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SINGULAR QUASILINEAR PROBLEMS WITH
QUADRATIC GROWTH IN THE GRADIENT

B. HAMOUR

In this paper we consider the problem
u ∈ H1

0 (Ω),

−div(A(x)Du) = H(x,u,Du)+
a0(x)
|u|θ

+χ{u̸=0} f (x) in D′(Ω),

where Ω is an open bounded set of RN (N ≥ 3), A(x) is a coercive matrix
with coefficients in L∞(Ω), H(x,s,ξ ) is a Carathéodory function which
satisfies for a given γ > 0 and some c0 ≥ 0

−c0 A(x)ξ ξ ≤ H(x,s,ξ )sign(s)≤ γ A(x)ξ ξ

a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN .

The nonnegative term a0 belongs to LN/2(Ω), χ{u̸=0} is caracteristic func-
tion, f belongs to LN/2(Ω) and 0 < θ < 1. For f and a0 sufficiently small
(and more precisely when f and a0 satisfy the smallness condition (2.11)),
we prove the existence of at least one solution u such that eδ |u|−1 belongs
to H1

0 (Ω) for some δ ≥ γ . Some a priori estimates are obtained.
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1. Introduction

In this paper, we consider the quasilinear problem u ∈ H1
0 (Ω),

−div(A(x)Du) = H(x,u,Du)+
a0(x)
|u|θ

+χ{u̸=0} f (x) in D′(Ω),
(1.1)

where Ω is a bounded open set of RN, N ≥ 3, A(x) is a coercive matrix with
bounded measurable coefficients. We assume that a0 ∈ LN/2(Ω), a0 ≥ 0,
0 < θ ≤ 1, χ{u̸=0} is caracteristic function, f ∈ LN/2(Ω) and H(x,u,Du) is a
Carathéodory function with quadratic growth in Du, more precisely

|H(x,s,ξ )| ≤ c|ξ |2,

for some positive constant c.

Under suitable smallness conditions on ||a0||N/2 and || f ||N/2 we prove the
existence of solution u of (2.1) which satisfies a regularity in the following sense.
If we define w by

w = δ
−1(eδ |u|−1)sign(u),

then w belongs to H1
0 (Ω) for every δ in a certain interval (γ,δ0) which depends

on a0, f , the bound of H and the coercivity of the matrix A.

Compared to the results obtained in the latest papers, we prove in the present
paper, as said above, the existence of (only) one solution of (2.1) in the case (2.5)
(i.e. a0 ≥ 0) when a0 and f satisfy the smallness condition (2.11), but our result
is obtained in the general case of a nonlinearity H(x,s,ξ ) which satisfies only
(2.3) with f ∈ LN/2(Ω) and with a0 to LN/2(Ω).

We first review some recent results. The problem{
u ∈ H1

0 (Ω),
−div(A(x)Du) = H(x,u,Du)+a0(x)u+ f (x) in D′(Ω).

(1.2)

has been extensively studied by many authors, among which we will quote the
works in a serie of papers [8], [9], [10] and [11], investigated the case where

a0(x)≤−α0 < 0. (1.3)

Considering general nonlinear monotone operators, they proved an existence
of at least one solution when a0 satisfies (1.3), and when f belongs to Lq(Ω)
(q > N

2 ). The solution is proven to verify some a priori estimates. The unique-
ness of such a solution has been proved in [4] and [5] under some further struc-
ture assumptions.



SINGULAR QUASILINEAR PROBLEMS 267

The case where
a0 = 0 (1.4)

was considered in [2], [31], [20] and [23]. Among these papers the authors have
considered nonlinear monotone operators and proved that if a0 satisfies (1.4) and
f belongs to Lq(Ω) (q > N

2 ) with ∥ f∥Lq(Ω) sufficiently small then there exists at
least one solution of (1.1) in L∞(Ω) and satisfies a priori estimates. The case
where a0 satisfies (1.4) and f only belongs to LN/2(Ω) for N ≥ 3 (and no longer
to Lq(Ω) (q > N

2 )) was studied in [17] (and in [18] in the nonlinear monotone
case), these authors proved that when ∥ f∥LN/2(Ω) is sufficiently small there exists
at least one solution of (1.2) such that eδ |u|− 1 ∈ H1

0 (Ω) for some δ > γ and
satisfies an a priori estimates. Similar results were obtained in the case where
f ∈ LN/2(Ω) in [16] for possibly unbounded domains when a0 satisfies (1.3); in
this case no smallness condition is required on f , however in [19] the authors
discussed (also in the case of nonlinear monotone operators) when a0 satisfies
a0 ≤ 0 and f belongs to the Lorentz space LN/2,∞(Ω); in this case two smallness
conditions should be fulfilled. Finally the case where a0 satisfies a0 ≤ 0, let
us quote the paper [33] the author investigated the asymptotic behaviour of the
solution u of (1.2) when a0 is a strictly positive constant sufficiently small, and
proves that an ergodic constant appears at the limit a0 = 0. Let us also mention
the case where the nonlinearity H(x,s,ξ ) has the “good sign property”, namely

−H(x,s,ξ )sign(s)≥ 0. (1.5)

The case where a0 ≤ 0 and f belongs to H−1(Ω) was considered in [6]
and [7], the authors proved the existence of at least one solution of (1.2) which
belongs to H1

0 (Ω).
The case where

a0 ≥ 0, a0 ̸= 0 (1.6)

was considered in [3], [24] (and in [26] in the nonlinear monotone case), [25],
[27] and [28]. The first attempt to study equations with a gradient term having
quadratic growth, was carried out in [24] (see also [26] for extensions), the au-
thors prove the existence of at least one solution of (1.2) when a0 satisfies (1.6),
and f belongs to LN/2(Ω), with ∥ f∥LN/2(Ω) and ∥a0∥Lq(Ω) sufficiently small.
In [27], the authors proved a similar result when a0 satisfies (1.6) and f belongs
to Lq(Ω) (q> N

2 ) with ∥ f∥Lq(Ω) and ∥a0∥Lq(Ω) sufficiently small. Moreover, they
proved the existence of at least two solutions of (1.2) (which moreover belong
to L∞(Ω), when A(x) = Id, H(x) = µ|ξ |2, µ > 0, f ∈ Lq(Ω) (q > N

2 ), f ≥ 0,
and a0 ∈ Lq(Ω) (q > N

2 ) with ∥ f∥Lq(Ω) and ∥a0∥Lq(Ω) sufficiently small).
In [3], the authors proved the existence of a continuum (u,λ ) of solutions
(with u which belongs to L∞(Ω)) when A(x) = Id, H(x,s,ξ ) = µ(x) |ξ |2, with
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µ ∈ L∞(Ω), µ(x)≥ µ > 0, f ∈ Lq(Ω) (q > N
2 ), f ≥ 0, f ̸= 0 and a0(x) = λa⋆0(x)

with a⋆0 ∈ Lq(Ω), a⋆0 ≥ 0 and a⋆0 ̸= 0. In addition, under further conditions on
f , these authors proved that this continuum is defined for λ ∈]−∞ , λ0] with
λ0 > 0 and that there are at least two nonnegative solutions of (1.2) when λ > 0
is sufficiently small.

