LINE COZERO-DIVISOR GRAPHS

S. KHOJASTEH

Let \(R \) be a commutative ring. The cozero-divisor graph of \(R \) denoted by \(\Gamma'(R) \) is a graph with the vertex set \(W^*(R) \), where \(W^*(R) \) is the set of all non-zero and non-unit elements of \(R \), and two distinct vertices \(x \) and \(y \) are adjacent if and only if \(x \notin R y \) and \(y \notin R x \). In this paper, we investigate when the cozero-divisor graph is a line graph. We completely present all commutative rings which their cozero-divisor graphs are line graphs. Also, we study when the cozero-divisor graph is the complement of a line graph.

1. Introduction

In 1988, Beck [12] introduced the concept of the zero-divisor graph. The zero-divisor graphs of commutative rings has been studied by several authors. We refer to the reader the papers [7, 8] and [9] for the properties of zero-divisor graphs. Also, the line zero divisor graphs was studied in [11]. For an arbitrary commutative ring \(R \), the cozero-divisor graph \(\Gamma'(R) \), as the dual notion of zero-divisor graphs, was introduced in [2]. Let \(W^*(R) \) be the set of all non-zero and non-unit elements of \(R \). The vertex set of \(\Gamma'(R) \) is \(W^*(R) \), and two distinct vertices \(x \) and \(y \) in \(W^*(R) \) are adjacent if and only if \(x \notin R y \) and \(y \notin R x \), where \(Rz \) is the ideal generated by the element \(z \) in \(R \). Many papers have been devoted to the study of cozero-divisor graphs, for instance see [1 – 6]. Motivated by
the previous works on the zero divisor graph and cozero-divisor graph, in this paper we study line cozero-divisor graphs. Throughout this paper, all graphs are simple with no loops and multiple edges and R is a commutative ring with non-zero identity. We denote the set of all zero-divisor elements and the set of all unit elements of R by $Z(R)$ and $U(R)$, respectively. If R has a unique maximal ideal m, then R is said to be a local ring and it is denoted by (R,m). Also, \mathbb{F}_q denotes a finite field with q elements, for some positive integer q.

For basic definitions on graphs, one may refer to [14]. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. If x is adjacent to y, then we write $x — y$ or $\{x,y\} \in E(G)$. A graph G is complete if each pair of distinct vertices is joined by an edge. For a positive integer n, we use K_n to denote the complete graph with n vertices. Also, we say that G is totally disconnected if no two vertices of G are adjacent. Note that a graph whose vertex set is empty is an empty graph. The complement of G, denoted by \overline{G} is a graph on the same vertices such that two distinct vertices of \overline{G} are adjacent if and only if they are not adjacent in G. If $|V(G)| \geq 2$, then a path from x to y is a series of adjacent vertices $x — x_1 — x_2 — \cdots — x_n — y$. A cycle is a path that begins and ends at the same vertex in which no edge is repeated and all vertices other than the starting and ending vertex are distinct. We use P_n and C_n to denote the path and the cycle with n vertices, respectively. Suppose that H is a non-empty subset of $V(G)$. The subgraph of G whose vertex set is H and whose edge set is the set of those edges of G with both ends in H is called the subgraph of G induced by H. For every positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets, or parts, in such a way that no edge has both ends in the same part. An r-partite graph is complete r-partite if any two vertices in different parts are adjacent. We denote the complete r-partite graph, with part sizes n_1, \ldots, n_r by K_{n_1,\ldots,n_r}. For every $n \geq 2$, the star graph with n vertices is the complete bipartite graph with part sizes 1 and $n - 1$. The line graph $L(G)$ is a graph such that each vertex of $L(G)$ represents an edge of G, and two vertices of $L(G)$ are adjacent if and only if their corresponding edges are incident in G.

Here is a brief summary of the present paper. In this paper, we investigate when the cozero-divisor graph is a line graph. Also, we study when the cozero-divisor graph is the complement of a line graph. In Sec. 2, we characterize all finite rings whose cozero-divisor graphs are line graphs. In Sec. 3, we characterize all finite non-local rings whose cozero-divisor graphs are complements of line graphs. Also, we prove that if (R,m) is a local ring with $m \neq 0$, $\Gamma'(R)$ is the complement of a line graph and $\{x,y\} \in E(\Gamma'(R))$, then $|Rx \cap Ry| \leq 2$. Finally, we determine a family of graphs can be occurred as the complement of line cozero-divisor graph of finite local rings.
2. When the Cozero-Divisor Graph is a Line Graph

In this section, we study when the graph $\Gamma'(R)$ is a line graph. We determine all finite commutative rings whose cozero-divisor graphs are line graphs. We will use one of the characterizations of line graphs which was proved in [13].

Theorem 2.1. Let G be a graph. Then G is the line graph of some graph if and only if none of the nine graphs in Fig. 1 is an induced subgraph of G.

