

Subcase 3.1: n, = 3k + 1 The hypotheses imply that €. : (x*t)? = 0,
N = 6k + 2; thus if @ + 1 < n, we are done by induction. Otherwise, since
a+pB=nyande,f >0itmustbe =n, — 1 =3k and B = 1, that is

C: x%y? =0, e, : x%*? =0,

and in particular N = new N. Asin case 2, we have two possibilities:
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o x* divides 2. Since x® divides x%y2, xS divides both 42 and 2+
h* = x®y2 thus x%|g% ie. x%|g. So we could have done the greater
partial normalization % > z getting as the branch locus the curve
CY : x%5¢2 = 0 which gives (new N) = N —6 < N.

e x> does not divide 4. h contains a nonzero term of type cy®, cxy? or
cx?y“; each one of them is brought by a fundamental transformation into
a monomial having strictly smaller degree. Indeed, by definition

h(tx,t)  h(tx,t)
hX(x, t) = ) = t3k+l ?

so they are transformed respectively into ct* 31 cxr9=3% and cx2pa—3k+2,
Since ord(g,* + h'%) = ord(x%1?) is not multiple of 3, it can’t be that 3
ord g, < 2 ord A’ ; so either we fall in case 1 (=) with (new N) < N or we
fall again in subcase 3.1: 3 ord g, > 2 ord 4. with N = new N = 6k + 2,
which is resolved in the same way as case 2.

Subcase 3.2: ny = 3k+2 Asin subcase 3.1 C.:(x*tH?=0,N = 6k+4 = ny,
new N = 2o 44, and if @ + 2 < n, we are done by induction; being o, 8 > 0
and « + B = n, it must be either o = 3k (the proof in this case is omitted since
it is very similar to the one for subcase 3.1) or @ = 3k - 1. Let us be in this last
case, say

C: ()2 =0, €G22 =0, newN=N+2.

We have that 3 ord ¢ > 2 ord 4 (if not, the equation of €, : x%+2¢4 = ¢
must be a cube, which is impossible) so 2 ord h’. < new N = 6k + 6. If ord
B, = 3k + 3, then (new N) is multiple of 3 and we are done by one more
fundamental transformation. If ord 4. < 3k + 3, then 2 ord k ¢ < 6k-+6 =new
N, 50 in the equation of €, the lowest-degree monomial of h’, must be canceled
by some other monomial, which implies 3 ord g, = 2 ord A, and in particular
ord g, < 2k +2, thatis ord g/, < 2k + 1.

Then, proceeding as in case 1, after enough many fundamental transforma-
tions either we get one of (new g) or (new h) nonsingular (which excludes total
ramification), or one of ord (new g) and ord(new h) must decrease.

Ifitis ord(new %), then (new N) < 2((Bk+2)—1) =23k+1) < 2(3k+2);
if it is ord(new g) then N < 3((2k + 1) — 1) = 6k. In both cases we are done
by induction.

|

To ensure that the present proof is working, we have to show that blowing-
up and normalizing at each step of our procedure produces the same result as
blowing up several times and normalizing only at the end; this is accomplished
by the following lemma (which holds also in a broader context).
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Lemma 1. Let f : X — Y be a surjective and flat map of surfaces which is
finite of degree 3. Consider the diagram in figure 2, where o denotes the blow-
up of Y in one of its points and v, V' and v, are normalization maps; then X 1
is isomorphic to X'.

xl
Vl
\\YY’ /l / XI
Xxy YV =X
Yl:/

Fig. 2 the diagram referred by lemma 1

Proof. The proof is carried out by adjoining maps to the diagram without
violating commutativity, by five applications of universal properties.

(1) From f': X! - Y and voa;:X,— X weobtain
1 1
p: X > X' =XxyY'.

@) Liftgpov : X, > X' to §:X|,— X'.
B3)Liftaov : X' > X to n:X — X.

(4) n, together with X —Y, gives ¥ : X — X| = X xyY'.
G)Lifty to ¥ X — X!,

The diagram obtained by adjoining all of those maps is commutative; thus @
and i are each one the inverse of the other, giving the isomorphism between
X and X' O

So far, we have proven the following
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Proposition 3. Let f : X — Y be a triple covering of algebraic surfaces, such
that each y € Y has a neighborhood U such that

o U is isomorphic to A?;
o V= f~Y(U) is isomorphic to an hypersurface in A*;
e flv is given by the projection.

