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ON A DEGENERATION OF THE SYMMETRIC PRODUCT
OF A CURVE WITH GENERAL MODULI

GIANLUCA PACIENZA - FRANCESCO POLIZZI

Let C be a smooth curve of genus g > 1 which degenerates to a rational
g-cuspidal curve Cp, and let L, ,, be a line bundle of type (n+y)x —y(8/2)
over C@ where x is the tautological class and § is the diagonal class. We
study the degeneration of £, to C(()z). The case with nodes instead of cusps
has been studied by Franchetta and Ciliberto-Kouvidakis.

1. Introduction.

Let C be a_smooth curve of genus g > 1, and let C® be its second
symmetric product, which is defined as the quotient of the cartesian product by
the natural involution. The map C x C — C® is ramified along the diagonal,
hence if A is the diagonal divisor in C®, the class of A in the Neron-Severi
group of C® is divisible by two. If P, Q are points of C, we denote by P + Q
the corresponding point on C®. It is well known that if C has general moduli
the Neron-Severi group of C® is generated by the following classes: the class
of the curve Xp := {P + Q |Q € C}, which is independent of the choice of
P, and the class of A/2 (cf. [5], Ch. 2 Sect. 5). Following [1] we denote x the
class of X p and by & the class of A.

Let now £ be a line bundle on C?; then .L is algebraically equivalent to
a line bundle of class (n + y)x — y(8/2); the number y is called the valence
of the line bundle, and we denote by £, , a line bundle of this type. Since
x2=1, (8/2)>=1-g, x.(8/2) = 1, we have that OC%,}, =n?—y2g.
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We are interested in the cone of effective divisors on C? in the x, (8 /2)-
plane. By standard Mori theory, a class of a curve is on the boundary of this
cone if it has non positive square (see [2] Lemma 4.5). This is the case of the
diagonal. To obtain the description of the effective cone it is then sufficient to
see whether or not there is a curve D ¢ C® with non-positive self intersection
and whose numerical equivalence class is not proportional to § (see [8] for the
description of the cone of curves on higher symmetric products). To prove that
such a curve cannot exist Ciliberto and Kouvidakis use in [1] the degeneration
of a curve of genus g with general moduli to a rational curve with g nodes;
this technique has been worked out by Franchetta in [4]. The idea of the
degeneration goes as follows. When the curve C degenerates to a curve C
with g nodes, the symmetric product C® degenerates to Céz); letv: Cy— Cy
be the normalization map. Forany i = 1,..., g, let P!, P? be the two points
which are the preimage of a node P; under the normalization map v. The curve
C~o is isomorphic to P!, s0 its symmetric product is isomorphic to P2. If we

. . ~ . . . . ~ (@) .
identify Cy with a smooth conic I' < P2, then the isomorphism Gy P2
sends P + Q,if P # Q, to the intersection of the two tangents TpI' N Ty,

. . ~ (2 . . .
it sends the diagonal of CO( ) to the conic I' itself, and the curve X p to the line
tangent to I" at the point 2P ; we will abuse notation and denote this line again

by Xp. Clearly we have a birational map  : CP—-==p2.Ifo: W CcP?

is the desingularization of C((,z), then the birational map v lifts to a birational
morphism ¢ : W — P2, and it is possible to describe the limit on Céz) of a
line bundle of type &L,y giving the linear system on the plane P? induced by
¢. For more details see [1]; here we explain only the main result. For any i
define an isomorphism w; between the lines X pis X p2 as follows: given a point

P € C, take the tangent line to conic I' at the point 2P — this tangent intersects
the above pair of lines in a pair of points which correspond to each other under
w;. It is possible to prove the following statement (see [1], Prop. 2.1):

Theorem. (Ciliberto - Kouvidakis). Let £, , be a line bundle on' C@ with
y > 0; then it induces under the Franchetta degeneration a linear system
Cp2 on P? given by curves of degree n which pass through the g points
Pl»1 +P?i=1,..., g with multiplicity y. Moreover :

(%) a limit curve in Cp: intersects the lines X p'» X p2 in points which corre-
spond to each other under w; (see fig. 1).

Now, if there were a curve D, , € C@ of type (n, y), with D? < 0 (that
is n* < y2g), it would give rise, by the result above, to a curve Dy in a planar
linear system which, according to the Nagata conjecture (see [7]), should be -

2
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P[/ + P‘.Z

Fig. 1. Picture of condition ()

empty. Since the conjecture is known to be true for a quadratic number of points
g = m? > 10, Ciliberto and Kouvidakis obtain in this way the description of
the cone of curves of C®, for quadratic genera > 16 (for the case g = 9 they
provide a supplementary argument). For another proof of this result see also [6].