Throughout the paper R is a finite commutative ring. By the structure theorem of Artinian rings [10, Theorem 8.7], there exists positive integer n such that $R \cong R_1 \times R_2 \times \cdots \times R_n$ and (R_i, m_i) is a local ring for all $1 \leq i \leq n$. We use this theorem in the rest of the paper. Also, let e_i be the $1 \times n$ vector whose ith component is 1 and the other components are 0.

We first present the following lemma.

Lemma 2.2. Let $R \cong R_1 \times R_2 \times \cdots \times R_n$ and let (R_i, m_i) be a local ring for all $1 \leq i \leq n$. If $n \geq 4$, then $\Gamma'(R)$ is not a line graph.

Proof. It is easy to see that $R(\sum_{i=1}^n e_i) \subseteqneq R(\sum_{i=3}^n e_i) \subseteqneq R(\sum_{i=2}^n e_i)$ and e_1 is adjacent to $\sum_{i=2}^n e_i$, $\sum_{i=3}^n e_i$ and $\sum_{i=4}^n e_i$. Hence the induced subgraph by the set $\{e_1, \sum_{i=2}^n e_i, \sum_{i=3}^n e_i, \sum_{i=4}^n e_i\}$ is isomorphic to $K_{1,3}$. Therefore by Theorem 2.1, $\Gamma'(R)$ is not a line graph. \hfill \Box

![Forbidden induced subgraphs of line graphs.](image)

Fig. 1. Forbidden induced subgraphs of line graphs.

Lemma 2.3. Let $R \cong R_1 \times R_2 \times R_3$ and let (R_i, m_i) be a local ring for $i = 1, 2, 3$. Then $\Gamma'(R)$ is a line graph if and only if $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. Let $\Gamma'(R)$ be a line graph. If $|R_1| \geq 3$, then the induced subgraph by the set $\{e_2, e_3, e_1 + e_3, xe_1 + e_3\}$ is isomorphic to $K_{1,3}$, for every $x \in R_1 \setminus \{0, 1\}$.
which is impossible. Hence $|R_1| = 2$ and similarly, $|R_2| = |R_3| = 2$. Therefore $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. We draw the graph $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$ in Fig. 2. One can easily see that the graph $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$ is the line graph of the graph $K_{2,3}$ which is drawn in Fig. 2. The proof of converse is clear.

\[\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \]

\[K_{2,3} \]

Fig. 2. $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$ is the line graph of $K_{2,3}$.

Lemma 2.4. Let $R \cong R_1 \times R_2$ and let (R_i, m_i) be a local ring for $i = 1, 2$. Then $\Gamma'(R)$ is a line graph if and only if R is isomorphic to one of the rings $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$, and $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Proof. One side is obvious. For the other side assume that $\Gamma'(R)$ is a line graph. We know that $|m_i| \leq |U(R_i)|$, for $i = 1, 2$. If $|m_1| \geq 2$, then we can put $a \in m_1^*$ and $u, v \in U(R_1)$. Then the induced subgraph on $\{ae_1, ue_1, ve_1, e_2\}$ is isomorphic to $K_{1,3}$, a contradiction. So, R_1 is a field. Similarly, R_2 is a field. Then $\Gamma'(R) = K_{|R_1| - 1, |R_2| - 1}$ and hence R is isomorphic to one of the rings $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$.

The next theorem, follows immediately from the above lemmas.

Theorem 2.5. Let R be a commutative non-local ring. Then $\Gamma'(R)$ is a line graph if and only if R is isomorphic to one of the rings $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$.

For the last case of our discussion, we must assume that $n = 1$. So, R is a local ring. Let m be the only maximal ideal of R. We note that if R is a field, then $W^*(R) = \emptyset$ which implies that $\Gamma'(R)$ is an empty graph and so it is the line graph of the graph K_1. So, we may assume that R is a local ring which is not a field. This implies that $m \neq 0$. Also, it is clear that if $\Gamma'(R)$ is totally disconnected with t vertices, for some positive integer t, then $\Gamma'(R)$ is the line graph of $\bigcup_{i=1}^t K_2$. In the rest of this section, we study the case that R is a local ring with non-zero maximal ideal and $E(\Gamma'(R)) \neq \emptyset$. Our starting point is the following lemma.

Lemma 2.6. Let (R, m) be a local ring with $m \neq 0$ and let $\Gamma'(R)$ be a line graph. If $\{x, y\} \in E(\Gamma'(R))$, then $|Rx \cap Ry| \leq 2$.
Proof. By contradiction, suppose that $0 \neq a, b \in Rx \cap Ry$. If $a \in U(R)x$, then we have $y \in Ra \subseteq Rx$, which is impossible. Therefore $a \in my$. Similarly, $b \in my$ and so $R(y + a) = R(y + b) = Ry$. Now, the set $\{x, y, y + a, y + b\}$ determines an induced subgraph of the type $K_{1,3}$. Therefore by Theorem 2.1, $\Gamma'(R)$ is not a line graph, a contradiction. Hence $|Rx \cap Ry| \leq 2$.

