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HERZ-TYPE SOBOLEV SPACES ON DOMAINS

D. DRIHEM

We introduce Herz-type Sobolev spaces on domains, which unify and
generalize the classical Sobolev spaces. We will give a proof of the
Sobolev-type embedding for these function spaces. All these results gen-
eralize the classical results on Sobolev spaces. Moreover, some remarks
on Caffarelli-Kohn—Nirenberg inequality are given.

1. Introduction

Function spaces have been widely used in various areas of analysis such as har-
monic analysis and partial differential equations. Some example of these spaces
can be mentioned such as Sobolev spaces. The interest in these spaces comes
not only from theoretical reasons but also from their applications in mathemati-
cal analysis. We refer to the monographs [1], [2], [4] and [16] for further details,
historical remarks and references on Sobolev spaces.

It is well known that Herz spaces play an important role in harmonic anal-
ysis. After they have been introduced in [17], the theory of these spaces had
a remarkable development in part due to its usefulness in applications. For in-
stance, they appear in the characterization of multipliers on Hardy spaces [3],
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in the summability of Fourier transforms [8], in regularity theory for elliptic
equations in divergence form [20]. Also [21], studied the Cauchy problem for
Navier-Stokes equations on Herz spaces and weak Herz spaces. Recently, Herz
spaces appear in the study of semilinear parabolic equations [7] and summabil-
ity of Fourier transforms on mixed-norm Lebesgue spaces [9]. For important
and latest results on Herz spaces, we refer the reader to the papers [19], [23] and
to the monograph [11].

Based on Sobolev and Herz spaces we present a class of function spaces,
called Herz-type Sobolev spaces, which generalize the classical Sobolev spaces.
These type of function spaces, but over R”, are introduced by Lu and Yang [14]
were gave some applications to partial differential equations.

In this paper our spaces defined over a domain. More precisely the domain
is often assumed to satisfy a cone condition.

The paper is organized as follows. First we give some preliminaries where
we fix some notation and recall some basics facts on Herz spaces, where the
approximation by smooth functions is given. In particular, we will prove the
Herz type version of Caffarelli-Kohn—Nirenberg-type inequalities.

In Section 3, we present basics facts on Herz-type Sobolev spaces in analogy
to the classical Sobolev spaces and we prove a Sobolev embedding theorem for
these spaces. In particular we prove that

Ky (Q) = K37(Q) (1)
with some appropriate assumptions on the parameters. The surprise here is that
the embedding (1) istrueif | <g < p < 00,052—1—% > —1—% >0 and

non non
max(—,—+oc2,——f+a2—oc1) <m<n.
P p P q
The proof based on a local estimate and on the boundedness of maximal
function and Riesz potential operator on Herz spaces. Other properties of these
function spaces such interpolation inequalities, extension and compact embed-
dings are postponed to the future work.

2. Herz spaces

As usual, R" denotes the n-dimensional real Euclidean space, N the collection
of all natural numbers and Ny = NU{0}. The letter Z stands for the set of all
integer numbers. For any u > 0, k € Z we set R(u) = {x e R" : § < |x| < u} and
Ry = R(2%). For x € R" and r > 0 we denote by B(x, r) the open ball in R” with
center x and radius r. Let i, for k € Z, denote the characteristic function of the
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set Rg. If 1 < p < e and % + é =1, then p’ is called the conjugate exponent of
p.

We denote by |Q| the n-dimensional Lebesgue measure of Q C R”. For any
measurable subset Q C R” the Lebesgue space LP(Q), 0 < p < oo consists of all
measurable functions for which

’fHLP /‘f ’pdx p<<>°, 0<p<oo

and
[ 1@ = ess-supl (] < o

If Q = R" then we put HfHU(R") = Hpr.

Let Q C R” be open. For any nonnegative integer m let C" () be the vector
space consisting of all functions f, which, together with all their partial deriva-
tives DP f of orders |B| < m, are continuous on Q. We put C°(Q) = C(Q) and
C(Q) = Np>oC™(Q). We denote by C.(Q) the set of all functions in C(Q)
which have compact support in Q.

In this section we present some fundamental properties of Herz spaces. We
start by recalling the definition and some of the properties of the homogenous
Herz spaces.

Definition 2.1. Let & € R and 1 < p,g < oo. The homogeneous Herz space
Kp*!(R") is defined as the setof all f € L (R"\ {0}) such that

1 kg ory = (; 25| £ el )

with the usual modifications when p = oo and/or g = co.

The spaces K, (IR") are Banach spaces. If & =0 and 1 < p = ¢ < o then
K,?*’ (R™) coincides with the Lebesgue spaces LP (R"). If 1 < g; < qp < o, then
we may derive the embedding K,"!' (R") — K, * (R"). In addition

KYP(R") = LP(R",|-|*7), (Lebesgue space equipped with power weight),

where
Pl|ap 1/p
HfHLp(Rn_,\.wp = |f ()17 |x] dx) :
FQCR"isopenand f: Q —- R a measurable function, then we write f €
Kg’q(Q) if fxa € Kl?’q(Rn) and we put HfHKE"’I(Q) = HfXQHKg’q(R")'

Various important results have been proved in the space Ka 7(R"™) under
some assumptions on ¢, p and g. The conditions —% < & < n(l— 7) I<p<eoo
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and 1 < g < oo is crucial in the study of the boundedness of classical operators
in K, /(R") spaces. This fact was first realized by Li and Yang [10] with the
proof of the boundedness of the maximal function. As usual, we put

1
M@ =sup i [ [f0)ldy, f e Lh (B xe R,
o 10/

where the supremum is taken over all cubes with sides parallel to the axis and
x € Q. Also we set

1
1

M(f) = (M), 0<t <o

Lemma 2.2, Let1 < p <ocoand1 < g <o If fisalocally integrable functions

onR" and —% < o <n(1 f%), then

M ey < ellF o

A detailed discussion of the properties of these spaces my be found in the
recent monograph [22], the papers [13], [15], [18], and references therein.

The next lemma is a Hardy-type inequality which is basically a consequence
of Young’s inequality in the sequence Lebesgue space ¢9.

