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STABILIZATION FOR SMALL MASS IN A QUASILINEAR
PARABOLIC–ELLIPTIC–ELLIPTIC

ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH
DENSITY-DEPENDENT SENSITIVITY: BALANCED CASE

Y. CHIYO - T. YOKOTA

This paper is concerned with the Neumann initial-boundary problem
for the quasilinear parabolic–elliptic–elliptic attraction-repulsion chemo-
taxis system with q = p and χα −ξ γ = 0:

ut = ∇ ·
(
(u+1)m−1∇u−χu(u+1)p−2∇v+ξ u(u+1)q−2∇w

)
,

0 = ∆v+αu−βv,
0 = ∆w+ γu−δw

in a bounded domain Ω ⊂ Rn (n ∈ N) with smooth boundary ∂Ω, where
m, p,q∈R, χ,ξ ,α,β ,γ,δ > 0 are constants. In the case that m ̸= 1, p ̸= 2
and q ̸= 2 boundedness and finite-time blow-up have been classified by
the sizes of p,q and the sign of χα − ξ γ (Z. Angew. Math. Phys.; 2022;
73; 61), where the critical case χα − ξ γ = 0 has been excluded. The
purpose of this paper is to prove boundedness and stabilization in the case
χα −ξ γ = 0.
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1. Introduction

We consider the following initial-boundary value problem for the quasilinear
parabolic–elliptic–elliptic attraction-repulsion chemotaxis system with q = p
and χα −ξ γ = 0:

ut = ∇ ·
(
(u+1)m−1∇u−χu(u+1)p−2∇v+ξ u(u+1)q−2∇w

)
,

0 = ∆v+αu−βv,
0 = ∆w+ γu−δw,
∇u ·ν |∂Ω = ∇v ·ν |∂Ω = ∇w ·ν |∂Ω = 0,
u(·,0) = u0

(1.1)

in a bounded domain Ω ⊂ Rn (n ∈ N) with smooth boundary ∂Ω, where

m, p,q ∈ R, χ,ξ ,α,β ,γ,δ > 0

are constants, ν is the outward normal vector to ∂Ω,

u0 ∈C0(Ω), u0 ≥ 0 in Ω and u0 ̸= 0. (1.2)

The fully parabolic version of (1.1) with m = 1 and p = q = 2 has been pro-
posed by Luca et al. [11] in order to describe the aggregation of microglial
cells in Alzheimer’s disease, and has been studied mathematically as will be
explained later. This original problem is also a specialized one introduced by
Painter and Hillen [12, Section 3.3] to represent the quorum sensing effect that
cells keep away from a repulsive chemical substance. One can observe that
(1.1) is regarded as a simplified problem of parabolic–elliptic–elliptic type and
is generalized problem to the quasilinear version. In these systems the functions
u, v and w idealize the density of the cells, the concentration of the chemoattrac-
tant and chemorepellent, respectively. To the best of our knowledge, quasilin-
ear attraction-repulsion chemotaxis systems as in (1.1) were studied firstly by
Frassu, van der Mee and Viglialoro [5] and also by Frassu, Li and Viglialoro [4],
where the second and third equations have consumption and nonlinear produc-
tion terms, respectively.

Before stating our main results, we briefly review previous works related
to the subjects in this paper. Liu and Wang [10] established the first result on
global existence and steady states in the fully parabolic version of the problem
(1.1) with m= 1 and p= q= 2 as well as χ = ξ =α = 1 in the one-dimensional
setting. After that, Tao and Wang [13] derived boundedness in the problem (1.1)
with m = 1 and p = q = 2 by assuming χα − ξ γ < 0 in two or more space
dimensions, and proved finite-time blow-up in this problem when χα −ξ γ > 0,
β = δ , ∥u0∥L1(Ω) >

8π

χα−ξ γ
and

∫
Ω

u0(x)|x−x0|2 dx (x0 ∈ Ω) is sufficiently small
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in the two-dimensional setting. In the literature, it was also shown that the
problem (1.1) possesses only one constant equilibrium (u0,

α

β
u0,

γ

δ
u0), where

u0 := 1
|Ω|

∫
Ω

u0, under the condition χα−ξ γ ≤ 0 and β = δ , and that solutions of
the problem (1.1) stabilize toward this constant equilibrium under the condition
χα − ξ γ < 0 and β = δ . We note that boundedness under some condition
including χα −ξ γ = 0 was established by Jin and Wang [6, 7] in the parabolic–
parabolic–elliptic and fully parabolic versions in two dimensions. After that,
Li, Lin and Mu [8] showed boundedness in this problem under the condition
χα −ξ γ = 0 in the two- and three-dimensional settings. Also, stabilization was
derived in the literature under the condition χα − ξ γ = 0 and some smallness
condition for u0; note that the fully parabolic version was investigated by Lin,
Mu and Wang [9]. On the other hand, in the case that m ̸= 1, p ̸= 2 and q ̸= 2
boundedness and finite-time blow-up were classified by the sign of χα −ξ γ in
[2]. Also, stabilization was shown in [1] under the condition p < q, or p = q
and χα −ξ γ < 0.

In summary, boundedness, finite-time blow-up and stabilization in the prob-
lem (1.1) were obtained under conditions for the sign of χα − ξ γ . However,
in the critical case χα − ξ γ = 0 the problem (1.1) has not been studied yet.
The purpose of this paper is to establish boundedness and stabilization in the
problem (1.1) in the critical case χα −ξ γ = 0.