Lemma 2.7. Let (R, m) be a local ring with $m \neq 0$, $\Gamma'(R)$ be a line graph and let $\{x, y\} \in E(\Gamma'(R))$. If $Rx \cap Ry = \{0\}$, then the following hold:

(i) $Rx = \{0, x\}$ or $Rx = \{0, x, -x\}$.

(ii) $Ry = \{0, y\}$ or $Ry = \{0, y, -y\}$.

Proof. (i) We prove that $|Rx| \leq 3$. By contradiction, assume that $|Rx| \geq 4$. Let $a, b \in Rx \setminus \{0, x\}$. There are three following cases:

Case 1. $a, b \in U(R)x$. Then $Rx = Ra = Rb$ and the set $\{y, x, a, b\}$ determines an induced subgraph of the type $K_{1,3}$. This is a contradiction, by Theorem 2.1.

Case 2. $a, b \in mx$. Then $Rx = R(x + a) = R(x + b)$ and the set $\{y, x, x + a, x + b\}$ determines an induced subgraph of the type $K_{1,3}$, which is a contradiction, by Theorem 2.1.

Case 3. $a \in U(R)x$ and $b \in mx$. Then $Rx = Ra$ and $Rb \subseteq Rx$. Since $Ra = Rx$ and $\{x, y\} \in E(\Gamma'(R))$, y is adjacent to a. If $y \in Rb$, then $y \in Rx$, which is impossible. On the other hand, if $b \in Ry$, then $b \in Rx \cap Ry = \{0\}$, a contradiction. Therefore y is adjacent to b. Now, the set $\{y, x, a, b\}$ determines an induced subgraph of the type $K_{1,3}$, a contradiction.

By the above cases, we deduce that $|Rx| = 2, 3$. Clearly, if $|Rx| = 2$, then $Rx = \{0, x\}$. Also, it is not hard to see that if $|Rx| = 3$, then $Rx = \{0, x, -x\}$. This completes the proof.

(ii) It is similar to the proof of part (i).

Now, we are in a position to prove one of the main results.

Lemma 2.8. Let (R, m) be a local ring, $m \neq 0$, $E(\Gamma'(R)) \neq \emptyset$ and for every $\{x, y\} \in E(\Gamma'(R))$, let $Rx \cap Ry = \{0\}$. Then $\Gamma'(R)$ is a line graph if and only if it is a complete graph.

Proof. Suppose that $\Gamma'(R)$ is a line graph. Let $A = \{x \in V(\Gamma'(R)) | Rx = \{0, x\}\}$, $B = \{x \in V(\Gamma'(R)) | Rx = \{0, x, -x\}\}$ and let C be the set of all isolated vertices of $\Gamma'(R)$. We note that the induced subgraph of $\Gamma'(R)$ by the set A is a complete graph. Also, there exists $r \geq 0$ such that $|B| = 2r$. Because we have $x, -x \notin B$ or $x, -x \notin B$, for every $0 \neq x \in m$. Moreover, if $r > 0$, then the induced subgraph of $\Gamma'(R)$ by the set B is complete r-partite graph and every part is equal to $\{x, -x\}$, for some $x \in B$. Furthermore, by Lemma 2.7, $V(\Gamma'(R)) = A \cup B \cup C$. We use these facts in the rest of the proof. Since $E(\Gamma'(R)) \neq \emptyset$, $A \cup B \neq \emptyset$. Consider two following cases:
Case 1. $A = \emptyset$. We note that $E(\Gamma'(R)) \neq \emptyset$. This yields that $|B| = 2r > 0$ and B has two elements say b_1 and b_2 such that $b_1 \neq -b_2$ and $\{b_1, b_2\} \in E(\Gamma'(R))$. We claim that $C = \emptyset$. By contradiction, suppose that $c \in C$. If $c \in Rc_1$, then $c = b_1$ or $c = -b_1$. Hence c is not an isolated vertex, which is a contradiction. Therefore $c \notin Rc_1$. Similarly, $c \notin Rc_2$. Since c is an isolated vertex, we find that $b_1, b_2 \in Rc$. Assume that $b_1 = r_1c$ and $b_2 = r_2c$, for some $r_1, r_2 \in R$. If $r_1 \in U(R)$, then $Rc = Rc_1$. This implies that c and b_2 are adjacent, which is impossible. Hence $r_1 \in m$ and similarly, $r_2 \in m$. Since b_1 and b_2 are adjacent, we deduce that r_1 and r_2 are adjacent. Therefore $r_1, r_2 \in B$. Moreover, we conclude that $r_1 \in \{b_1, -b_1\}$ and $r_2 \in \{b_2, -b_2\}$. It follows that $c = 0$, a contradiction. Therefore $C = \emptyset$ and the claim is proved. This implies that $\Gamma'(R)$ is a complete r-partite graph, because $|B| = 2r$. Also, as we mentioned before, every part of $\Gamma'(R)$ is equal to $\{b, -b\}$, for some $b \in B$. If $|B| \geq 8$, then there exists $b_1, b_2, b_3, b_4 \in B$ such that $b_i \neq -b_j$, for every $i \neq j$. Now, the induced subgraph by the set $\{b_1, b_2, b_3, -b_3, b_4\}$ is isomorphic to G_3 (see Fig. 3), a contradiction. Hence $|B| = 4, 6$ and so $\Gamma'(R) = K_{2, 2}$ or $\Gamma'(R) = K_{2, 2, 2}$. By [4, Lemma 2], we conclude that $\Gamma'(R) \neq K_{2, 2}$. Therefore $\Gamma'(R) = K_{2, 2, 2}$. It follows that $\Gamma'(R)$ is a complete 3-partite graph. By [6, Corollary 3], $\Gamma'(R)$ is a triangle, which is impossible.