Lemma 2.3. Let 0 <a <1 and 0 < g < oo. Let {€};.; be a sequences of
positive real numbers and denote &, = Z;":k aj*ksj, k € 7Z. Then there exists a
constant ¢ > 0 depending only on a and q such that

H {0k} rez Hz'q < CH {& ez Heq-

Let Vg 4 be the set of (@, p,q) € R x [1,e0]? such that:

ca<n— ,1<p<ccandl <qg<eo

-Oc:n—%, 1<p<oewandg=1,

The next lemma gives a necessary and sufficient condition on the parameters
a, p and g, in order to make sure that

(Tr.0) = [ 0P, @ eD(Q).f € Kr9(@)
generates a regular distribution 7y € D'(Q).
Lemma 2.4. Let Q CR" be open, 0 € Qand 1 < p,q < oo. Then
Ky () = Lige(2),

if and only if (¢t,p,q) € Vo pg-
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Proof. We divide the proof into two steps.
Step 1. Assume that (¢, p,q) € Vi pq f € K (Q) and B(0,2Y) C Q,N €
Z. By similarity we only consider the first case. Holder’s inequality gives

N
HfHLl(B(o,zN)) = Z £ xr0el,

[=—0c0

N . N
S Y 2P| famcal,

|=—0c0

N
_ oN—-4-a) Z Z(i—N)(”—%_“)f“HfXR,-mQH,,

[=—o00
S lkga):
Step 2. Assume that (¢, p,q) ¢ Vi p 4. We distinguish two cases.
Case 1. o >n— 2. Let r >0 be such that B(0,r) C Q and set f(x) =
x| ™" X0<|.|<r(x). We obtain f € K,"/(Q) for any 1 < p,q < o whereas f ¢
L. (Q). Indeed, we find

loc
I llkeay= X 2 fxmrall,
kE€Z:2k<2r
S Y 2 ko <[4
keZ:2k<2r
S Z 2k(a—n+;'7)q

k€Z:2k<2r
< oo,

with the usual modification if p = e and/or g = o. Obviously, f ¢ L} (Q).

loc
Case2. o =n— % 1 <p<eoand1 < g < oo, By similarity we can assume

that B(0, %) C Q. We consider the function f defined by
£) = x| (og xl )™ g1 (0.

An easy computation yields that

4q —q
K3(Q) 5 kzlk < oo,

171

which gives that f € KZ_’77q(Q), with the usual modifications when g = oo. It is
easily seen that f does not belong to Ll (Q). O

loc

Remark 2.5. We easily see that in general if 0 ¢ Q then the set V ,, is not
optimal. From this lemma it thus makes sense to talk about weak derivatives of
functions in K"/ (), in addition the assumption (&, p,q) € Vg p 4 is optimal.
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Theorem 2.6. Let Q C R" be open and 0 € Q, 1 < p < 00,1 < g < o0 and
o> —2. Then Cc(Q) is dense in Ky 4(Q).

Proof. First observe that C.(Q) C K ?(Q) if and only if o > — . Indeed, let
¢ € C.(Q) be such that ¢(x) = 1,x € B(0,2") C Q,N € Z. We have

oo

feae = L 2 oxanr ]

k=—c0

lo|
N
> ) Zk“qHXB(o,zN)mRkHZ
k=—cc

N
= L 2%l
N
—c Z 2k(tx+%)q

k=—o0

and this series is divergent if o < —7.. It is clear that C(Q) C K, ?(Q) when-
ever o > —%. Let K, (Q) be the set of all g € K,*¥(Q) such that g = 0 out-
side a compact. As in [24, Proposition 3.1] we obtain that K;,)i J(Q) is dense in
K, (Q). Therefore we prove the density of C.(Q) in K,/ (Q). Let f € K, (Q)
with f(x) =0if x ¢ A C Q compact. As in [2, Theorem 2.19], the proof can
be restricted to the case f is real-valued and nonnegative. Since f is measur-
able, there exists a monotonically increasing sequence {u; };cn, of nonnegative
simple functions converging pointwise to f on  and

Oguigfa ieNO'

Since
ng_uigfa i€N07

by dominated convergence theorem {u; };cn, converge to f in Kg “(f). There-
fore we find an u € {u;};cn, such that

E
kP < 7

1f =l

Since 0 < u < f, suppu C A. Let 6 > 0 be such that max(0, —£) < 6 < 1.
Assume that A C V C V C Q with V compact. We set

2]
E= Y 2fR 7.
kEZ:R,NV#0
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By Lusin’s theorem we can find that ¢ € C.(Q) such that

|9 (0] < ||ul]..

for any x € Q, suppp C V and

)4

<G

where H ={x€ Q: ¢(x) #u(x)}. Weset B={x €V : ¢(x) # u(x)}. Observe
that H = B. We have

le=olkgo@y = L 2= 9)tmral,
k=—o0

= Y 2|[(u—9)aren,

k=—oo
= k;jkaqH (u— @) xrys[}-
Therefore
= ol[feay= X 2" (u—@)xrrsl}-
kEZ:R,NBA0

Let k € Z be such that R, N B # (. Then

1= @), < 2w [ msl,
1-6 ]
= 2ull..[lxrnsll, l2Rirsll,
6 -6
< 2l[ull [l ] [ 2,
e 1-6
< 2/Rel? |[ul Bl 7
Consequently,
=0l fgaqy < 2 Ellul[£]8 7
€
< (E)q, e>0
and that ends the proof. O

Theorem 2.7. Let Q be open, 1 < p < oo, 1 <g<ooand > —%. Then K 7(Q)
is separable.
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Proof. Asin [12, Lemma 2.17] it suffices to prove the theorem for Q = R". For
jeNandm= (my,....,m,) € Z" let

Ojm= {x eER":27m<x< 2_j(ml-+ 1),i= 1,...,n}
be the dyadic cube. Put

FJ = {f : f: Z a./‘JnXQj,m’aj,m € Q}7 .]E Nu

mezn

where a;,, = 0if |m| > N,N € N. We have F = U Fj, is a countable set. Let
f € Ky Y(R") and € > 0. From Theorem 2.6 there exists ¢ € C.(R") such that

€
Hf_‘PHk,‘,”~‘I(Rn) <5
Assume that suppp C Q_; ., J € N,z € Z" with J large enough. Let j € N,m €
Z" and

0m(x) = 2—jn fthm o(y)dy, if X€Qim S0y,
Jm 0, if x€QjmZ Oy 0orx¢ Qjm.