In the singular case, the problem (1.1) has been studied in many papers in
the case where A(x) = Id, H(x, ., .) = 0, f = 0 and a0 is smooth. Among these
papers is a serie of papers [1], [12], [13], [14], [15] and [32].
In [21] and [22], the authors proved the existence of at least one nonnegative
solution and a stability result for the following problem{

−div(A(x)Du) = f (x)g(u)+ l(x) in Ω,
u = 0 on ∂Ω,

where A(x) ∈ L∞(Ω)N×N is coercive matrix, g : [0,+∞) → [0,+∞) is contin-
uous and 0 ≤ g(s) ≤ 1

sθ + 1, ∀s > 0, 0 < θ ≤ 1; and f , l ∈ Lr(Ω) where r
satisfies some conditions. In [13], the authors proved the existence, regularity
and nonexistence results for problems whose model is

−∆u =
f (x)
uθ

in Ω,

with u = 0 on ∂Ω, Ω is bounded open of RN , θ > 0 and f is nonegative function
on Ω and belongs to some Lebesgue spaces. For this, they have introduced an
approximate problem by treating the singular term 1

uθ and construct an increas-
ing sequence (un)n∈N of solutions to nonsingular problem −div(A(x)Dun) =

fn(x)(
un +

1
n

)θ
in Ω,

un = 0 on ∂Ω,

where fn = min( f (x),n). This sequence satisfies, for any ω ⊂⊂ Ω, and

un ≥ un−1 ≥ ·· · ≥ u1 ≥Cω , ∀x ∈ ω.

The authors discussed in [1] the solution of the elliptic problem, with a gradient
term and a singular nonlinearity

−∆u = |∇u|q + f
g(u)

in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,
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where Ω⊂RN is a bounded regular domain, g : R+→R is a continuous increas-
ing function with additional hypotheses given, 1 < q ≤ 2 and f is a measurable
nonnegative function and obtained optimal conditions on g, q which allow to
get the existence positive solution for the largest possible class of datum f .

The plan of this paper is as follows: The precise statement of our result
is given in Section 1 (Theorem 2.1), as well as the precise assumptions under
which we are able to prove it, these conditions in particular include the small-
ness condition (2.11). Our method for proving Theorem 2.1 is based on an
approximate result and by applying Shauder’s fixed point theorem in a classical
way. We will proceed by approximating the singular term 1

|u|θ and we will get
some a priori estimates on the solutions of equivalent problem (4.2) (see also
Proposition 4.1). The equivalence result is given in [18].
More precisely, the proof of Theorem 2.1 consists in carrying out a change of
unknown function w = δ−1(eδ |u|−1sign(u), by transforming equation (3.4) into
equation (3.8) in order to obtain the a priori estimate and the strong convergence
of wn. Another difficulty in the proof is to obtain the a priori estimate of the sin-
gular term in the set {u = 0}. For that, we use the method introduced in [21]
and [22].

2. Main result

In this paper we consider the following quasilinear problem u ∈ H1
0 (Ω),

−div(A(x)Du) = H(x,u,Du)+
a0(x)
|u|θ

+χ{u̸=0} f (x) in D′(Ω),
(2.1)

where Ω is an open bounded set of RN , N ≥ 3, A is a coercive matrix with
bounded measurable coefficients, i.e.

A ∈ (L∞(Ω))N×N ,

∃α > 0, A(x)ξ ξ ≥ α|ξ |2 a.e. x ∈ Ω, ∀ξ ∈ RN ,
(2.2)

the nonlinearity H(x,s,ξ ) is a Carathéodory function with quadratic
growth in ξ , and more precisely satisfies

−c0 A(x)ξ ξ ≤ H(x,s,ξ )sign(s) ≤ γ A(x)ξ ξ ,
a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN ,

where γ > 0 and c0 ≥ 0,
(2.3)
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the function sign : R→ R is defined by

sign(s) =


+1 if s > 0,
0 if s = 0,
−1 if s < 0,

(2.4)

the coefficient a0 satisfies

a0 ∈ LN/2(Ω), a0 ≥ 0, a0 ̸= 0, (2.5)

the exponent θ satisfies
0 < θ ≤ 1, (2.6)

the caracteristic function is defined by

χA(x) =
{

1 if x ∈ A,
0 if x /∈ A,

(2.7)

and finally
f ∈ LN/2(Ω). (2.8)

Since N ≥ 3, let 2∗ be the Sobolev’s exponent defined by

1
2∗

=
1
2
− 1

N
,

and let CN be the Sobolev’s constant defined as the best constant such that

∥ϕ∥2∗ ≤CN∥Dϕ∥2, ∀ϕ ∈ H1
0 (Ω). (2.9)

Since Ω is bounded, we equip the space H1
0 (Ω) with the norm

∥u∥H1
0 (Ω) = ∥Du∥L2(Ω)N . (2.10)

We finally assume that f and a0 are sufficiently small (see Remark 2.3), and

more precisely that

∥ f∥N/2 ≤
α

γC2
N
− γθ

logθ (1+ γ)
∥a0∥N/2, (2.11)

Our main result is the following Theorem.
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Theorem 2.1. Assume that (2.2), (2.3), (2.5), (2.6) and (2.8) hold true. Assume
moreover that the smallness condition (2.11) hold true.

Then there exists at least one solution u of (2.1), which further satisfies
(eδ |u|−1) ∈ H1

0 (Ω), ∀δ ≥ γ such that

| f∥N/2 ≤
α

δC2
N
− δ θ

logθ (1+δ )
∥a0∥N/2.

(2.12)

Remark 2.2. In the case where the function H(x,s,ξ ) = H(x,ξ ) does not de-
pend on s, assumption (2.3) is satisfied if and only if

|H(x,ξ )| ≤ cA(x)ξ ξ ,

for some c > 0.
Since A is a coercive matrix with bounded entries, the last condition is satisfied
if and only if

|H(x,ξ )| ≤ c |ξ |2,
for some c > 0, which means that H(x,ξ ) has a quadratic growth with respect
to ξ .