Then there is a canonical resolution of singularities as follows:

(1) Blow-up Y in all the singularities of the branching curve C.

(2) Form a fiber product and normalize, getting a new covering as described
in proposition 1; repeat from step 1 until all singularities of C are at worst
nodes with multiplicities.

(3) Blow up the nodal singularities, form a fiber product and normalize, as
above, to get a nonsingular covering (proven by induction using proposi-
tion 2).

4. The general case.

R. Miranda proved in [5] that any triple cover can be given locally by a
projection

Y x A
2) —_ Y
(F,G, H)
where
F = z>—az—bw - 24, A = a*—bd,
3) G = zw+dz+aw+ B, B = ad — bc,
H = w?—cz—-dw-2C, C = d*—ac,

and a,b,c,d € Oy. For now, we still suppose that every point in Y has a
neighborhood isomorphic to A2, that is: we assume that ¥ = A? and p = (0, 0)
is the unique singularity of the branch curve; we denote by m, the maximal
ideal in Oy .

Now we need two results from [5].

Proposition 4. ([5], Corollary 4.6). The locus in Y over which there is total
ramification is defined by the ideal (A, B, C) in Oy.
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Proposition 5. ([5], Proposition 5.2). X is singular over p if and only if one of
the following conditions holds:
i) a,b,c,d emy;

ii) a,cemy, be m]%;

iii) b,dem,, ce mf,;

iv) b¢m, Aem,, bB —2aA€ m/%;

v) ¢ fem,, C€m,, cB—2dCem’;

vi) b, A fem,, Dems;
vii) ¢, C fem,, D em?;,

where D = B* — 4AC.

Ifb /em, or ¢ /€ m,, then we can solve for w in terms of z (or vice-versa)
by tensoring with K (Y); thus we get a local equation for X of the form

3 +3g0x, )z +2h(x,y) =0 in ¥ x Al, withg,he Oy

where — once again — the covering is just the projection (to be more precise, the
“new X that we get will be birational with the “old X, but the branching curve
in Y will remain locally unchanged). So we can suppose b, ¢ € m,.

Also, if a /€ m, or d /€ m, then one of A, B or C is not in m, so
by proposition 4 we don’t have total ramification. The next lemma shows that
these cases are enough to complete the argument.

Lemma 2. There exists a chain of blow-ups and partial normalizations such
that none of the singularities of the new covering is of type i).

Let
f= g ca,ﬁx"yﬁ e K[x, y]
(. B)ely

be a polynomial, where Iy = {(a, B)|cq,p # 0} C N?; we put

w(f) = J x* cKix,yl

(a,,B)EIf )
If fi,..., fx € K[x, y], we denote by M(f, .‘..,fk) = u(fHU...Uulfi),
and let my, ..., my be the minimal set of generators for the (monomial) ideal
generated by the elements of M(f1, ..., f).

The minimality of the m; implies that we can eventually reorder them in
such a way that

log,(m;) < log,(my) < ... < log,(my) and
log,(m;) > log,(my) > ... > log,(my)
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We can represent graphically a set of monomials § C K[x, y] in the plane with
coordinates (c, B) by putting a point at («, ) if and only if S contains a nonzero
monomial of the form ¢, gxy?.

This is the setting in which we express the following

Definition 2. A box is a rectangle which edges are either horizontal or vertical,

The box associated to fi, ..., fy is the smallest box which contains all the
points which represent the minimal generators of the ideal (M (my, ..., m;,)).
The box-size of fi, ..., fi is the area of the box associated to fi, ..., fy, i.e.

the non-negative integer

BS(f1,..., fi) = (log,(my) — log,(m,)) x (log,(m1) —log, (m4)) .

See figure 4 for an example relevant to this definition.

log,

f5 =x8 y lng

BS(f)=6x8=48

Fig. 3. The box-size of x?y? + x3y® 4+ x5y% 4+ x7y? 4 x8y is 48

Proof of lemma 2. A simple computation shows that the partial normalization
corresponding to the substitutions

@) 2, w) > (;% xj‘;ﬂ)

transforms the covering given by (a, b, ¢, d) in the one given by

( a b c d
x@yB’ xayB’ xeyp’ x‘”yﬂ>'
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If we represent-the monomials of a, b, ¢, d graphically, the substitution corre-
sponds to the translation (h, k) — (h — «, k — B), proving that BS remains
unchanged under the action of such substitutions.