Observe that
o - ‘Pf:mH?eg‘*q(Rw = k; 24| (@ — @jm) |-

But
(@@l = [ 1969~ (I u(x)ds

—J.z

for any j € N and any m € Z". Since ¢ is uniformly continuous on Q_; ., for
each & > 0 there is a & > 0 such that

lo(x) —o(y)| < (€')”

whenever |x—y| < 8. Letx € Q_; .. We can find a dyadic cube Q; ,,, such that
X€Qjm €Oy, forany j € N. We have

9) = 0 (] <277 | 1p(x) = 9(1)ldy, € Qjmy € Qs

Jomy

for any j € N. Taking j large enough be such that [x —y| < \/n27/ < 8, x,y €
Qjm, - Let ji one of them. Therefore

O(x) = @jym, (%) < (€)P, x€Qjym €Oy
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Hence

H(P = Qjim | j](;j‘ﬂ(Rn) = Z zkaqH ((P = Qjim )XRkﬂfo,z qu)

25 (1+12))2

= 2k(a+%)q sup |(p(x) — Qjim (x)|
2S(1+a))2’ ¥€Qjym

< c(e)((1+2)2)) @71,

<R

A

with the help of the fact that o > —%. Since @j, ., (x) € R we can find that
(pjum] (X) € Q be such that

|(Pj1,m1 (x) - ¢jl7ml (x)‘ < 8/’ X € le-,ml - Q—LZ'
Now

¢~ ®j1m HK;;‘-‘I(RH) <o —@jm Hkg’q(R") + (| @m0 — @jim Hk,‘,"vq(u&n)
< Ce'((14[])27) @),

We choose &’ be such that Ce/((1 + |z])27)*"» < £, which yields that
Hf_ Pjy.m, HK;"“’(RH) SE.
This completes the proof. O
Let J € D(R") be a real-valued function such that
J(x)>0, if xeR", Jx)=0 if [x/>1 and / J(x)dx=1.
R»

We put Je(x) = €7"J(3), x € R".

Theorem 2.8. Let Q C R" be open, 0 € Q,1 < p < oo, 1§q<ooand—%<

o<n— %. Let f € Kpa “(Q) be a function defined on R" and vanishes identically
outside €. Then

i (s £ g =0 @

Proof. We will do the proof into two steps.
Step 1. We will prove that

8lif{)‘+}|J8*‘P_‘PHK;‘-q(Q) =0 3

for any ¢ € C.(Q) and o € R.
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Substep 1.1. o > —%. Assume that suppe C B(0,2Y) c Q, N € N. Using
the fact that |x —y| > 2V > ¢ for any x € R"\B(0,2V*1) and any y € B(0,2")

we obtain
Jex@(x) =0, xeR"\B(0,2VT1), e<2V,
which yields
P _ 1k
H(JS * (p - (p)Xk| LP(Q) - /gsz (‘]B 02N+1 }J * (P ‘ d.x G Z

Observe that
Texg() 900 = | | I(E)(plx—ed)~p())dz

Therefore

Vex@(x) —@(x)| < sup [@(x—ez)—@(x)|
2€B(0,1)

which tend to zero as € — 0. Hence

N+
Ve ¢ = @|[gas g < Z 2| (Jex 0 - @)2e]|}

k=—oc0
N2 .
< sup sup |@(x—e€z) XY Pkl
|x|<2N+2zeB(0,1) k=—oo

S osup  sup [@(x—ez)—@(x)]7.
|x|<2¥+2 z€B(0,1)

Letting € tend to zero, we obtain (3) for any ¢ € C.(Q) and o > — 5
Substep 1.2. o < —%. By duality

60 = 0l ggq) = sup| [ Ve x 0() — @) g0

where the supremum is taken over all continuous functions of compact support

g such that HgH Ko Q) = 1. It is easily seen that
| e 00— p(gdx = [ (erg(v) —g(0)p(x)dx
where J¢ (x) = J¢(—x),x € R". We have

|| e g6) = ) 90| < e g = gll gt g 9 g0
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Observe that —a > —ﬁ. Using Substep 1.1, we see that
j *x g — o <7
R [
for any n > 0 and any € small enough. Hence
Ve @ =@l gaaiq) <1

for any n > 0 and any € small enough.
Substep 1.3. @ = —%. Let o > —% and o < —;‘; be such that oc = 6o +
(1-6)a,0 < 6 < 1. Holder’s inequality yields

0 0
e ko) S [ e @ — ‘PHK,S‘O"f(Q)HJE = ‘PH;@‘,’W(Q)
<n

for any n > 0 and any € small enough.
Step 2. We prove (2). By Theorem 2.6 we can find ¢ € C.() such that

n
1/~ ‘PHK;W(Q) < 3

for any i > 0 small enough. So, for any 17; > 0 small enough
e x f = Je x 9l o) < e MU = )| gera ) < em

by Lemma 2.2, because of —% <a<n— % We choose 1; be such that ¢y < %
From Step 1,

n
Ve @ = ¢l[gaq) < 3
by choosing € sufficiently small, which prove (2) but with p > 1. Let s > 1.
Holder’s inequality and the fact that —n < o < 0 yield

e~ lengy < W =l gin

which tends to zero as € — 0.
This completes the proof. OJ

(@)’

Let 1 < g < oo. The Caffarelli-Kohn—Nirenberg inequality says that

(o (x”pdx)’l’ <c( [, |x|“q|Vf(x)qu>f,

for any f € D(R"), where

oc>—ﬁ, y>—ﬁ, a—1<y<a, E—ﬁzoc—}/—lgo, “
q

p P q

see [5]. This inequality plays an important role in theory of function spaces and
PDE’s. Our aim is to extend this result to Herz spaces.
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Theorem 2.9. Let1 < —1 ,0<r<ooand
Gt+n—1=o5+2>0.
q

Then

1] kv ey HfHWf?"(Rn)a f€DRY), ©)
holds, where 1

1l = (X 27V 0017) " ©)

—=—00

Proof. Since ap +n > 0, (6) is well defined and finite for any f € D(R"). Let

1
—2124, kez,

L= [-22", Li= [\/ﬁ

and
I - | — 2 —72 ! I — - 72 ! 2 -1 k S Z
3k ’ fll ’ HE \/rl ’ f '

We set
Jk:U?:_llvi,kUV/ﬁ kEZa

where
Vi = (B x (L) YU (B x ()" "), Vie =V UV,
withke Z,ie {1,2,...,n—1},
Vi =) X by x (L) ™" and Vi = ()" x B x (i)™

Ifi=1, thenweputVlk— (L)' ! X Ik andVlk— (L))" I X I3 k.