When γ = 0 in (2.3), the nonlinearity function H(x,ξ ) satisfies a sign con-
dition and existence result can be proved for every f ∈ H−1(Ω).

Remark 2.3. In this Remark, we consider that the open set Ω, the matrix A and
the function H are fixed and we consider the functions a0 and f as parameters.

Our set of assumptions on these parameters is made of the smallness condi-
tion (2.11).

Indeed, if, for example, a0 is sufficiently small such that it satisfies

α

γC2
N
− γθ

logθ (1+ γ)
∥a0∥N/2 > 0,

then the smallness condition (2.11) is satisfied if ∥ f∥N/2 (and therefore ∥ f∥H−1(Ω),
since LN/2(Ω)⊂ H−1(Ω) is sufficiently small).

Similarly, if, for example, f is sufficiently small such that

∥ f∥N/2 ≤
α

γC2
N
,

then the smallness condition (2.11) is always satisfied if ∥a0∥N/2 is sufficiently
small.

Remark 2.4. The smallness condition (2.11) is in some sense sharp, implies
that δ is bounded when the function a0 satisfies the assumption (2.12), we have

α

δC2
N
− δ θ

logθ (1+δ )
∥a0∥N/2 ≥ 0,
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this implies
α

δC2
N
≥ δ θ

logθ (1+δ )
∥a0∥N/2 ≥ a0∥N/2.

Finally
γ ≤ δ ≤ α

C2
N∥a0∥N/2

.

Our proof of Theorem 2.1 is based on an approximate result which will be
stated and proved in Section 3.

3. Proof of Theorem 2.1

The proof of Theorem 2.1 will be made in six steps.

Step 1: Approximation and change of unknown function

For n ∈ N, consider two sequences an and fn such that

an(x) =


a0(x) 0 ≤ a0 ≤ n

n otherwise,
(3.1)

and
fn(x) = Tn f (x), (3.2)

where Tn is defined in (3.26).

For n ∈ N, define Hn(x,s,ξ ) by

Hn(x,s,ξ ) =
H(x,s,ξ )

1+ 1
n |H(x,s,ξ )|

. (3.3)

Observe that Hn(x,s,ξ ) satisfies |Hn(x,s,ξ )| ≤ H(x,s,ξ ) as well as (2.3).

Since an(x), | fn(x)| and Hn(x,s,ξ ) are bounded, a classical result of J. Leray
and J.-L. Lions [29, 30] asserts that the following approximate problem (3.4) has
at least one solution.

un ∈ H1
0 (Ω),

−div(A(x)Dun) = Hn(x,un,Dun)+
an(x)

(|un|+ 1
n )

θ
+χ{un ̸=0} fn(x) in D′(Ω).

(3.4)
Observe that un belongs to L∞(Ω) for each n given since an(x) ∈ L∞(Ω),

fn(x) ∈ L∞(Ω), and Hn(x,un,Dun) ∈ L∞(Ω).
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Let δ > 0 be fixed satisfies
γ ≤ δ such that

∥ f∥N/2 ≤
α

δC2
N
− δ θ

logθ (1+δ )
∥a0∥N/2.

(3.5)

Define
wn = φ(un), (3.6)

where
ϕ(s) = δ

−1(eδ |s|−1) sign(s), ∀s ∈ R.

Observe that ϕ ∈C1(R) with ϕ(0) = 0, we have at least formally
wn ∈ H1

0 (Ω)∩L∞(Ω),

eδun = 1+δ |wn|, Dwn = eδ |un|Dun, sign(un) = sign(wn),

and 
−div(A(x)Dwn)

=−δeδ |un| sign(un)A(x)DunDun

−eδ |un| div(A(x)Dun)sign(un) in D′(Ω),

(3.7)

where −eδ |un|div(A(x)Dun) is the distrubution defined by

D′(Ω)

〈
−eδ |un|div(A(x)Dun),ϕ

〉
C∞

0 (Ω)
=
∫

Ω

A(x)DunD(ϕeδ |un|)dx,

for any ϕ ∈C∞
0 (Ω) or ϕ ∈ H1

0 (Ω)∩L∞(Ω).

Since eδ |un| = 1+ δ |wn|, we deduce that wn is, at least formally, a solution
(see Proposition 4.1) of the problem

−div(A(x)Dwn) =−Kδ (x,wn,Dwn)sign(wn)

+(1+δ |wn|)χ{wn ̸=0} fn +
1+δ |wn|

(δ−1 log(1+δ |wn|)+ 1
n )

θ
an in D′(Ω),

wn = 0, on ∂Ω,
(3.8)

where the function Kδ : Ω×R×RN → R is defined by the following formulas

Kδ (x,s,ξ ) =
1−θn(x)
1+δ |s|

δ A(x)ξ ξ , (3.9)
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with

θn(x) =


Hn(x,un,Dun)

δ sign(un)A(x)DwnDwn
if sign(un)A(x)DunDun ̸= 0,

0 otherwise,

(3.10)

from the condition (2.3) on H and 0 < γ ≤ δ , we have

−c0

δ
< θn ≤ 1, a.e. x ∈ Ω. (3.11)

When γ ≤ δ , this computation in particular implies that

Kδ (x,s,ξ )≥ 0 a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN . (3.12)

Step 2: A priori estimate

Since that the right hand side of (3.8) belongs to L1(Ω), we can use wn which
belongs to H1

0 (Ω)∩L∞(Ω), as a test function in (3.8).
Taking into the fact that Kδ (x,s,ξ )≥ 0 (see (3.12)) and using Hölder’s inequal-

ity with
1
2⋆

+
1
2⋆

+
2
N

= 1, we have

∫
Ω

A(x)DwnDwn dx

≤
∫

Ω

(1+δ |wn|)wn fn(x)dx

+
∫

Ω

(1+δ |wn|)wn(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an(x)dx

(3.13)

By the coercivity condition (2.2), we get
α

∫
Ω

|Dwn|2 dx ≤
∫

Ω

(1+δ |wn|)wn fn(x)dx

+
∫

Ω

(1+δ |wn|)wn(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an(x)dx.

(3.14)

Using the chains of Hölder’s and Sobolev’s inequalities (2.9) this implies that

∫
Ω

(1+δ |wn|)wn fn(x)dx

=
∫

Ω

|wn| fn(x)dx+δ

∫
Ω

|wn|2 fn(x)dx

≤ ∥ f∥H−1(Ω)∥Dwn∥2 +δ C2
N ∥ f∥N/2 ∥Dwn∥2

2.