The curves in the limit linear system satisfy moreover the property ().
This condition a priori could be used when g # m?, but, in practice, it is
difficult to handle. Here we let the genus g curve C degenerate to a rational
curve Co with g cusps. The main motivation for this work is to extend Ciliberto
and Kouvidakis’ result to the case of the cuspidal degeneration in order to obtain
another extra condition, hopefully more useful; the idea is that the cusp is the
“limit” of a node when the two tangents to the branches of the node approach
each other. In the above notations our main result is the following:

Theorem 1. Let £, be a line bundle on C® with y > 0; then it induces,
under the Franchetta degeneration to a rational g-cuspidal curve Cy, a linear
system Cp, on P2 given by curves of degree n which pass through the g points
2 P; with multiplicity y. Moreover :

(+) if a limit curve Dy € Cy, intersects the line X p, at a point P; + Q, then it
is tangent to the line X g at P; + Q (see fig. 2).

2. The cuspidal Franchetta degeneration.

Let 7 : X — U be a flat family of curves over the complex disk
U = {|t] < 1}; let us suppose that the fiber X, is a smooth genus g curve
for ¢t # 0, whereas the central fiber Xj is a rational curve with g cusps. We can
consider the second symmetric product of this family, and we obtain the family

p:Y—=U
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Pi+Q

Figure 2. Picture of condition (xx)

such that ¥, = X,(z); obviously Y, is a smooth surface for ¢ # 0, whereas Y,
is a singular surface isomorphic to X((,2). Since the problem is local around the
cusps, we can restrict to the case g = 1; then Xj is a rational curve with a
single cusp P, and the singular locus of ¥, = X(()z) is a cuspidal curve given
by {P + Q |Q € Xp}. Let us denote by S the central fiber of Y; exactly as in
[1], S is birational to P? and we will denote again by ¥ the natural birational
map; in this case - is bijective and bicontinuous, but it is not an isomorphism,
because it is not regular on the cuspidal curve of S. On the other hand, the
inverse map v ~! is regular everywhere: actually, it is a desingularization of S.
We want describe the 3-fold ¥ and its central fiber Y, in a neighborhood of the
point 2P.

First of all, we write equations for the variety Sym2C2. This is done in [1],
pg. 328, in the following way. We start with the ordinary product C? x C? with
coordinates (x1, x2; y;, y2); the symmetric product is the quotient of this variety
by the equivalence relation (x;, x2; v, y2) ~ (¥1, ¥2; X1, x2). Under the change
of coordinates:

o — (x;i + i) I (x; — yi)
| B 2 ’ | 2

the equivalence relation becomes (s, 53; 71, ra) ~ (sy, 82; —ry, —r,). In other
words, we have the isomorphism

(C2
Sym?C? = C? x — .

Since & is clearly isomorphic to a quadric cone in C3, we have an embedding:

L Sym?C? e C2 x CP = (3
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induced by the map: C? x C? — C? given by:
) )
(81,825 71, 12) => (81, 82, 77,75, 7172)

In a neighborhood of the cusp of the zero fiber the family 7 : X — U is given in
C? x U with coordinates (xy, x2, ) by the equation x — x? = ¢ and 7 is given
by the projection to the ¢ coordinate; the equations of the symmetric product of
this family in C? x C? x U are x; —x; = t, y2 — y3 = t. Then the image under
¢ of this family is a local description of Y in a neighborhood of the point 2P.
Recalling the expressions for x;, y; in terms of s;, 7; we obtain the following
equations:
(1 {(S2+r2)z~‘(51 +r1)§=f

(s2—=r)"—(s1—rp)” =t

The coordinates in C? are:
— — . _ 2 .2 _
Z1=9581, 22=8, B3=T, =1, I5=Trrhr.

Summing the two equations in (1) we have 2s22 + 2r22 — 2513 — 6s1rl2 = 2¢;
subtracting them after multiplication by r; we have 2s,(rr2) — 35?72 — r¥ = 0;
subtracting them after multiplication by r, we have 2s2r22 - 3s12r1 rp— rlz(rlrz) =
0. Hence the equations defining ¥ in C> x U are the following:

22— 2324=0
Bt+za—z; -3z =t
22224 — 32375 — 2325 = 0
22025 —3zjz3 — 23 =0

@)

It is easy to verify that these equations define a fibration of surfaces over the
disk that we denote by p : ¥ — U, and that the total space Y is singular only at
the origin. For ¢ 5 0 the fiber Y, is a smooth surface, whereas for ¢t = O the fiber
Yy is a singular surface isomorphic to the second symmetric product X(()Z). In
the paper of Ciliberto and Kouvidakis the central fiber was reducible with three
irreducible components, since they studied the degeneration to a nodal curve
and the local equation of the node is xy = ¢; in our case the central fiber is an
irreducible surface singular along the cuspidal curve of the symmetric product.
It is easy to find equations in C3 for the singular curve of Yp; in fact it is the
image in Sym*C? of the curve in C? x C? defined parametrically by:

{(0,0; u?, u?)|u € C} U {(u?, u?; 0, 0)|u € C}.
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In coordinates sy, 55, 1, 5 this becomes:

u? u3

512”1:— 52:}"2:———-

2 2

so that the parametric equations for the singular curve of Y, in C° are:

This gives the following equations:

Z%—Z3 =0
3) % =2 =0

2122 —25 =0

22123 — 24 =0

Now we consider the diagonal D of the fibered symmetric product, which
passes through the point 2P of the surface S; it is quite easy to write equations
for D; in fact, if (x1, x2) + (y1, ¥2) is a point of Sym*C?, it belongs to D if and
only if x; = y;, xp = yp, sothat s; +r; = s; —ry, 52 +r, = 5, — r, and this
implies r; = r, = 0. Then we have z3 = 74 = z5 = 0, and substituting in the
equations (2) it follows that the diagonal D of Y is expressed by the equations:

23=24=25=0

Hence the intersection A of & with the central fiber is given by:

Z3=24=2=0

5
) { 3—2;=0

which is a copy of the curve Xy in the (z1, z2) -plane. Now we blow up the
origin in C° x U; the exceptional divisor E is obviously a P5. Let Ay, ..., As, A
be the homogeneous coordinates in the exceptional divisor; then by (2) it follows
that the intersection of E with ¥ is given by the system:

A2 —2h =0
2hhs — A2 =0
2)\.2)\.4 - )\.3)\.5 =0
Aa—A=0

(6)
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These are clearly the equations of the cone ® with vertex v = [1:0:0:0 :
0: O] over the rauonal normal cubic curve defined by the equations (6) in P*.
Let S J) Ao, X p be the strict transforms of S, D, Ao, X p respectively. Itis a
straightforward computation to show that SN® = DNO = [ where [ is the line
A=Az = Ay = As = 0; moreover Ay and X p intersect the cone ® at the vertex
=[1:0:0:0:0:0] and they are tangent at v to the line /. Unfortunately
the 3-fold ¥ is still singular, and we must blow up at the point v once more;

in this way we obtain a fibration 7 : Y — U with smooth total space. Let
S be the strict transform of S, and let Vo S — P2, 3/7 : S —> P? be the
birational maps induced by ; moreover, let p : W — S be the normalization

of S, obtained unfolding along the cuspidal curve X p of S. We will denote by
Xw the preimage of this curve in W. It is clear that the birational map v lifts
to a birational morphism ¢ : W — P2,

Lemma 1. The only indeterminacy of the map ¢~ is the point 2P. In other
words the map ¢ is the blow-up of P? at the points 2P, &, ..., & where the & s
are points infinitely near to 2P.

Proof. The map ¥ : S —> P? is bijective and bicontinuous, but it is not
regular along the cuspidal curve of S. The surface S is the blow-up of S at the
point 2P € S, and the induced map v : S —> P? contracts only the curve /

(at the point 2P). Since S is the blow-up of S at the point v €/ and W is the

surface obtained unfolding along the double curve of S, it is clear that all the v
exceptional curves of ¢ are contracted to the point 2P, and this completes the
proof. O

Corollary 1. Let G1, Gy be two curves on W which are the preimages of two
curves G', G, under the morphism p and which pass simply through the point

p € Xw. If G|, G}, both have a cusp at the point q = p(p) € Xp, then G|, Gy
have the same tangent at p.

Proof. 1t is sufficient to show that if p € Xy, there is only one direction
v € T, W such that if G is a curve in W which passes simply through p
with tangent direction v, the image curve G’ = p(G) has a cusp at the point
q=p(p). - )

The problem being local, we can suppose that $ is the surface in C3 with
coordinates (x,y, z) defined by the equation y> = x3, and W is the blow-up
of this surface along the cuspidal double curve x = y = 0. If [a : b] are
the homogeneous coordinates in the exceptional divisor, in the affine open set
b # 0, which is a C* with coordinates (x, y, z, a), the equations of the surface
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W are the following:
(7N a*—x=0, y=ax

The morphism p is given by the projection (x, y,z,a) — (x,y,z), and the
curve Xy is given by the equation @ = 0. If we choose (z,a) as local
parameters for the surface W, we have x = a?,y = &> and the differential
of the map p at the point (x, y, z, a) is given by the matrix:

0 2a
(8) ,dp(x,y,z,a) = (O 3612)

1 0

This shows that dp has rank 1 at the points of the curve X, and we are done.
O

3. Limits of line bundles.

Now we want describe the limits of line bundles and sections under the
cuspidal Franchetta degeneration, in the case of positive valence. The problem
is that the 3-fold Y is not smooth, so a priork it is not possible to extend a line
bundle on ¥ — ¥} to a line bundle on ¥. A possible approach is blowing up the
singular point v: in this way (we omit the straightforward computation since

it is not necessary for understand what follows) we obtain a smooth 3-fold Y
and then we can work with the techniques of [3]; the problem is that after the

second blow-up the central fiber of ¥ contains three irreducible components
which do not intersect transversally, and the computation that we need in order
to find the limit becomes rather complicated. Instead, we will use the following
approach. Let C be a rational nodal curve with g nodes; then it is possible to
find a degeneration of this curve to a curve with g cusps. If for simplicity we
suppose g = 1, then such a degeneration locally will be of type:

9) y? = x> + ax?

This is a family over U,, where U, is the disk with coordinate «, such that the
general fiber Cy, @ # 0, is a rational curve with a node, and the central fiber C,
is a rational curve with a cusp. Then we would use a degeneration of type (9) to
describe the limit of a bundle of type £, ,, in the cuspidal case as a degeneration
of limits in the nodal case. For this, we need a family of surfaces over the disk
U such that the general fiber is a family of smooth curves which degenerate
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to a nodal curve, whereas the central fiber is a family of smooth curves which
degenerate to a cuspidal curve. This is very simple to obtain: for « fixed, we
consider the symmetric product of the family y? = x? 4+ ax? + r; exactly as in
section 2, it is given by the following equations:

22— 2324 =0
22025 — 32323 — 23 — 2123 = 0
22524 — 32725 — 2325 — 2?2125 = 0
2 B R — ¢
Zy+ 74 —z{ —311z3 — (71 + 23) =

- (10)

Obviously, these are equations for a family p : Y — U, which has the
desired properties. We will denote by Y,(«) the fiber over «. The total
space Y is singular along the line m in C° x U, x U, given by the equations
21 =20 =23 = 74 = 25 = t = 0. We remark that each fiber Y, («) is a 3-fold
with only one singularity at the point (0,0, 0, 0,0, 0, @), so that m is exactly
the locus of the singular points of the fibers of p. Now we blow up the line m;
the resulting strict transform of the total space ¥ is singular only at a point of
the central fiber, that we blow up to obtain a smooth 4-fold. We will denote it
again by ¥, and use the following notations:

- £ =L, is aline bundle on C?;

~ £L(a) is the extension to Y,(a), « # 0, of a line bundle which restricts
to (n + y)x — y(6/2) on every smooth fiber of Y,(e) (this exists because
}7, (@) is a smooth surface);

—  Cp(e) is the linear system on P? induced by ?.E(@ (see fig. 1).

Clearly each )7, (@), a # 0 is just the blow-up of Y;(«) at its singular point, and
the exceptional divisor of this blow-up is exactly the restriction to ¥,(c) of the
exceptional divisor of 4. Then we can “glue together” the line bundles .£(x),
o £ 0, finding a linear bundle (,Cg on ;f,( — ’go which restricts to £ () over each

)7, (), @ # 0. Since ’;( is a smooth 4-fold, the line bundle °C3;z extends to a
line bundle Ig on all of ;§<; then we are interested to describe the restriction of
Ig to the central fiber of Y(¢); we will denote this restriction by £°

cusp- 1f we
consider g as a family over U, x Uj, restricting fg to {t = 0} it is clear that
ocgmp induces a linear system Cpz2(0) on P2, This linear system Cp2(0) is the
limit of the linear systems Cp2(«) when the points P!(a), P?(a) corresponding
to the node of C,(a # 0) approach the point P along I" (recall that the point
P is such that 2P corresponds to cusp of Cyp). Then, by [1], it follows that the

curves of Cp2(0) must have multiplicity y at P.

In the nodal case-the limit curves of the linear system induced on P? must
satisfy the additional property (). We want to understand the analogue of this
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property in the cuspidal case. Let us suppose that a curve A of Cp2(0) intersects

the line X p at the point P + Q. It is not difficult to see that the preimages on
- ~—1

S of A and X o have both a cusp at the point W (P + Q). Then Corollary 1
implies that the preimages of these curves in W have the same tangent line at
the point p~!(P + Q). By Lemma 1 this means that X o 1s the tangent to the
curve A at the point P + Q.

The generalization to the case with g cusps is obvious and we have
therefore proved our theorem.
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