Case 2. $A \neq \emptyset$. Let $a_1 \in A$. First, we prove that $C = \emptyset$. By contradiction, suppose that $C \neq \emptyset$. We know that $Ra_1 = \{0, a_1\}$. This yields that $a_1 \in Rc$, for every $c \in C$. Also, if $B \neq \emptyset$, then $b \in Rc$, for every $b \in B$ and every $c \in C$. Since m is finite, we find that there exists $c_0 \in C$ such that $m = Rc_0$. On the other hand, by [2, Theorem 2.7], we conclude that $\Gamma'(R)$ is totally disconnected, a contradiction. Therefore $C = \emptyset$.

Now, we prove that $B = \emptyset$. By contradiction, assume that $|B| = 2r > 0$ and $B = \{b_1, \ldots, b_{2r}\}$. Since $a_1 + b_1$ is a vertex of $\Gamma'(R)$, $a_1 + b_1 \in V(\Gamma'(R)) = A \cup B$. If $a_1 + b_1 \in A$, then $R(a_1 + b_1) = \{0, a_1 + b_1\}$ and so $a_1 + b_1 = -(a_1 + b_1) = a_1 - b_1$. This yields that $b_1 = -b_1$, a contradiction. Therefore $a_1 + b_1 \in B$. With no loss of generality, we may assume that $a_1 + b_1 = b_2$. Then $a_1 = b_2 - b_1$. Since $2b_1 \neq 0, b_1$, we have $2b_1 = -b_1$. Hence $3b_1 = 0$. Similarly, $3b_2 = 0$. This implies that $3a_1 = 3(b_2 - b_1) = 0$. On the other hand, we have $2a_1 \in Ra_1 = \{0, a_1\}$ which shows that $2a_1 = 0$. Hence $a_1 = 0$, a contradiction. Thus $B = \emptyset$ and $V(\Gamma'(R)) = A$. Therefore $\Gamma'(R)$ is a complete graph.

From the above cases, we conclude that if $\Gamma'(R)$ is a line graph, then it is a complete graph. Clearly, if $\Gamma'(R) = K_t$, for some positive integer t, then it is the line graph of $K_{1,t}$. This completes the proof. \qed
A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained by replacing edges of this graph with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930, that says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ [14].

Let (R, m) be a local ring with $m \neq 0$, $|Rx \cap Ry| = 2$, for some $\{x, y\} \in E(\Gamma'(R))$ and let $\Gamma'(R)$ be a line graph. In the following theorem, first we prove that $\Gamma'(R)$ is planar. Then by using [1, Proposition 2.7], we characterize all local rings whose cozero-divisor graphs are line graphs.

Lemma 2.9. Let (R, m) be a local ring with $m \neq 0$. If there exists $\{x, y\} \in E(\Gamma'(R))$ such that $|Rx \cap Ry| = 2$, then $\Gamma'(R)$ is a line graph if and only if R is isomorphic to one of the following rings:

$$
\begin{align*}
\mathbb{Z}_2[x, y]/(x^2 - y^2, xy), & \quad \mathbb{Z}_2[x, y]/(x^2, y^3), \quad \mathbb{Z}_4[x, y]/(x^2 - 2xy, y^2 - 2, 2x), \\
\mathbb{Z}_4[x, y]/(x^2, xy - 2, y^2), & \quad \mathbb{Z}_4[x]/(x^2), \quad \mathbb{Z}_4[x]/(x^2 - 2x), \quad \mathbb{Z}_8[x]/(2x, x^2 - 4).
\end{align*}
$$