(3.15)
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Splitting Ω into Ω = {|wn| ≤ 1}∪ {|wn| > 1} and writing the last term of the
right-hand side of (3.13) as

∫
Ω

(1+δ |wn|)wn(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an(x)dx =

∫
{|wn|≤1}

(1+δ |wn|)wn(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an(x)dx

+
∫
{|wn|>1}

(1+δ |wn|)wn(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an(x)dx.

(3.16)

Since ||an||N/2 converges to ||a0||N/2, || fn||N/2 to || f ||N/2 and using that the

function F(x) =
x

log(1+ x)
is increasing in R⋆

+, we have



∫
{|wn|≤1}

(1+δ |wn|)wn(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an(x)dx

≤ (1+δ )
∫
|wn|≤1

an(x) |wn|1−θ

(
δ |wn|

log(1+δ |wn|

)θ

dx

≤ (1+δ )δ θ

logθ (1+δ )

∫
|wn|≤1

an(x) |wn|1−θ dx

≤ (1+δ )Cδ (θ)C1−θ

N |Ω|
1+θ

2⋆ ∥a0∥N/2 ∥Dwn∥1−θ

2 ,

(3.17)

where Cδ (θ) =
δ θ

logθ (1+δ )
and

∫
|wn|≥1

(1+δ |wn|)wn(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an(x)dx

≤Cδ (θ)
∫
|wn|≥1

(1+δ |wn|) |wn| an(x)dx

≤Cδ (θ)
(

CN |Ω|1/2⋆∥a0∥N/2 ∥Dwn∥2 +δ C2
N∥a0∥N/2 ∥Dwn∥2

2

)
.

(3.18)
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From (3.14), (3.15), (3.16), (3.17) and (3.18) we have

α ∥Dwn∥2
2 ≤ (1+δ )Cδ (θ)C1−θ

N |Ω| 1+θ

2⋆ ∥a0∥N/2∥Dwn∥1−θ

2

+Cδ (θ)CN |Ω|1/2⋆ ∥a0∥N/2∥Dwn∥2

+δ Cδ (θ)C2
N ∥a0∥N/2∥Dwn∥2

2

+∥ f∥H−1(Ω)∥Dwn∥2 +δ C2
N∥ f∥N/2 ∥Dwn∥2

2 if wn ̸= 0,

(3.19)

dividing by ∥Dwn∥1−θ

2 , this implies that (note that the result remains true in the
case where wn = 0)

(
α −δ Cδ (θ)C2

N∥a0∥N/2 −δ C2
N ∥ f∥N/2

)
∥Dwn∥1+θ

2

≤
(

Cδ (θ)CN |Ω|1/2⋆ ∥a0∥N/2 + ∥ f∥H−1(Ω)

)
∥Dwn∥θ

2

+(1+δ )Cδ (θ)C1−θ

N |Ω| 1+θ

2⋆ ∥a0∥N/2.

(3.20)

In view of the definition of (4.6) of the function Φδ (see also Figure 1), we
have proved if wn is any solution of (3.4), one has

Φδ (∥Dwn∥2)≤ 0, if γ ≤ δ , (3.21)

this implies that
∥Dwn∥ ≤ Zδ (does notdepend to n). (3.22)

where the constant Zδ > 0 satisfies

Φδ (Zδ ) = 0. (3.23)

Since un = δ−1(log(1+δ |wn|))sign(wn), and from (3.22) implies that

un is bounded in H1
0 (Ω). (3.24)

Step 3: Proof of regularity result

Extracting a subsequence, still denoted n, we have, for some u ∈ H1
0 (Ω) and

w ∈ H1
0 (Ω)

un ⇀ u weakly in H1
0 (Ω), a.e. in Ω,

wn ⇀ w weakly in H1
0 (Ω), a.e. in Ω,
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where
w = ϕ(u) = δ

−1(eδ |u|−1) sign(u).

Observe that u and w do not belong to L∞(Ω) in general.
If we consider another δ , say δ ′, which also satisfies

γ ≤ δ ′ such that ∥ f∥N/2 ≤
α

δ ′C2
N
−
(

δ ′

log(1+δ ′)

)θ

∥a0∥N/2. (3.25)

The above a priori estimate (3.22) again shows that w′
n defined by

w′
n = δ

′−1(eδ ′|un|−1) sign(un),

is bounded in H1
0 (Ω), this proves that u is such that

(eδ ′|u|−1) sign(u) ∈ H1
0 (Ω), ∀δ

′ such that γ ≤ δ
′ satisfies (3.25),

that is (2.12).

Step 4: An estimate for
∫
|wn|>k

|Dwn|2

Let us define, for k ≥ 0, the fuction Tk : R → R is the usual truncation at height
k defined by

Tk(s) =


−k if s ≤−k
s if − k ≤ s ≤+k
+k if + k ≤ s,

(3.26)

and we define Gk : R→ R as the remainder of the truncation at height k, namely

Gk(s) = s−Tk(s), ∀s ∈ R, (3.27)

in other terms

Gk(s) =


s+ k if s ≤−k
0 if − k ≤ s ≤+k
s− k if s ≥+k,

(3.28)

Since Gk(wn) ∈ H1
0 (Ω), the use of Gk(wn) as test function in (3.8) is licit. This

gives

∫
Ω

A(x)DwnDGk(wn)dx+
∫

Ω

Kδ (x,wn,Dwn)sign(wn)Gk(wn)dx

=
∫

Ω

(1+δ |wn|)Gk(wn)

(δ−1 log(1+δ |wn|)+ 1
n )

θ
an(x)dx

+
∫

Ω

(1+δ |wn|)Gk(wn)χ{wn ̸=0} fn(x)dx.

(3.29)
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Using the coercivity (2.2) of the matrix A, we have for the first term of (3.29)
∫

Ω

A(x)DwnDGk(wn)dx =
∫

Ω

A(x)DGk(wn)DGk(wn)dx

≥ α

∫
Ω

|DGk(wn)|2 dx.