Let x € R,k € Z. Assume that x does not belongs to the set J;. Then
x ¢ Viiand x ¢ Vi for any i € {1,2,...,n—1}. Since x is not an element of
VllkUVlzk, we have necessary that (xj,...,x,_) belongs in (117;()"_1 and x, € I4 1,
otherwise x is not an element of Ry, which is a contradiction. Assume that there
exists x;, & Isx with ip € {2,...,n— 1}. Observe thatx ¢ V! , |, UV?
which yields that

io+1, —ip+1,k>

(X1, Xig—1) € ()7, Xig €EbaUbLg,  (Xigtty s Xn) & (Lag)" ™.

Let
v=max{j:io<j<nx; ¢y}
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Hence
Xm €lgy, v+1<m<n. @)

Also x ¢ an_v Y Vnz_v 14> Which yields that
X1y Xm1) € ()Y %0 €Da UL, Xyt Xn) & (Lg)™,

which is a contradiction by (7) and the fact that x,, € I4x. Consequently we
obtain x; € 14 and (x2,...,x,) € (147;()”71. But x ¢ Vj, then we have x| € Ly,
x € B(0,2%"1) and this is a contradiction. Therefore

R CJ. CRy, keZ,

where R, = {x € R" : ﬁ2"*3 < |x| < /m2K4}. Let £ € D(R™). We will prove
the inequality (5). We write

HfH;&;”I"(Rn) :k; 27| el

Using Holder’s inequality we obtain

770, < 247 ol

- keZ,

where the constant ¢ > 0 is independent of k. We have
n—1
/yf nldx<Z/ nldx—i—/]f )| dx
i=1
n—1
<Z/ nldx—i—Z/ nldx—l—/ | f(x) "ldx
Z k+Z k—i—Sk

We estimate Ji{k,i €{1,2,...,n—1}. Let @, ®, ® € D(R) be such that

o) =1 i bI<2M, ep)=1 i T <p<2
2M
wos(y)=1 if [y < N
uppn € {y € Ry <2 M), suppon C {y € R: 2 < |y <2M)

Jn
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and
1-M

2
suppas C {yeR: [y| < T I

where M > 1 will be chosen later on. Let x € R”. Define
Je@) = FOOTTZ 01 (27 M) (27 Mo i )T,y 03 (275 M),

Obviously, if x € V}};, then
fx) = filx).

Letx e Vilk. Taking into account the various conditions on the supports of @y, w,
and w3 we obtain

Xj 8fk
f()C) :/ (‘x17 'xj—17yj7-xj+17"'7-xl’l)dyj7

2t axj
which yields that
Y9 fi
1f(x)] S/_zm Fr (XL ooy X 15 Y 5 X1y ees X))

forany j € {1,2,...,n—i}. In the same way we obtain

Xn—i+1 afk
|f(x)\§/ o 13 G Xty Yni 1 X 1 oo A
6f2 Xn—i+1
and
i d fk
|f(x)] S/ P (X1 oo Xnmig Ly ooy Xjm 1, Y js X o 15 oons X
SeE i

forany j € {n—i+2,...,n}. Therefore for any x € Vi}k, |f(x)|7 T is bounded by

n—i 2k 1
I(/ )
j:1 _k+1

()C], vy Xn—iy Yn—i+1,Xn—i+2, -"7xn)

().
o
" il
7
X
. H ([szﬂ

j=n—i+2

d fx

ax (X], xj*layjaijrla"'vxn)

o fi

N—
Il

d fi

ax (-xla xn*i+17"'7xj*15yj7xj+1)"'7-xn)

1
)nfl

n

=TT )™ ()™ TT ()™,

j=1 Jj=n—i+2
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where
/ .
xj:(xl,...,xj_l,xj+1,...,xn), ]G{],...,I’l}
and
¥
Xn—it1 = (X], xnfiyxn7i+2a"'>xn)-

Integrate with respect to x;, over I x to obtain [; |f(x)| #1dx; is bounded by

/Ilkﬁ(g(xg))nll(h(x;—ﬂrl))"ll ﬁ (W(x;'))"%ldxl

j=n—i+2
= (s [ TL)™ i)™ TT (o) s,
Lk j=2 j=n—i

which is bounded by, after using Holder’s inequality,

I'HI:I(/IM dxl)"ll
n |

X ( Il:kh(x;_ﬂr])dxl)nl( /Im wj(x;)dxl)m

Integrate with respect to x», over /1 x and using Holder’s inequality to obtain that
S | £ (x)|7 T dxdx; is bounded by

( IlAkg(x/z)dM)nll / ()™ ﬁ(

I k j=3

i1, i)
< (/1 g(xlz)dﬂ)nll </1 g(x/1)dxz) " l:[ (/(I]‘k)zg(x’j)dxldxz) "

1.k 1k j=3

nTll - / n—1
‘ </(117k)2 h(x:lil#l)d)quz) ( H /(1171{)2 W(xj)dxldx2> '

Jj=n—i+2

Jj=n—i+2

Hence f(,l‘k i |f(x)\ﬁdx1 -+ -dx,_; is bounded by

i,
X (/(1 - h(x, ;1 )dxidx; -- ‘dxn—i> =
1k

n 1
><< H / _w(x;)dxldxg-'-dxn_,-)nfl.
jen=i+2 )"

8 )dx1 cdxj_ydxjyy - dxg—io 1)
(L)t
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In the same way f(h ixh |f(x)] Tdx) -+ - dXp_idxn_i+1 is bounded by

n—i

1
H (/ g(¥)dxy - dxj_1dxjy - 'dxnfiJrl) "

J=1 N ) Xy

1
X (/ h(x;lfiﬂ)dxldxr‘-dxn,i) "
(Il,k)nii
n

1
X H (/ _ w(x;)dxldxz-'-dxn,,-+1>n71.
jen—iv2 M ) X

Consequently [y [f(x)|#Tdx; ---dx, is bounded by

n—i
xXDdxy - -dx;_ydx; ---dx)’H
jI;II(/(II,k)niIXIZ‘kX(I{k)ilg( ]) : oA "

1
X (/ h(x!,_; dxldxz-~~dxn_i> "
(I )" I (g g )it ( +1)
n 1
n—1

X H (/ . .W(x;)dxldxz""dxj—ldxj-H"-dxn) 7
jen—iv2 N D) XX () 2

which is bounded by

gf;(x)‘dxyll.