Proof. First assume that (R, m) is a local ring, $\Gamma'(R)$ is a line graph, $\{x, y\} \in E(\Gamma'(R))$ and $Rx \cap Ry = \{0, a\}$. We note that every element of the set $Rx \setminus \{0, a\}$ is adjacent to every element of the set $Ry \setminus \{0, a\}$. Since $\Gamma'(R)$ is a line graph and $K_{1,3}$ is not an induced subgraph of $\Gamma'(R)$, we find that $Rx = \{0, a, x, x + a\}$ and $Ry = \{0, a, y, y + a\}$. Since $x \notin Ry$ and $y \notin Rx$, we conclude that $x + y \notin Rx \cup Ry$. If $x \in R(x + y)$, then $x = r(x + y)$, for some $r \in m$. Hence $(1 - r)x = ry$. This yields that $x = (1 - r)^{-1}ry \in Ry$, which is impossible. Therefore $x \notin R(x + y)$. Similarly, $y \notin R(x + y)$. Thus $x + y$ is adjacent to both x and y. If $x + y$ is adjacent to a, then the set $\{x + y, x + a, a\}$ implies that $\Gamma'(R)$ has a $K_{1,3}$ as an induced subgraph, a contradiction. Therefore $a \in R(x + y)$. By the same argument as we saw before, $R(x + y) = \{0, a, x + y, x + y + a\}$. If $\Gamma'(R)$ has other vertex say z, then with no loss of generality, we may assume that there are the following cases:

Case 1. z is adjacent to x, y and $x + y$. Then the induced subgraph by the set $\{x, y, x + y, x + y + a, z\}$ is isomorphic to G_3 (see Fig. 4), a contradiction.

![Fig. 3](image1)

![Fig. 4](image2)
Case 2. \(z \) is adjacent to \(x \) and \(z \) is not adjacent to \(x + y \). Then \(x + y \in Rz \) and \(Rz = R(x + y + z) = R(a + z) \). The set \(\{x, z, x + y + z, a + z\} \) determines an induced subgraph of the type \(K_{1,3} \), which is contradiction.

Case 3. \(z \) is adjacent to \(x + y \) and \(z \) is not adjacent to \(x \). Then \(x \in Rz \) and \(Rz = R(x + z) = R(a + z) \). The set \(\{x + y, z, x + z, a + z\} \) implies that \(\Gamma'(R) \) has a \(K_{1,3} \) as an induced subgraph, which is contradiction.

Case 4. \(z \) is not adjacent to \(x, y \) and \(x + y \). Since \(x \) and \(z \) are not adjacent and \(z \in m \setminus (Rx \cup Ry \cup R(x + y)) \), \(x \in Rz \). This yields that \(x = x_1z \), for some \(x_1 \in m \). Similarly, \(y = y_1z \), for some \(y_1 \in m \). We note that \(x_1 \) and \(y_1 \) are adjacent and \(Rx_1 = R(x + x_1) = R(a + x_1) \). It follows that the induced subgraph by the set \(\{y_1, x_1, x + x_1, a + x_1\} \) is isomorphic to \(K_{1,3} \), a contradiction.

According to the above cases, we find that \(m = \{0, a, x, y, x + y, x + a, y + a, x + y + a\} \) and \(\Gamma'(R) = K_{2,2,2} \cup K_1 \). Since \(\Gamma'(R) \) is isomorphic to \(K_{2,2,2} \cup K_1 \), it is the line graph of \(K_4 \cup K_1 \). It is not hard to see that there exists a prime integer \(p \) and positive integers \(t, l, k \) such that \(\text{Char}(R) = p^t \), \(|m| = p^l \), \(|R| = p^k \) and \(\text{Char}(R/m) = p \). Since \(|m| = 2^3 \), we deduce that \(p = 2 \) and so \(\text{Char}(R/m) = 2 \). Also, we know that \(m \) is not principal and \(\Gamma'(R) \) is planar. In [1], the authors proved that the local rings of order \(2^k \) for which their maximal ideal is not principal, their cozero-divisor graph is planar and \(\Gamma'(R) \) is isomorphic to \(K_{2,2,2} \cup K_1 \). The following rings:

\[
\begin{align*}
\mathbb{Z}_2[x,y]/(x^2 - y^2, xy), & \mathbb{Z}_2[x,y]/(x^2, y^2), \mathbb{Z}_4[x,y]/(x^2 - 2, xy, y^2 - 2, 2x), \\
\mathbb{Z}_4[x,y]/(x^2, xy - 2, y^2), & \mathbb{Z}_4[x]/(x^2), \mathbb{Z}_4[x]/(x^2 - 2x), \mathbb{Z}_8[x]/(2x, x^2 - 4).
\end{align*}
\]

In view of proof of [1, Proposition 2.7], we deduce that \(R \) is isomorphic to one of the above rings (see [1, Figure 1]). The proof of other side is clear.

The following theorem can be obtained directly from Lemmas 2.8 and 2.9.

Theorem 2.10. Let \(R \) be a commutative local ring. Then \(\Gamma'(R) \) is a line graph if and only if \(\Gamma'(R) \) is totally disconnected, \(\Gamma'(R) \) is complete graph or \(R \) is isomorphic to one of the rings \(\mathbb{F}_q, \mathbb{Z}_2[x,y]/(x^2 - y^2, xy), \mathbb{Z}_2[x,y]/(x^2, y^2), \mathbb{Z}_4[x,y]/(x^2 - 2, xy, y^2 - 2, 2x), \mathbb{Z}_4[x,y]/(x^2, xy - 2, y^2), \mathbb{Z}_4[x]/(x^2), \mathbb{Z}_4[x]/(x^2 - 2x), \mathbb{Z}_8[x]/(2x, x^2 - 4) \).