(3.30)

On the other hand, since

sign(s)Gk(s)≥ 0, ∀s ∈ R, (3.31)

and since Kδ (x,s,ξ )≥ 0, in view of (3.12), this implies∫
Ω

Kδ (x,wn,Dwn)sign(wn)Gk(wn)dx ≥ 0, (3.32)

Let k be fixed, we have

(1+δ |wn|)Gk(wn)(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an → (1+δ |w|)Gk(w)

(δ−1 log(1+δ |w|))θ
a0 a.e. in Ω,

and

(1+δ |wn|)Gk(wn)χ{wn ̸=0} fn → (1+δ |w|)Gk(w)χ{w ̸=0} f a.e. in Ω.

On the other hand the following functions
(1+δ |wn|)Gk(wn)(

δ−1 log(1+δ |wn|)+ 1
n

)θ
an and (1+δ |wn|)Gk(w) fn are equiintegrable.

Indeed, from (3.17) and (3.18), since an strongly converges in Lq(Ω), and for every
Borel set E ⊂ Ω, we have

∫
E

(1+δ |wn|)Gk(wn)(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an dx

≤
∫

E

(1+δ |wn|)|wn|(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an dx

≤ (1+δ )Cδ (θ)C1−θ

N |Ω|
(

1
q′ −

1−θ

2⋆

)
∥Dwn∥1−θ

2

(∫
E
|an|q dx

)1/q

+Cδ (θ)

(
CN |Ω|1/2⋆∥Dwn∥2

(∫
E
|an|N/2 dx

)2/N

+δ C2
N∥Dwn∥2

2

(∫
E
|an|N/2 dx

)2/N
)

≤ c
(∫

E
|an|q dx

)1/q

+ c′
(∫

E
|an|N/2 dx

)2/N

(3.33)
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Thus Vitali’s Theorem implies that

(1+δ |wn|)Gk(wn)(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an → (1+δ |w|)Gk(w)

(δ−1 log(1+δ |wn|)θ
a0 in L1(Ω),

and the functions (1+ δ |wn|)Gk(wn) fn are too equiintegrable, since fn strongly con-
verges in LN/2(Ω), and for Borel set E ⊂ Ω, we have

∫
E
(1+δ |wn|) |Gk(wn)|χ{wn ̸=0} | fn|dx ≤

∫
E
(1+δ |wn|) |wn| | fn|dx

≤ ∥(1+δ |wn|)∥2⋆∥wn∥2⋆

(∫
E
| fn|N/2 dx

)2/N

≤ c
(∫

E
| fn|N/2 dx

)2/N

.

(3.34)

By Vitali’s theorem implies that

(1+δ |wn|)Gk(wn)χ{wn ̸=0} fn → (1+δ |w|)Gk(w)χ{w̸=0} f in L1(Ω).

Using the strong convergence of (3.1) and (3.2) of an and fn in LN/2(Ω), the almost
everywhere of wn, the bound of L2⋆(Ω) of wn and Vitali’s theorem, we have for every k
fixed and for n tends to infinity.

(1+δ |wn|)Gk(wn)(
δ−1 log(1+δ |wn|)+ 1

n

)θ
an → (1+δ |w|)Gk(w)

(δ−1 log(1+δ |w|))θ
a0 strongly in L1(Ω),

(3.35)
and

(1+δ |wn|)Gk(wn)χ{wn ̸=0} fn → (1+δ |w|)Gk(w)χ{w ̸=0} f strongly in L1(Ω).
(3.36)

Passing to the limit in (3.29), for any k fixed, we obtain
α limsup

n→+∞

∫
Ω

|DGk(wn)|2 dx

≤
∫

Ω

(1+δ |w|)Gk(w)
(δ−1 log(1+δ |w|))θ

a0 dx+
∫

Ω

(1+δ |w|)Gk(w)χ{w̸=0} f dx

(3.37)

Since |Gk(w)| ≤ |w| and Gk(w) = 0 in the set {|w| ≤ k} the right-hand side of (3.37) is
bounded in L1(Ω) and from above∫

|w|>k

(
(1+δ |w|)|w|

(δ−1 log(1+δ |w|))θ
a0 + (1+δ |w|)|w|χ{w ̸=0} f

)
dx,

which tends to zero when k tends to infinity.

We deduce that

α limsup
n→+∞

∫
Ω

|DGk(wn)|2 dx → 0 as k →+∞. (3.38)
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Step 5: Strong convergence of DTk(wn) in L2(Ω))N

In this step, we will fix k > 0 and prove that

DTk(wn)→ DTk(w) strongly in (L2(Ω))N , as n →+∞, for k fixed. (3.39)

Let k be fixed, we define

zn = Tk(wn)−Tk(w), (3.40)

and we choose an increasing, C1 function ψ : R → R such that

ψ(0) = 0, ψ
′(s)− (c0 +δ )|ψ(s)| ≥ 1/2, ∀s ∈ R, (3.41)

where c0 is the constant which appears in the left-hand side of assumption (2.3) on H
and there exist such functions ψ : for example ψ(s) = seλ s2

with λ = (c0 +δ )2/4.

Since zn ∈ H1
0 (Ω)∩L∞(Ω), and since ψ(0) = 0, the function ψ(zn) belongs to H1

0 (Ω)∩
L∞(Ω). The use of ψ(zn) as test function in (3.8) is licit. This gives

∫
Ω

A(x)DwnDznψ
′(zn)dx+

∫
Ω

Kδ (x,wn,Dwn)sign(wn)ψ(zn)dx =

+
∫

Ω

(1+δ |wn|)ψ(zn)

(δ−1 log(1+δ |wn|)+ 1
n )

θ
an(x)dx

+
∫

Ω

(1+δ |wn|)ψ(zn)χ{wn ̸=0} fn(x)dx.

(3.42)

Since
Dwn = DTk(wn)+DGk(wn) = Dzn +DTk(w)+DGk(wn), (3.43)

the first term of the left-hand side of (3.42) reads as

∫
Ω

A(x)DwnDznψ
′(zn)dx =

∫
Ω

A(x)DznDznψ
′(zn)dx

+
∫

Ω

A(x)DTk(w)Dznψ
′(zn)dx

+
∫

Ω

A(x)DGk(wn)Dznψ
′(zn)dx.