1,
Observe, that

<C2 M| f| |V f
8xj

‘8fk‘ . j€{1,2,...,n},

where the positive constant C is independent of k. Consequently,

n

J,{k < (Czi(HM) HfXRkHLl(R”) + H(Vf)%ﬁk HLI(R")) a

forany k € Zand any i € {1,2,...,n—1}. Using the fact that oo +n—1 =0y +3
we deduce the following estimation

(n=Dr 1

( i 2k(a1+g—l’l+1)r<ni]‘]i]7k)n>r
k=—o0 i=1

< et llyern + 22 M1l gerte gy
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where both ¢; and ¢; are independent of M. We estimate ka, ie{l,2,...n—1}.
We have

JA =

L

“Tdxidxy - dx,

/(I - il () » ’fk X1y xn*iaixn*i+laxn7i+2a"'7xn)
1k XD X (Ia )'

for any k € Z and any i € {1,2,...,n— 1}. The estimate of ¥ J2 can be done
in the same way as in Vllk The estimate of i, can be done in the same way as in
Z;.:l] Jl.1  and Zl’.‘:_f Jl-z_k. Collecting these estimations in one formula we find that

‘VMﬂmqﬁﬁwmﬁmM+“TmVM%Wwy

where both c3 and ¢4 are independent of M. Using the fact that op +n—1 =
oy + g and Holder’s inequality to obtain

Hfka‘Z*"’(Rn) < BHfHk;’”(Rn)'

Choosing M such that ¢4,B2~M < % we obtain the desired inequality. O

Remark 2.10. We mention here that our embedding covers the Caffarelli—
Kohn—Nirenberg inequality because of (4) yields that 1 < g < "5

and
E+otz—1= H+a1 > 0.
p q
Then
1z @y S Sz gy S € DRY), ®)

holds, where
Il = ( £ 2 00ml)

Proof. Let f € D(R") and £ = g—i-n — :’; According to Theorem 2.9, since
1<o< n"j,onehas

n
HgHKWRngz\a \ ooy 0TS ©)
Let g = |f|s. It is easily seen that
1 = Nl cdars

(R")
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Let o
ZXVZZOQ*OtlJrgOCl and 7F=r—.
9 q

From the inequality (9), we deduce

n
<
Il vy 2 55 e
- 1 0
S—
<X sl ax, 5 gy
with s = Z. By combining this estimate with
— 1 1
06220612,%—062 and == fg,%—f
P r rp r
we see that
o7 52 g S 1 I o
a.xj' Kazr alf -+ ngr Rn)
K;‘"'(R”) ij Hk,‘,’ﬁ*’(w)’
where we have used the Holder inequality. Therefore
g/ n
HfHK,;"l*’(Rn)rS Hf Ilggnr ; K% (R
and get finally
n
ey < 2 o = .
Hence the proof is complete. O

Remark 2.12. Again our embedding covers the Caffarelli-Kohn—Nirenberg
inequality because of (4) yields that . Let 1 < p < g <o and

V4
% — % = — 1 — a;. By (8) we easily obtain that

([ westsopar)’ < (k_imz"“”HWf)kai);
< ([ weniwscoras)’,
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whenever the right-hand side is finite. In particular,

p7

oo 1
71,5 ( X lenud;)” < 197]
where | < p<g<oand1— % = —g, whenever the right-hand side is finite,
which is the Sobolev’s inequality.

In reality, the inequality of Caffarelli-Kohn—Nirenberg inequality says that

[l ]l < el r|o v, ° feDm), (10)

where p,u>1,4>0,0<0 <1,

n n n
—4+ow>0, —+a3>0, —+4+o0o >0,
p u q

g+a1 :9(g+a2—1)+(g+a3)(1—9), o =60+ (1-6)as,

oc<mp if 6>0

and " "
p<o+1 if 6>0 and -+ =—+a—1.
q p

Our aim is to extend this result to Herz spaces. We begin by the following
special case.

Theorem 2.13. Letu > 1,4,v,r,s >0,0<6 <1,

n+op >0, E+oc3>(), ﬁ+a1>0, c<m<o+l,
u q

o =00+ (1-0)os, g+o¢1:6(n+a2—1)+(§+a3)(1—6)

and
1 6 1-06

r N 1%

Then o
1- n
fHK[f@’V(R")’ f € D(R )’

0
HfHk,;"l”(Rn) < CHVfkaW(Rn)

Proof. Obviously, we need only to study the case 0 < 8 < 1. Let h =
Therefore

___n_
n—l+a—0o"
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Using Holder’s inequality we obtain

29 fall, < @) rall)’ @ fall)° ke

Therefore o e
11 gz ony < €l 1] ko oy |1 5% oy

Observe that

n n
E+6:n—l+a2, lghgn_l.
Hence by Theorem 2.9,
1 Wk gy < €l Vg
The proof is complete. O

Now we formulate our main theorem.

Theorem 2.14. Let p,u > 1,q,r,v,s >0,0<0 <1,

E_'_a2>07 E+a3>0, 2—i_(xl>07 GSOQSG—FL
p u q

=60+ (1—6)as, g+a1:9(g+a271)+(§+a3)(179)

and

1 6 1-6
s v
Then ) e
gy < Ve ey £EDED, D)

Proof. We have é = %—I— 1;9, where T =

Using Holder’s inequality

. n
s—1l+omp—0o
we obtain

0 1-6
HfHK;‘”(Rn) < CHf I'(f‘J(R”)||fHK,‘,X3'V(R")'

Observe that
n n
———=mp—-1-0<0.
T p

According to Theorem 2.11, since 1 < 7 <

=7, one has
4

If

KZ*(R) = CHVfHK,‘j‘N(Rn)’

which completes the proof.. O
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Remark 2.15. More Caffarelli-Kohn-Nirenberg inequalities in function spaces
are given in [6]. From (11) we easily obtain

Al kg < el o g f €D,

Ot3u

]Rn)’

but T > p, then we obtain

|l ks < N5l g o I gy f € DR,

which is the classical Caffarelli-Kohn—Nirenberg inequality, see (10).

3. Herz-type Sobolev spaces

In this section we prove the basic properties of Herz-type Sobolev spaces in
analogy to the classical Sobolev spaces.