Finally, in the following theorem, we characterize all commutative rings such that their cozero-divisor graphs are line graphs.

Theorem 2.11. Let \(R \) be a commutative ring. Then \(\Gamma'(R) \) is a line graph if and only if \(\Gamma'(R) \) is totally disconnected, \(\Gamma'(R) \) is complete graph or \(R \) is isomorphic to one of the following rings:

\[
\begin{align*}
\mathbb{F}_q, & \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_2[x,y]/(x^2 - y^2, xy), \\
\mathbb{Z}_2[x,y]/(x^2, y^2), & \mathbb{Z}_4[x,y]/(x^2 - 2, xy, y^2 - 2, 2x), \mathbb{Z}_4[x,y]/(x^2, xy - 2, y^2), \\
\mathbb{Z}_4[x]/(x^2), & \mathbb{Z}_4[x]/(x^2 - 2x), \mathbb{Z}_8[x]/(2x, x^2 - 4).
\end{align*}
\]
3. When the Cozero-Divisor Graph is the Complement of a Line Graph

In this section, we investigate when the graph $\Gamma'(R)$ is the complement of a line graph. We use the following version of Theorem 2.1.

Theorem 3.1. A graph G is the complement of a line graph if and only if none of the nine graphs G_i of Fig. 5 is an induced subgraph of G.

\begin{center}
\begin{tabular}{c c c c c}
G_1 & G_2 & G_3 & G_4 & G_5
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c c c c}
G_6 & G_7 & G_8 & G_9
\end{tabular}
\end{center}

Fig. 5. Forbidden induced subgraphs of complement of line graphs.

Lemma 3.2. Let $R \cong R_1 \times R_2 \times \cdots \times R_n$ and let (R_i, m_i) be a local ring for all $1 \leq i \leq n$. If $\Gamma'(R)$ is the complement of a line graph, then $n \leq 3$.

Proof. By contradiction, suppose that $n \geq 4$. Then the graph $\Gamma'(R)$ has an induced subgraph which is isomorphic to $\overline{G_1}$ (see Fig. 6). This is a contradiction. Hence $n \leq 3$.

\begin{center}
\begin{tabular}{c c c}
\includegraphics[width=0.2\textwidth]{fig6.png} & \includegraphics[width=0.2\textwidth]{fig7.png} & \includegraphics[width=0.2\textwidth]{fig8.png}
\end{tabular}
\end{center}

Fig. 6 \hspace{1cm} Fig. 7 \hspace{1cm} Fig. 8 $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$

Lemma 3.3. Let $R \cong R_1 \times R_2 \times R_3$ and let (R_i, m_i) be a local ring for $i = 1, 2, 3$. Then $\Gamma'(R)$ is the complement of a line graph if and only if $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. Let $\Gamma'(R)$ be the complement of a line graph. We prove that $|U(R_1)| = 1$. By contradiction, suppose that $1 \neq u \in U(R_1)$. Then the induced subgraph by the set $\{e_1, e_2, e_3, u e_1, e_1 + e_2, e_1 + e_3\}$ is isomorphic to $\overline{G_4}$ (see Fig. 7), a contradiction. Therefore $|U(R_1)| = 1$. This yields that $R_1 \cong \mathbb{Z}_2$. Similarly, $R_2 \cong R_3 \cong \mathbb{Z}_2$ and so $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. The graph $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$ was drawn in Fig. 2. It is not hard to see that $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) = C_6$, and so $\Gamma'(R)$ is the
complement of the line graph of the graph \(C_6 \) (see Fig. 8). This completes the proof.

\[
\begin{align*}
&x_2e_1 \\
&x_1e_1 & \bullet (1 + x_2)e_1 \\
& e_1 & \bullet (1 + x_1)e_1 \\
\end{align*}
\]

Fig. 9

\[
\begin{align*}
&y_1e_2 \\
&y_2e_2 & (1 + y_1)e_2 \\
&e_1 & \bullet e_2 \\
& e_1 + y_1e_2 & \bullet e_1 \\
\end{align*}
\]

Fig. 10

Lemma 3.4. Let \(R \cong R_1 \times R_2 \) and let \((R_i, m_i) \) be a local ring for \(i = 1, 2 \). Then \(\Gamma'(R) \) is the complement of a line graph if and only if \(R \) is isomorphic to one of the rings \(\mathbb{F}_{q_1} \times \mathbb{F}_{q_2}, \mathbb{Z}_2 \times \mathbb{Z}_4 \) and \(\mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2) \).