(3.44)

On the other hand, splitting Ω into Ω = {|wn| > k}∪{|wn| ≤ k}, the second term
of the left-hand side of (3.42) reads as

∫
Ω

Kδ (x,wn,Dwn)sign(wn)ψ(zn)dx =

∫
{|wn|>k}

Kδ (x,wn,Dwn)sign(wn)ψ(zn)dx

+
∫
{|wn|≤k}

Kδ (x,wn,Dwn)sign(wn)ψ(zn)dx,

(3.45)
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the first term of the right-hand side of (3.45), we claim that

∫
{|wn|>k}

Kδ (x,wn,Dwn)sign(wn)ψ(zn)dx ≥ 0, (3.46)

indeed in {|wn| > k}, the integrand is nonnegative since on the first hand the function
Kδ (x,wn,Dwn)≥ 0 in view of (3.12) and δ ≥ γ , and since on the other hand one has

sign(wn)ψ(zn)≥ 0 in {|wn|> k}, (3.47)

indeed in {|wn|> k}, one has zn = Tk(wn)−Tk(w) = k sign(wn)−Tk(w), and therefore
sign(zn) = sign(wn); this implies

sign(wn)ψ(zn) = sign(zn)ψ(zn) = |ψ(zn)| in {|wn|> k}, (3.48)

which proves (3.46).

The second term of the right-hand side of (3.45), in view of (3.12) and δ ≥ γ , we obtain

|Kδ (x,wn,Dwn)sign(wn)ψ(zn)| ≤ (c0 +δ ) |ψ(zn)|A(x)DwnDwn. (3.49)

Since in view of (3.43) one has

Dwn = Dzn +DTk(w⋆) in {|wn| ≤ k},

and implies that

∫
{|wk|≤k}

(Kδ (x,wn,Dwn))sign(wn)ψ(zn)dx

≥−
∫
{|wn|≤k}

(c0 +δ )|ψ(zn)|A(x)DwnDwn dx

=−
∫
{|wn|≤k}

(c0 +δ )|ψ(zn)|A(x)(Dzn +DTk(w))(Dzn +DTk(w))dx

≥−
∫

Ω

(c0 +δ )|ψ(zn)|A(x)(Dzn +DTk(w))(Dzn +DTk(w))dx

≥−
∫

Ω

(c0 +δ )|ψ(zn)|A(x)DznDzn dx

−
∫

Ω

(c0 +δ )|ψ(zn)|

(A(x)DTk(w)Dzn +A(x)Dzn DTk(w)+A(x)DTk(w)DTk(w)) dx.

(3.50)
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From (3.42), (3.44), (3.45), (3.46) and (3.50) we deduce that

∫
Ω

A(x)DznDzn
(
ψ

′(zn)− (c0 +δ )|ψ(zn)|
)

dx

≤−
∫

Ω

A(x)DTk(w)Dzn ψ
′(zn)dx

−
∫

Ω

A(x)DGk(wn)Dzn ψ
′(zn)dx

+
∫

Ω

(c0 +δ )|ψ(zn)|

(A(x)DTk(w)Dzn +A(x)DznDTk(w)+A(x)DTk(w)DTk(w)) dx

+
∫

Ω

(
(1+δ |wn|(

δ−1(log(1+δ |wn|+ 1
n

)θ
an(x)+(1+δ |wn|)χ{wn ̸=0} fn(x)

)
ψ(zn)dx.

(3.51)

We claim that each term of the right-hand side of (3.51) tends to zero as n tends to
infinity.

Since ψ ′(zn)−(c0+δ ) |ψ(zn)| ≥ 1/2 by (3.41), and the matrix A is coercive (see (2.2)),
this will imply that

zn → 0 in H1
0 (Ω) strongly,

or in other terms (see the definition (3.40) of zn) that

Tk(wn)→ Tk(w) in H1
0 (Ω) strongly as n →+∞.

In order to prove the claim let us recall that of the definition (3.40) of zn one has

zn ⇀ 0 in H1
0 (Ω) weakly, L∞(Ω) weakly star and a.e. in Ω as n →+∞.

Since ψ(0) = 0, this implies that ψ(zn) tends to zero almost everywhere in Ω and
in L∞(Ω) weakly star as n tends to infinity, which is in turn implies that

Dzn ψ
′(zn) = Dψ(zn)⇀ 0 in L2(Ω)N weakly as n →+∞.

This implies that the first term of the right-hand side of (3.51) tends to zero as n tends
to infinity.

For the second term of the right-hand side of of (3.51) we observe that

A(x)DGk(wn)Dzn = A(x)DGk(wn)(DTk(wn)−DTk(w)) =−A(x)DGk(wn)DTk(w),
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and that by Lebesgue’s dominated convergence theorem

DTk(w)ψ
′(zn)→ DTk(w)ψ

′(0) in L2(Ω)N strongly as n →+∞,

while DGk(wn) tends to DGk(w) weakly in L2(Ω)N .
Since almost everywhere one has A(x)DGk(w)DTk(w) = 0, the second term of the right-
hand side of (3.51) tends to zero.

For the third term of the right-hand side of (3.51), we observe that

(c0 +δ )|ψ(zn)|A(x)DTk(w)→ 0 in L2(Ω)N strongly as →+∞

by Lebesgue’s dominated convergence Theorem, since ψ(zn) is bounded in L∞(Ω) and
since ψ(zn) tends almost everywhere to zero because ψ(0) = 0. Since Dzn is bounded
in L2(Ω)N , this implies that the first part of this third term tends to zero. A similar proof
holds true for the two others parts of this third term.

Finally the fourth term of the right-hand side of (3.51) tends to zero, since the inte-
grand converges almost everywhere to zero and is equiintegrable (see (3.15), (3.17) and
(3.18)).

This proves that zn tend to zero strongly in H1
0 (Ω), namely

DTk(wn) → DTk(w) strongly in (L2(Ω))N , as n →+∞, for k fixed

Since we have
wn −w = Tk(wn)+Gk(wn)−Tk(w)−Gk(w),

and using (3.38) and (3.39) we have

Dwn → Dw in (L2(Ω))N strongly as n →+∞, (3.52)

Thus wn tends to w strongly in H1
0 (Ω). Since we have

un = δ
−1 log(1+δ |wn|),

it follows that
un → u strongly in H1

0 (Ω).

Step 6: Control of
∫
|un|≤µ

an(x)
(|un|+ 1

n)
θ

ϕ when µ is small

In this step we prove that

lim
n

∫
Ω

an(x)(
|un|+ 1

n

)θ
ϕ dx =

∫
Ω

a0(x)
|u|θ

ϕ dx,

for all ϕ ∈ H1
0 (Ω)∩L∞(Ω).
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First we observe that

∫
Ω

an(x)(
|un|+ 1

n

)θ
ϕ dx =

∫
Ω

A(x)DunDϕ dx

−
∫

Ω

Hn(un,Dun)ϕ dx−
∫

Ω

χ{un ̸=0} fnϕ dx.