Definition 3.1. Let Q C R” be open, (@, p,q) € Vg 4 and m € Ny. We define
the Herz-type Sobolev space K, (Q) as the set of functions f € K, ¥(Q) with
weak derivatives DP f € K;'4(Q) for |B| < m. We define the norm of K (Q)

by
- N\ /4
Il = (X 2( T 10" scal;)’)

if 1 <p,qg <o and

1]

1
_ kot B pP\»r
(o cy) = SUP2 ( (D" ) xrine2 )
Kpin () keZ B|Z§m H ! Hp
Remark 3.2. One recognizes immediately that if p = ¢ and @ = 0, then we
have Ky (Q) = W (Q).

As in classical Sobolev spaces, see [2, Theorem 3.3], we have the following
statements:

Theorem 3.3. Let Q C R" be open and (&, p,q) € Vo p 4. For each m € Ny, the
Herz-type Sobolev space Ky (Q) is a Banach space.

Exactly in the same way as in the classical Sobolev spaces, see [2], but we
use Theorem 2.8 we immediately arrive at the following result.

Lemma 3.4. Let Q C R" be open, m € Ny and (¢t,p,q) € Vo p g with 1 < p <
o0, 1 < g <o and f% <o<n— %. Let Q' be an open subset of Q such that Q'

is a compact subset of Q. Let J be as above and f € K, gf in(Q). Then

Jim e £ = Fllgegar =
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Similarly as in [2, Theorems 3.6 and 3.17] with the help of Theorem 2.7 we
have the following statements:

Theorem 3.5. Let Q C R" be open, m € Ng and (0, p,q) € Vi, pq with 1 < p <
00,1 <g<eoand —, <o <n—1,. Kpym(Q) is separable and C*(Q) N Ky (Q)
is dense in Ky (Q).

3.1. Embeddings

In this subsection we present some embeddings of the spaces introduced above.

Definition 3.6. Let v € R"\{0} and for each x # 0 let Z(x,v) be the angle
between the position vector x and v. Let k satisfying 0 < k < 7. The set

C={xeR":x=00r0< |x] <p,Z(x,v) <Kk/2}

is called a finite cone of height p, axis direction v and aperture angle x with
vertex at the origin.

Remark 3.7. Let C be a finite cone with vertex at the origin. Note that x4+ C =
{x+y:y € C} is afinite cone with vertex at x but the same dimensions and axis
direction as C and is obtained by parallel translation of C.

We are now in a position to state the definition of domain satisfying the cone
condition

Definition 3.8. Let Q2 C R” be open. Q satisfies the cone condition if there exists
a finite cone C such that each x € Q is the vertex of a finite cone C, contained in
Q and congruent to C.

Remark 3.9. In Definition 3.8 the cone C; is not obtained from C by parallel
translation, but simply by rigid motion.

The following statement can be found in [2, Lemma 4.15], that plays an
essential for us.

Lemma 3.10. Let Q C R" be a domain satisfying the cone condition. Then we
can find a positive constant K depending on m,n, and the dimensions p and K
of the cone C specified the cone condition for Q such that for every f € C*(Q),
every x € Q, and every r satisfying 0 < r < p, we have

i<k Y o[ ¥ [ PO,

|Bl<m—1 |Bl=m—1 [x =y

where Cy, = {y € Cy 1y € B(x,r)}.
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Let 0 < A < n. The Riesz potential operator Z, is defined by

T, f(x) = / /)

Re Jx—yA

Let p* be the Sobolev exponent defined by pi = % — % The following statement

plays a crucial role in our embeddings results, see [10].

Theorem 3.11. Let0 <A <n, 0<qo<q) <ocand 1 <p<p*< 3. If

n n
A——<oa<n——,
p p

then T, is bounded from K, (R") into K;i‘ql (R™).
Now we state the first embeddings theorem.

Theorem 3.12. Let Q C R”" be a domain satisfying the cone condition, 0 € Q
andm e Ny. Let 1 < p < oo, 1 §r<oo,a22a1,m—% <op<n—1t

P
n n
m—op+o; >0 and —=——m+ay—oq >0. (12)
q P
Then
KT (Q) > KO (Q)
holds.

Proof. We use Theorem 3.5 and we will do the proof in two steps. Let f €
C*(Q)NKY% (Q).
Step 1. o = . From Lemma 3.10,

OIS Y Zu(DPf)ra)(x), xeQ.

|B|<m

Using Theorem 3.11 we obtain

Pl S T 10 )zallin e < 1y o

Bl<m

Step 2. ap > o1. We write

oo

1 k@)= X 2l f 2l

——o0

1 >
- X 2 nal+ 52 ancal]
= k=0

=hL+D5I.
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Estimate of ;. Let p be as in Lemma 3.10. We decompose /; as follows:
Iy = I; + 14, where

L= ) 2kaerfXRmQH; and L= Y ZkaerfXkaQH;-
k<—1,p<2k2 k<—1,p>2k2

Letx € Ry NQ, k € Z. We estimate I3. Since x € RN Q and p < 22 we get
Crp C Ry = {z:2F2 <|z] < 2%*!}. From Lemma 3.10, we easily obtain

p
FOIS L p‘mf"/ IDP £ (3) 2k, (v)dy + Z/ R

< X, (0)dy,
Bl<m—1 G, f o Cup e =y

which is bounded by, because of o > 1 and m < n,

] LD
2k Y plfl /c | ()’*‘xlxlék(y)dy

» |x _y|n7m+(x2

p
k(o D)
e IBZ /cw e —y|romteama X 00y

SO N T (DP ) xarg,) (),
Bl<m—1

where the positive constant c is independent of k. Thanks to Theorem 3.11 there
exists some constant ¢ such that

LS Y HIm—aeral((Dﬁf))cmzék)H;e;"Z”(Rn) < c||fllxer q)-

IBl<m

Now we estimate I;. We set
hal)= ¥ pP [ DPr(y)lay

and
Jrp(x) =
|Bl=m

To estimate the first term we use the fact that m < n and p > 28=2 which
leads to

P |x _y|n7m

B
[ 2o,

Jp(x) S 20mmk Yy /C IDP £(y)|dy

1Bl<m—1"Crak-2

+ Y p\m—n/

Bl<m—1 22<hiyl<

= c(Ji () + 74 (x))-

) IDP £ ()| xa(y)dy
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Let us estimate each term separately. By assumption (12) and Holder’s inequal-
ity it is easy to see that

s Y 2k [ D) g, () xa()dy

Bl<m—1 i
gzk(azfmfg) Z H(DB]C)XR,(QQHIJ'
IBl<m—1

Therefore

[ ) xreell, S 247 Y (0P Nawgeall,
|Bl<m—1

for any k < —1 such that p > 2K-2. Rewriting Jfk as follows: J127k = J12,k.1 +le7k72,
where