On the other hand, we will show that BS strictly decreases under blow-ups
(see e.g. figure 4).

Let’s first examine how the blow-up substitutions x = X, y = X y behave
under this graphical paradigm (the case of the other substitutions x = xy,
y =y is similar). A monomial x*y? becomes x**#3# that is, the («, B)-plane
undergoes the linear transformation («, 8) — (@ + B, B).

Let D and Dy be the boxes corresponding respectively to the minimal
generators of the ideals J = (M(a, b, c,d)) and J' = (M(d', b, ¢, d")), where
a = a(x,xy),...,d = d(x,xy); by definition BS (a, b, ¢,d) = area (D)
and BS (¢, b, ¢/, d") = area (D).

Claim. area (Dj) < area (D).

Proof of the claim. Suppose that the minimal generators of J are x* y#, .. .|
x% yPi: since they are minimal, we can eventually reorder them and assume that
oy < ...<apand B; > ... > .

The generators of J' will correspond to pairs (a; + Bi, Bi), ..., (an +
Br» Br). A minimal set of generators for J’ will then consist of a subset of these
pairs, indexed by 1 <ij < ... <iy < h,suchthat oy, + B, < ... <« + B,
and,B,-] > ... > ﬂ,‘k.

Then B;, — Bi, < B1 — Bn. so height(Dy) < height(D).

Also width(Dg) = (ay, + B;,) — (@i, + Biy) = (e, — ;) + (Bi, — Biy) <
ap — oy, with equality if and only if i} = 1, iy = &, B;, = B;,, thatis B, = B;.
Butarea (D) > 0 = B, < B, so width (Dp) < o, — ;.

Then area (Dg) < (o — ay)(B1 — Br) = area (D). O

Now we apply these facts to BS (a, b, ¢, d): by repeatedly blowing-up sin-
gularities and eventually doing partial normalizations of type (4), we necessarily
obtain an X’ which is covered by affine charts all of whose singularities are such
that BS (a, b, ¢, d) = 0.

This last condition means that all monomials of M (a, b, ¢, d) are multiples
of the same monomial x*y#; thus, after the partial normalization

z w
(z, w) = ( , )
xeyP " xayh

M contains a constant monomial, that is, one of a, b, ¢, d is not in m,. O

So far, the assumption that Y is locally isomorphic to A% was used only to
ensure the existence of local coordinates on Y'; but this can actually be done for
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any smooth Y. Indeed, we can always choose local parameters u; and u, about
a point y € ¥; moreover, we can suppose that they are given by some regular
functions on a suitable neighborhood U of y in ¥ which are nonsingular at y
and such that y is their only common zero in U. Blow-up and normalization
can be done using u,, u as local coordinates instead of x, y.

We also notice that, since we have required the total transform of the
branching curve of f to be a normal crossing divisor, we see that the singu-
larities of this total transform are algebraically reducible nodes, and that they
can be expressed locally as uju}y = 0, where u; are local parameters around the
singularity. So every computation done before is valid using local parameters,
and we have the following

log,

logy

| I I I I T I I I ] I

Fig. 4. Box-size decreases by blowing-up
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Theorem 3. Let f : X — Y be a triple covering of algebraic surfaces, with X
normal and Y smooth. Then there exists a canonical resolution of singularities
of the covering f : X — Y as described in proposition 3.

Example. R. Miranda communicated to us an example which proves that the
above approach doesn’t work for 4-coverings. Indeed, let X be given by
z* =xyin A] ,, with (as usual) the covering map given by the projection.

We note that X is normal: indeed, it is complete intersection in the smooth
A3; thus normality is equivalent to regularity in codimension 1, which holds for
X, since Sing X = (0,0, 0).

To show that the algorithm doesn’t resolve the singularity, it is enough to
show a suitable sequence of substitutions, chosen among

o]

under which action (after partial normalization) some singularity remains un-
changed. But:

= xy
and :
= y (py {

<=

Px
z4=xyr——>z4=x2y

and

Px Ox z=z/y
=ty S A=y S =%y S =ty

It remains to show that the normalization of z* = x?y is singular. Define

_ K[x, v, z] N Kix, w,z]

(z* — x2y) (z2 — xw) =B

A:

by
2

XX, YrQ—> w', Z+—2Z;
being B integral over A, it must be included in the normalization of A. But B
is easily seen to be normal: the above inclusion is thus an equality, and B is the
normalization of A. Finally, B is singular. -
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