(3.53)

Taking into account the boundness of the matrix A, using the Young’s inequality and
the Sobolev’s inequality, we get

∫
Ω

an(x)(
|un|+ 1

n

)θ
ϕ dx

≤ ∥A∥∞(∥Dun∥2
2 +∥Dϕ∥2

2)

+(c0 + γ)∥ϕ∥∞ ∥Dun∥2 +CN |Ω|1/2⋆∥ f∥N/2∥Dϕ∥2

≤ ∥A∥∞(∥Dun∥2
2 +∥Dϕ∥2

2)

+(c0 + γ)∥ϕ∥∞ ∥Dun∥2
2 +

C2
N |Ω|2/2⋆

2
∥ f∥2

N/2 +
1
2
∥Dϕ∥2

2

≤ c+(cϕ∥Dun∥2
2 + c′∥Dϕ∥2

2),

(3.54)

where c, cϕ and c′ are the positive constants.
From now on, we consider a nonnegative ϕ ∈ H1

0 (Ω)∩ L∞(Ω), applying Fatou’s
Lemma to the left-hand side of (3.54), we have.∫

Ω

a0(x)
|u|θ

ϕ dx ≤Cϕ ,

where Cϕ does not depend to n. Hence 0 ≤ a0(x)
|u|θ

ϕ ∈ L1(Ω), for any nonnegative

ϕ ∈ H1
0 (Ω)∩L∞(Ω).

As consequence,
1
|s|θ

is unbounded as s tends to 0, we deduce that

{u = 0} ⊂ {a0 = 0},

up to set of zero Lebesgue measure.

From now on, we consider a nonnegative function ϕ ∈ H1
0 (Ω)∩L∞(Ω), and choising it

was test function in the weak formulation, we have

∫
Ω

A(x)DunDϕ dx

=
∫

Ω

Hn(un,Dun)ϕ dx+
∫

Ω

an(x)
(|un|+ 1

n )
θ

ϕ dx+
∫

Ω

χ{un ̸=0} fn ϕ dx,

(3.55)
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we want to pass to the limit in the second right-hand side of (3.55) as n tends to infinity.
For µ > 0 fixed, we consider the second right-hand side of (3.55)∫

Ω

an(x)
(|un|+ 1

n )
θ

ϕ dx =
∫
|un|≤µ

an(x)
(|un|+ 1

n )
θ

ϕ dx+
∫
|un|>µ

an(x)
(|un|+ 1

n )
θ

ϕ dx (3.56)

Applying Lemma 1.1 of [34], we have that for µ > 0 , Vµ(un) belongs to H1
0 (Ω), where

Vµ : ]−∞,+∞[→ [0,+∞[ is defined by

Vµ(s) =



0 s <−2µ

2+
s
µ

−2µ ≤ s <−µ

1 −µ ≤ s ≤ µ

2− s
µ

µ < s < 2µ

0 s ≥ 2µ.

Since Vµ(un) ∈ H1
0 (Ω), the use of (Vµ(un)ϕ) as test function in (3.4) is licit. This gives

∫
|un|≤µ

an(x)
(|un|+ 1

n )
θ

ϕ dx ≤
∫

Ω

A(x)Dun D(Vµ(un)ϕ)dx

−
∫

Ω

Hn(un,Dun)Vµ(un) ϕ dx−
∫

Ω

χ{un ̸=0} fn Vµ(un) ϕ dx

(3.57)

The first term of the right-hand side of (3.57) can be written∫
Ω

A(x)Dun D(Vµ(un)ϕ)dx =
∫

Ω

A(x)Dun Dϕ Vµ(un)dx. (3.58)

Indeed, splitting Ω into Ω = {|un| ≤ µ}∪{|un|> µ}

∫
Ω

A(x)DunDun V ′
µ(un)ϕ dx =

− 1
µ

∫
{un≥0}

A(x)Dun Dun ϕ dx

+
1
µ

∫
{un<0}

A(x)Dun Dun ϕ dx

(3.59)



1
µ

∫
{un<0}

A(x)Dun Dun ϕ dx

=
1
µ

∫
{−un>0}

A(x)D(−un)D(−un)ϕ dx

=
1
µ

∫
{un>0}

A(x)Dun Dun ϕ dx.

(3.60)
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Finally, we have ∫
Ω

A(x)DunDun V ′
µ(un)ϕ dx = 0 (3.61)

Since Dϕ Vµ(un) converges to Dϕ Vµ(u) strongly in L2(Ω)N while A(x)Dun converges
to A(x)Du weakly in L2(Ω)N , we obtain

lim
n

∫
Ω

A(x)Dun Dϕ Vµ(un)dx =
∫

Ω

A(x)Du Dϕ Vµ(u)dx. (3.62)

In the second term of the right-hand side of (3.57), we observe that ϕVµ(un) is bounded
in L∞(Ω) and

Hn(un,Dun) ϕVµ(un)≤ ∥ϕ∥∞(c0 + γ)|Dun|2,

which implies that the functions Hn(un,Dun) ϕVµ(un) are equiintegrable since Dun
strongly converges to Du in L2(Ω)N , we have

lim
n

∫
Ω

Hn(un,Dun) ϕVµ(un)dx =
∫

Ω

H(u,Du)ϕVµ(u)dx. (3.63)

In the third term of the right-hand side of (3.57), the functions fn ϕ Vµ(un) are equiinte-
grable, since fn strongly converges in LN/2(Ω) and Vµ(un) converges to Vµ(u) strongly
in L2⋆(Ω). Thus Vitali’s theorem implies that

lim
n

∫
Ω

χ{un ̸=0} fn ϕVµ(un)dx =
∫

Ω

χ{u̸=0} f ϕVµ(u)dx. (3.64)

Together with (3.57), the three limits (3.62), (3.63) and (3.64) imply that
lim

n

∫
|un|≤µ

an(x)(
|un|+ 1

n

)θ
ϕ dx ≤

∫
Ω

A(x)DuDϕ Vµ(u)dx

+
∫

Ω

H(u,Du) ϕVµ(u)dx+
∫

Ω

χ{u̸=0} f ϕVµ(u)dx

(3.65)

Since Vµ(u) converges to χ{u=0} a.e. in Ω, as µ → 0 and since u ∈ H1
0 (Ω), then(

A(x)DuDϕ +H(u,Du)ϕ +χ{u ̸=0} f ϕ
)

Vµ(u)→ 0 a.e. in Ω, as µ → 0. (3.66)

Applying the Lebesgue’s dominated convergence Theorem on the right-hand side of
(3.65), we obtain that

lim
µ→0

lim
n

∫
{|un|≤µ}

an(x)(
|un|+ 1

n

)θ
ϕ dx = 0. (3.67)