Ruat)= ¥ ol [ D00y

and
Ruat)= ¥ pP [ 0RO ety

J? 1 (x) can be estimated from above by

C2(a27al)k Z Im—OCz-ﬁ-Otl ((Dﬁf)XQ)<X>
IBl<m—1

for any k < —1 such that p > 22, Now we consider the second term. We have

B
o IDP ()l x0(»)
UTEICRS Z /zk+2§|x—y§p d%

Bl<m-1 o=y

which can be estimated by

J DB
¢ / . . M%ﬁ,(y)dy
Bl<m—1i=kt27 2 <h—y[<2! [x =]
j n__ l' .
< Z Z p(m=f—am) ZzazH(Dﬁf)%RmQHp,

|B|<m—1i=k+2

where 2/7! < p <2/, j € Z and we used Holder’s inequality. By assumption
(12) we obtain

n J R
kot H (J12,k72)XkaQHq < o (G—mtan)k Z Z o (m=J—m)isian H (Dﬁf)XR,mngp
|B|<m—1i=k+2
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for any k < —1 such that p > 2k=2,
We estimate J, . We write

B B
n)= ¥ [ gl / IDZFON 4 13)

|Bl=m " Ceok—2 [x — y[rm at|=m " Brpk e — y|r—m

where By p x = Cx N {y:2"2 < |x—y| < p}. The first term is bounded by

cok(on—ar) Z/ ’Dﬁf(w‘%ﬂ()’)
C

[B]<m* “x2k—2 ’X—y|"—m—oc1+a2
S k(o —au) Z To-aptay ((Dﬁf)lg)(x).
|B|<m

Rewriting the second term of (13) as follows: J5 i 1 +J> k. 2; wWhere

IDP £(y)]
Toger (x) = / Te—
2.4.1(X) mZ_m 2l y<aez e —yrm
and B
IDP f(y)]
Drkp(x) = / ey
k2l |ﬁz—:m 2e2<fx—y|<p [X =y

Observe that

Do (x) 287 Y T o (DP ) 20) ().
|Bl=m

As in the estimation of J127k72, we obtain
29| (142) el

Jj .
Salimet 3 A (0 fyg
|B|<m—1i=k+2

Using the fact that oy > m — %, we obtain by Lemma 2.3 that I, < cH f H
Estimate of /. Since o > «;, we obtain that

,
Ko (@)

k r g
L < kSEuI\%Z mszxQHq S HfHKgZ‘N(Q)'

Again from Lemma 3.10,

f(OI S Z A ((Dﬁf>XQ)(X), xe Q.

IB|<m
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Using again Theorem 3.11 it follows as above that

LS Z HIm—az+a1((Dﬁf)lﬂ)";fgz'r(R")

1Bl<m

<) H(Dﬁf)%QH;(,‘?"’(Rn)
IB|<m
S HfH;e“?’(Q)v

p,m

since m — % <0p<n— % The proof is complete. O

Remark 3.13. We mention that Theorem 3.12 covers the Sobolev inequality. In
addition

W (Q,]1%7) = K P(Q) — LU(Q,[-|*9),
under the same assumptions of Theorem 3.12 with » = p. In particular

Wy(Q) — KS”’(Q) — L1(Q),

holdsif1<p<oo,0<m<%and

Theorem 3.14. Let domain Q C R" satisfy the cone condition , 0 € Q and
meN. Let 1 < p<oo, 1 <r<oo p> 0, 061+%>0(md

max(ﬁ—kaz,ﬁ—kag—al) <m<n.
p p
Then
K;j‘g,{(g) — K[‘,"“r(Q)
holds.

Proof. We use Theorem 3.5. Let f € C(Q) NKp% (). We write

HfH;(,‘j"“(Q) :k_Z_ 2kaerfXRmQH;

_ Z 2ka1er%kaQH;_|_ Z 2ka1er)CRkﬂQH;

2k+2 >p 2k+2 <p

=hL+D5.
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Let us estimate /;. Let # > 0 be such that ;* <t < min(p,m). By

Hoélder’s inequality, we obtain

ST ML TRV

Bl<m-1 Cup me ol y‘" -
S Y MA(DPf)xe)(x)
Bl<m

for any x € Ry N Q. Therefore
hsy) Y Zka'rHMz((Dﬁf)%Q)XRkH;

|Bl<m2%+2>p

S X M@ f)xe) g e

\ﬁ|<m
S HfHK;”?n;’(Q)’

by Lemma 2.2.
Now we estimate /. We employ the same notation as in Theorem 3.12. We
have

DB
Jix(x) S Z p|f5\ / Mdy, x€R,NQ.

Bl<m—1 |x ylrm
Therefore we need only to estimate J> . We write
DB DB
xp k

LR e | N [ — y\” "

where By px = CyN{y: 22 <|x—y| < p}. Lett > 0 be such that m — o —
o > 0andt < p. By Holder’s inequality the first integral of (14) is bounded by,

Czk(az—al)/ ‘Dﬁf(Y)’XR’mQ()’)
C

- ‘X _ y‘n—m—al-&-az

S el A (DP )t 0) (). (B =m

The boundedness of the maximal function on L7 (R") yield that

M )], S O Nall 181 =m

Now

DB —n
/ IDZFON 40 < - / IDP £(3)| 2 (y)dy
B yiia, B okv2

=y

< 2 M((DP f)0) (1)
< 2(m+a17az)k2(‘x2*“1)k,/\/l((Dﬁf))cg)(x), Bl=m
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Let j € Z be such that 2/~! < p < 2/. As in Theorem 3.12 we obtain

Dﬁ J n_ . .
[ DIy g a8 gyl

x,p k44 |x_y|n " i=k+2
S ke @y 1BI=

The desired estimate follows by Lemma 2.2 and the fact that o; + % > 0. The
proof is complete. OJ

Theorem 3.15. Let domain Q C R” satisfy the cone condition, 0 € Q and m €
No. Let 1 < p < oo,1 §r<°oand%+ot2<m<n. Assume that op > o > 0.
Then
Kl‘j‘fnr(Q) — K&"(Q)
holds.
Proof. Let f € C*(Q) NKp% (Q). We write
r _ = k r
I lkery= X 2l amcall.
= Y 2| famcelle+ X 2 famcall,
2k—2>p zk—ZSp
=851 +9.