Proof. Let \(\Gamma'(R) \) be the complement of a line graph. First, we claim that \(\Gamma'(R_1) \) is totally disconnected or \(R_1 \) is a field. If \(\{x_1, x_2\} \in E(\Gamma'(R_1)) \), then the induced subgraph by the set \(\{e_1, x_1e_1, x_2e_1, (1 + x_1)e_1, (1 + x_2)e_1\} \) is isomorphic to \(\overline{G_3} \) (see Fig. 9), which is a contradiction. Therefore \(\Gamma'(R_1) \) has not any edge. This implies that \(\Gamma'(R_1) \) is totally disconnected or \(R_1 \) is a field and the claim is proved. Similarly, \(\Gamma'(R_2) \) is totally disconnected or \(R_2 \) is a field. We divide the proof into three following cases:

Case 1. \(R_1 \) and \(R_2 \) are fields. Let \(R_1 = \mathbb{F}_{q_1} \) and \(R_2 = \mathbb{F}_{q_2} \), for some positive integers \(q_1 \) and \(q_2 \). Let \(A = \{xe_1 | 0 \neq x \in \mathbb{F}_{q_1}\} \) and let \(B = \{ye_2 | 0 \neq y \in \mathbb{F}_{q_2}\} \). Clearly, \(V(\Gamma'(R)) = A \cup B \) and \(\Gamma'(R) \) is a complete bipartite graph with parts \(A \) and \(B \). It follows that \(\Gamma'(R) : K_{q_1-1,q_2-1} \) and it is the complement of the line graph of the union of two stars \(K_{1,q_1-1} \) and \(K_{1,q_2-1} \).

Case 2. \(R_1 \) is a field and \(\Gamma'(R_2) \) is totally disconnected. We prove that \(|m_2| = 2 \). Assume, on the contrary, \(0 \neq y_1, y_2 \in m_2 \). With no loss of generality, we may assume that \(y_2 \in R_{y_1} \). Then the induced subgraph by the set \(\{e_1, e_2, y_1e_2, y_2e_2, e_1 + y_1e_2, (1 + y_1)e_2\} \) is isomorphic to \(\overline{G_5} \) (see Fig. 10), which is a contradiction. Therefore \(|m_2| = 2 \). Let \(m_2 = \{0,y_1\} \). We note that \(m_2 = Z(R_2) \) and by [7, Remark 1], we find that \(|R_2| \leq |m_2|^2 \) and so \(R_2 \cong \mathbb{Z}_4 \) or \(R_2 \cong \mathbb{Z}_2[x]/(x^2) \). If \(x \in R_1 \setminus \{0,1\} \), then the induced subgraph by the set \(\{e_1, xe_1, e_2, y_1e_2, e_1 + y_1e_2, xe_1 + y_1e_2\} \) is isomorphic to \(\overline{G_5} \) (see Fig. 11), which is a contradiction. Therefore \(R_1 \cong \mathbb{Z}_2 \) and so \(R \) is isomorphic to one of the rings \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) and \(\mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2) \). Clearly, \(\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_4) \cong \Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2)) \). The graph \(\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_4) \) was drawn in Fig. 13. It is not hard to see that it is the complement of the line graph of the graph \(H \) (see Fig. 13).

Case 3. \(\Gamma'(R_1) \) and \(\Gamma'(R_2) \) are totally disconnected. Since \(R_1 \) and \(R_2 \) are not fields, \(|m_1|, |m_2| \geq 2 \). Let \(0 \neq x_1 \in m_1 \) and \(0 \neq y_1 \in m_2 \). The induced subgraph by the set \(\{e_2, x_1e_1 + y_1e_2, y_1e_2, x_1e_1 + (1 + y_1)e_2, x_1e_1 + e_2\} \) is isomorphic to \(\overline{G_3} \) (see Fig. 12), which is a contradiction.

\[\text{\(\square\)}\]
From the above cases, we find that if $\Gamma'(R)$ is the complement of a line graph, then R is isomorphic to one of the rings $\mathbb{F}_{q_1} \times \mathbb{F}_{q_2}, \mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2)$. The proof of converse is clear. \hfill \Box

\begin{align*}
e_2
\end{align*}

Fig. 11 \quad Fig. 12

\begin{align*}
e_2
\end{align*}

Fig. 13. $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_4) \cong \Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2)) = \overline{L(H)}$.

Now, we have the following conclusion which completely characterizes all finite commutative non-local rings R whose cozero-divisor graphs are the complement of line graphs.

Theorem 3.5. Let R be a commutative non-local ring. Then $\Gamma'(R)$ is the complement of a line graph if and only if R is isomorphic to one of the rings $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{F}_{q_1} \times \mathbb{F}_{q_2}, \mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2)$.