Finally, let us pass to limit in n for µ > 0 fixed in the second term of the right-hand side
of (3.56) ∫

{|un|>µ}

an(x)(
|un|+ 1

n

)θ
ϕ dx =

∫
Ω

an(x)(
|un|+ 1

n

)θ
χ{|un|>µ} ϕ dx.
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Using that un converges to u a.e. on Ω, we have

an(x)(
|un|+ 1

n

)θ
ϕ → a0(x)

|u|θ
ϕ a.e. on Ω,

and
χ{|un|>µ} →

n
χ{|u|>µ} on {x ∈ Ω : u(x) ̸= µ},

defining the set C by

C = {µ > 0, meas{x ∈ Ω : u(x) = µ}> 0},

and choising µ /∈ C, Lebesgue’s dominated convergence theorem implies that

lim
n

∫
{|un|>µ}

an(x)(
|un|+ 1

n

)θ
ϕ dx =

∫
{|u|>µ}

a0(x)
|u|θ

ϕ dx, ∀µ /∈ C. (3.68)

As the set C is at most countable, choising µ such that µ /∈ C and using the fact that

χ{|u|>µ} → χ{|u|>0} as µ → 0,

the fact
a0(x)
|u|θ

ϕ belongs to L1(Ω).

Finally, we have proved that∫
{|u|>µ}

a0(x)
|u|θ

ϕ dx →
∫
{|u|>0}

a0(x)
|u|θ

ϕ dx =
∫

Ω

a0(x)
|u|θ

ϕ dx as µ → 0.

Using (3.67) and (3.68), we deduce

lim
n

∫
Ω

an(x)(
|un|+ 1

n

)θ
ϕ dx =

∫
Ω

a0(x)
|u|θ

ϕ dx, ∀ϕ ∈ H1
0 (Ω)∩L∞(Ω), ϕ ≥ 0. (3.69)

Moreover, decomposing any ϕ = ϕ+−ϕ− and observing that (3.69) is linear in ϕ , we
deduce that (3.69) holds for every ϕ ∈ H1

0 (Ω)∩L∞(Ω).

Remark 3.1. Since un ∈ H1
0 (Ω), one has for every µ > 0 fixed

{un = 0} ⊂ {|un| ≤ µ},

this implies that∫
{un=0}

an(x)(
|un|+ 1

n

)θ
ϕ dx = 0 for every ϕ ∈ H1

0 (Ω)∩L∞(Ω).

As un → u strongly in H1
0 (Ω), it is then easy to pass to the limit in the approximate

equation (3.4). This proves that u is a solution of (2.1). The proof of Theorem 2.1 is
then complete.
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4. Appendix

In this Appendix, we give an equivalent result of the approximate problem and the
definition of the constant Zδ which appears in Theorem 2.1 (see Lemma 4.2).

4.1. An equivalence result
Proposition 4.1. Assume that (2.2), (2.3), (2.5), (2.6), (2.8), (3.3), (3.1), (3.2) hold true,
and let δ > 0 be fixed. Let the function Kδ be defined in (3.9).
If un is any solution of (2.1) which satisfies

(eδ |un|−1) ∈ H1
0 (Ω), (4.1)

then the function wn defined by (3.6), namely

wn = δ
−1(eδ |un|−1)sign(wn),

satisfies


wn ∈ H1

0 (Ω),

−div(A(x)Dwn)+Kδ (x,wn,Dwn)sign(wn) =

(1+δ |wn|)χ{wn ̸=0} fn +
1+δ |wn|

(δ−1 log(1+δ |wn|+ 1
n )

θ
an(x) in D′(Ω).

(4.2)

Conversely, if wn is any solution of (4.2), then the function un defined by

un = δ
−1 log(1+δ |wn|)sign(wn), (4.3)

is a solution of (3.4) which satisfies (4.3).

Proof. Define the function f̂n by

f̂n(x) = χ{un ̸=0} fn(x)+
an(x)

(|un|+ 1
n )

θ
.

In view of (3.6), one has:

(1+δ |wn|)χ{wn ̸=0} fn(x)+
(1+δ |wn|)an(x)(

δ−1 log(1+δ |wn|)+ 1
n

)θ

= (1+δ |wn|)

(
χ{wn ̸=0} fn(x)+

an(x)(
δ−1 log(1+δ |wn|)+ 1

n

)θ

)

= (1+δ |wn|)

(
χ{un ̸=0} fn(x)+

an(x)(
|un|+ 1

n

)θ

)
.

(4.4)

Then Proposition 4.1 becomes an immediate application of Proposition 1.8 of [17],
once observes that

f̂n ∈ L∞(Ω). (4.5)
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4.2. Definition of Zδ

The goal of this Subsection is to define the constant Zδ which appear in Theorem
2.1. We will prove the following result.

Lemma 4.2. For δ ≥ 0, let Φδ : R+ → R (see Figure 1) be the function defined by

Φδ (X) =

(
α − δ 1+θ

logθ (1+δ )
C2

N∥a0∥N/2 −δ C2
N ∥ f∥N/2

)
X1+θ

−
(

δ θ

logθ (1+δ )
CN |Ω|1/2⋆ ∥a0∥N/2 + ∥ f∥H−1(Ω)

)
Xθ

− (1+δ )δ θ

logθ (1+δ )
C1−θ

N |Ω|
1+θ

2⋆ ∥a0∥N/2,

(4.6)

where θ satisfies (2.6), namely 0 < θ < 1. and where CN is the best constant in the
Sobolev’s inequality (2.9).

Then, for δ ≥ γ , there exists a unique number Zδ such that

Φδ (Zδ ) = 0, and ∀X ≤ Zδ : Φδ (X)≤ 0. (4.7)

Figure 1: The graphs of the functions Φδ (X) and Φγ(X).

Proof. Let us now study the family of functions Φδ (X) : R+ → R defined by (4.6),
from the smallness condition relative to δ (see 2.11), implies that

α − δ 1+θ

logθ (1+δ )
C2

N∥a0∥N/2 −δ C2
N ∥ f∥N/2 ≥ 0

Each function Φδ look like the restriction to R+ of a “convex parabola”, when
0 < γ ≤ δ this “convex parabola” has a unique minimizer in Xδ of the function Φδ ,
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and the minimum of Φδ , namely Φδ (Xδ ) is negative and using the intermediate value
theorem, then there exists Zδ such that Φδ (Zδ ) = 0.
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