Estimate of S;. From Lemma 3.10 and Holder’s inequality, because of
m> %, we obtain

WIS Y 0P Nageall,

IBl<m

for any x € Ry N, since C,, C Ry. Hence

S5 Y X 2ot of g ol

IBl<m2k=2>p
S HfH;aﬁ?,f(g)

because of o > ;.
Estimate of S;. We have

1DPf(y)|
‘<Z/ p o=yl y\”’"

|Bl<m
Cy [ Py PO,
IB|<m” Crok—2 x — y[rm |BI<m” Brpk [x — y[rm

= P17k(x) + P27k(x),
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where By px = CcN{y: 252 < |x—y| < p}. Using again Hélder’s inequality
we obtain

B n
rus ¥ [ PO a2 D ¥

Brom/Coaa X Bl=m

because of m > %. Therefore

Z Skar sup P]k r< Z Z 2k(m7%+a17a2)2kazr“(Dﬁf)kaQQH;
A-2<p XERNQ |B|<m2k-2<p

Sl

since m — % + oy — o > 0. Now we estimate P» . We write P> = Ty ¢+ T i +

13, where
DB
Tl,k(x): Z / | f():)| X‘_E@(Y)dy,

BxAp,k |x_y|1’l "

00 )
pm

|B|<m
DPf(y)]
Tox(x) = / R — AN y)dy
2. (%) B0 x — y[r=m 7§|'\§2|x\( )

and

B
Typ(x) =Y, / ) D77 0)l T X2 (V)Y

\Bl<m |x —y|r—m

\X\

Let us consider the first term. Using the fact that |x —y| > |y| if [y] < 5 and

Hoélder’s inequality to obtain

Tix(x) S

1Bl<m

—c ¥ Y 2t pf Vv,

BlEmi® ==
k
:Czk(m—ﬁ—az) Z Z z(i—k)(m—ﬁ—az)ziazH(Dﬁf)xRimQHp
|ot| <mi=—oo

S g

p,m

/ IDP ¥ (y,ﬁ}nig 6)) dy
v <2 |yl

since m — ﬁ — ap > 0. This leads to
Z 2koc]r sup (Tl (x < HfH . Z 2k(m—;'7—a2+a1)r
W-2<p XERNQ Kpim 2k—2§p

<l

p m
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Now we easily obtain

T S Y 24 [ 1D £05) g, ()

jaf<m

2 Y 0P Dgeal,

lot|<m

by Holder’s inequality. Therefore

L2 swp (Bl S Y Y 20 e oh g g

2k-2<p XERNQ |B|<m2+-2<p

S ez o

p,m

Let us estimate T3 ;. We have |[x —y| > bl i |y| > 2|x|. Then

DB
rws ¥ [ P
Bl<m” 2 slI<2p y|
J+l1
S Y Y| (0f f)weell,
R et

.
S HfHK;”},f(g)v
where 27! < p < 2/, j € Z. Using the fact that &; > 0 we obtain

L 2 s (Bu)) < i

2k—2§p XERN pm
The proof is complete. O

Collecting the results obtained in Theorems 3.14 and 3.15 we have the fol-
lowing statement.

Theorem 3.16. Let domain Q C R” satisfy the cone condition, 0 € Q and m €
No. Let 1 < p<g<oo, 1 <r<oo 0p>0t >0and

n n
max(—+062,—+062—061) <m<n.
p p

Then
K% (Q) — KJ'(Q)

holds.
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Proof. Let f € Kp% (Q) and 6 = L. We have

) 1-6
HfHK;”"(Q) = HfHK;’l’"(Q)HfHK:i‘”(Q) S HfHK;%,;’(Q)’
by Theorems 3.14 and 3.15. The proof is complete. O

In the previous results we have not treated the case ¢ < p. The next theorem
gives a positive answer.

Theorem 3.17. Let domain Q C R" satisfy the cone condition, 0 € Q and m €
No. Let 1 <g < p <oo,1 §r<°°,a2+%2a1+g > 0 and

nn n n
max(—,——i—(xz,——f—l—az—al)<m<n.
pp P 4
Then
00,1 <1
K, (Q)<—>Kq1 (Q)
holds.

Proof. We use Theorem 3.5. Let f € C*(Q) N K% (Q). We employ the same
notation as in Theorem 3.14. Let us estimate /;. Let £ > 0 be such that 1 < % <
t < min(p, W). We have

’ p

B
IS L P [ nProlas X[ 2T

. n—m
BI<m-1 w B/ Co =

S Y MA(DPf)aea) )

IBl<m

for any x € R, N Q. Holder’s inequality together with the boundedness of the
maximal function on L? (R") leads to

I < Z Z 2(a1+$7%70’2)k’2kaﬂH./\/l;((Dﬁf)Xﬁkng) H;
|ﬁ\§m2k+2>p
-
S HfHKIZ%,;’(Qy
since ocz—i—% > o+ g.
To estimate I, we need only to estimate J> ;. Recall that

B B

o Con = f o Beps =
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where B, = CyN{y: 252 < |x—y| < p}. By Holder’s inequality the first
integral is bounded by

c ¥ 2D [(DP )y eal
B[=m

p7

where the positive constant ¢ is independent of k. Now

DB —n
/ Mdy < o(m )k/ |Dﬁf()’)|XQ(Y)dy
B B jkr2y

_ n—m
X72k+2,k ’x y’

S22 M((DP f)xa) (x), Bl =m.

Let j € Z be such that 2/~! < p < 2/. As in Theorem 3.12 we obtain

Dﬁ J Y .
[ DOy 3 o o8 el

xpk+4 |x B y|nim i=k+2
S HfHI'(,‘,X},;'(Q)’ B =m.
Using Holder’s inequality and Lemma 2.2, I; can be estimated from above by
r k(ou+2)r
CWHK;%,;’(Q) ), 2Ty
2k+2§p

¥ 2 s (08 g ol + [ MOP Nz

IBl<m2k+2<p

S HfH;e“Z"(gy

pim

since o] + g >0and m— % 4oy —o0n+ g > 0. The proof is complete. O
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