The only remaining case is that R is a local ring. As we mentioned in the previous section, if R is a field, then $\Gamma'(R)$ is an empty graph. It follows that $\Gamma'(R)$ is the complement of the line graph of the graph K_1. So, we may assume that R is a local ring with $m \neq 0$. In the following results, we characterize a family of graphs can be occurred as the complement of line cozero-divisor graph of local rings.

\begin{align*}
e_2
\end{align*}

Fig. 14 \quad Fig. 15
Lemma 3.6. \(\text{Let } (R, m) \text{ be a local ring and } m \neq 0. \text{ If } \Gamma'(R) \text{ is the complement of a line graph and } \{x, y\} \in E(\Gamma'(R)), \text{ then } |Rx \cap Ry| \leq 2. \)

Proof. By contradiction, assume that \(0 \neq a, b \in Rx \cap Ry\). There are two following cases:

Case 1. \(a\) and \(b\) are adjacent. Then the induced subgraph by the set \(\{a, b, x, y, x + a\}\) is isomorphic to \(\overline{G_2}\) (see Fig. 14), a contradiction.

Case 2. \(a\) and \(b\) are not adjacent. Then the induced subgraph by the set \(\{a, b, x, y, x + a, y + a\}\) is isomorphic to \(\overline{G_6}\) (see Fig. 15), a contradiction. \(\square\)

We close this paper by the following theorem.

Theorem 3.7. \(\text{Let } (R, m) \text{ be a local ring with } m \neq 0 \text{ and let } \Gamma'(R) \text{ be the complement of a line graph. Then } Rx \cap Ry = \{0\}, \text{ for every } \{x, y\} \in E(\Gamma'(R)) \text{ if and only if } \Gamma'(R) \text{ is a complete } r\text{-partite graph, for some positive integer } r. \)

Proof. Assume that \(\Gamma'(R)\) is the complement of a line graph and \(Rx \cap Ry = \{0\}\), for every \(\{x, y\} \in E(\Gamma'(R))\). Since \(R\) is finite, \(A = \{Rx | 0 \neq x \in m\}\) with the inclusion relation has maximal element. Let \(\{Rx_1, \ldots, Rx_r\}\) be the set of all maximal elements of \(A\), for some positive integer \(r\). We show that \(\Gamma'(R)\) is a complete \(r\)-partite graph with parts \(Rx_1 \setminus \{0\}, \ldots, Rx_r \setminus \{0\}\). We claim that every two distinct elements of \(Rx_i\) are non-adjacent. By contradiction, assume that \(0 \neq a, b \in Rx_1\) and \(\{a, b\} \in E(\Gamma'(R))\). If \(a, b \in mRx_1\), then the induced subgraph by the set \(\{a, b, x_1, a + x_1, b + x_1\}\) is isomorphic to \(\overline{G_3}\), a contradiction. If \(a \in mRx_1\) and \(b \in U(R)x_1\), then \(a \in Rb\), which is a contradiction. Also, \(Ra = Rb = Rx_1\), where \(a, b \in U(R)x_1\), which is a contradiction. Therefore the claim is proved. By the same argument, we have that every two distinct elements of \(Rx_i\) are non-adjacent, for \(i = 1, \ldots, r\). By the maximality of \(Rx_i\) and \(Rx_j\), we find that \(x_i\) and \(x_j\) are adjacent, for every \(i, j, 1 \leq i < j \leq r\). Since \(\{x_i, x_j\} \in E(\Gamma'(R))\), by our assumption we have \(Rx_i \cap Rx_j = \{0\}\), for every \(i, j, 1 \leq i < j \leq r\). This yields that every elements of \(Rx_i \setminus \{0\}\) and \(Rx_j \setminus \{0\}\) are adjacent, where \(1 \leq i < j \leq r\). Therefore \(\Gamma'(R)\) is a complete \(r\)-partite graph with parts \(Rx_1 \setminus \{0\}, \ldots, Rx_r \setminus \{0\}\). Let \(|Rx_i \setminus \{0\}| = n_i\), for \(i = 1, \ldots, r\). Then \(\Gamma'(R) = K_{n_1, \ldots, n_r} = \overline{L(\cup_{i=1}^r K_{1, n_i})}\). Conversely, suppose that \(\Gamma'(R)\) is a complete \(r\)-partite graph with parts \(V_1, \ldots, V_r\), for some positive integer \(r\) and \(\{x, y\} \in E(\Gamma'(R))\). We prove that \(Rx \cap Ry = \{0\}\). By contradiction, suppose that \(0 \neq a \in Rx \cap Ry\). Since \(\{x, y\} \in E(\Gamma'(R))\), \(x \in V_i\) and \(y \in V_j\), for some \(i \neq j\). On the other hand, \(a\) is adjacent neither \(x\) nor \(y\), because \(a \in Rx \cap Ry\). This implies that \(a \in V_i \cap V_j\), a contradiction. Therefore \(Rx \cap Ry = \{0\}\) and the proof is complete. \(\square\)
Acknowledgements

The author wishes to thank the referee for her/his valuable and fruitful comments.

REFERENCES

S. KHOJASTEH

Department of Mathematics,
Lahijan Branch,
Islamic Azad University,
Lahijan, Iran.

e-mail: s_khojasteh@liau.ac.ir