The main results read as follows.

Theorem 1.1 (Boundedness). Let n ∈ N. Let q = p and χα −ξ γ = 0. Assume
that m ≥ max{1, p− 2

n}. Then for all u0 satisfying (1.2) there exists a unique
triplet (u,v,w) of nonnegative functions{

u ∈C0(Ω× [0,∞))∩C2,1(Ω× (0,∞)),

v,w ∈
⋂

ϑ>nC0([0,∞);W 1,ϑ (Ω))∩C2,1(Ω× (0,∞)),

which solves the problem (1.1) classically, and is bounded, that is,

∥u(·, t)∥L∞(Ω) ≤C

for all t > 0 with some constant C > 0.

Throughout the sequel we denote by

f :=
1
|Ω|

∫
Ω

f

the spatial average of arbitrary functions f ∈ L1(Ω).
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Theorem 1.2 (Stabilization). Let n ∈ N. Let q = p and χα − ξ γ = 0. Assume
that m ≥ 1 and 0 ≤ p−m ≤ 2

n . Suppose that u0 satisfies (1.2) and

χα∥u0∥p−m
L1(Ω)

<
1

2C⟨p−m⟩
,

where C⟨p−m⟩ > 0 is a constant appearing in the Poincaré–Sobolev inequality

∥ϕ −ϕ∥L2(Ω) ≤C⟨p−m⟩∥∇ϕ∥
L

2
p−m+1 (Ω)

for all ϕ ∈W 1, 2
p−m+1 (Ω). Then the solu-

tion (u,v,w) of the problem (1.1), provided by Theorem 1.1, fulfills

u(·, t)→ u0 in L∞(Ω) as t → ∞ (1.3)

and

v(·, t)→ α

β
u0 in L∞(Ω) as t → ∞ (1.4)

as well as

w(·, t)→ γ

δ
u0 in L∞(Ω) as t → ∞. (1.5)

Theorem 1.3 (Exponential stabilization). Let n = 2 and let m = 1. Let q = p
and χα−ξ γ = 0. Let κ ∈ (0,λ1), where λ1 > 0 is the first nonzero eigenvalue of
the Neumann Laplacian in Ω. Assume that 1 < p ≤ 2. Suppose that u0 satisfies
(1.2). Then one can find t0 > 0 and ε0 > 0 such that for all ε ∈ (0,ε0), whenever
u0 fulfills

∥u0∥L1(Ω) ≤ ε,

the solution (u,v,w) of the problem (1.1), provided by Theorem 1.1, satisfies

∥u(·, t)−u0∥L∞(Ω) ≤ εe−κ(t−t0) (1.6)

and ∥∥∥v(·, t)− α

β
u0

∥∥∥
L∞(Ω)

≤ α

β
εe−κ(t−t0) (1.7)

as well as ∥∥∥w(·, t)− γ

δ
u0

∥∥∥
L∞(Ω)

≤ γ

δ
εe−κ(t−t0) (1.8)

for all t > t0.
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The strategy for showing boundedness (Theorem 1.1) is to derive the differ-
ential inequality

d
dt

∫
Ω

uσ +
∫

Ω

uσ ≤ c1

for some σ > n and c1 > 0. The key to the construction of this inequality is to es-
timate the term J1 := c2

∫
Ω

uσ+p−1 with c2 > 0. In [2] the term J1 can be removed
by taking advantage of the effect of the repulsion. On the other hand, in our case,
we cannot handle the term J1 by the same way as in the literature. Hence, we
shift our perspective to the diffusion instead of the repulsion. Specifically, we
cope with J1 by using the effect of the diffusion via the Gagliardo–Nirenberg in-
equality. Once boundedness is established, stabilization (Theorem 1.2) follows
directly from boundedness and [1, Remark 1.1]. We next explain the strategy
for proving exponential stabilization (Theorem 1.3). We first obtain the estimate

limsup
t→∞

∥U(·, t)∥L∞(Ω) ≤ c3∥u0∥1+c4
L1(Ω)

with c3,c4 > 0, where U(x, t) := u(x, t)−u0 for x ∈ Ω, t > 0 (see Lemma 4.2),
which implies that there exists t0 > 0 such that

∥U(·, t)∥L∞(Ω) ≤ c3∥u0∥1+c4
L1(Ω)

(1.9)

for all t > t0. We next take ε0 > 0 small enough, and for each ε ∈ (0,ε0), fix u0
such that ∥u0∥L1(Ω) ≤ ε . We also define the set

S∗ :=
{

T ∗ ≥ t0 | ∥U(·, t)∥L∞(Ω) ≤ εe−κ(t−t0) for all t ∈ [t0,T ∗]
}

and put T := supS∗. Since the power of ∥u0∥1+c4
L1(Ω)

in (1.9) is greater than 1, we

obtain the sharper estimate ∥U(·, t)∥L∞(Ω) <
ε

2 e−κ(t−t0) on [t0,T ]. This entails
that T = ∞, which derives exponential decay of U (see Lemma 4.3). This argu-
ment is based on that in [8], which deals with the case p = 2. However, since in
our case the problem (1.1) includes (u+1)p−2, we need to modify the argument
slightly.

This paper is organized as follows. In Section 2 we give a result on local
existence in (1.1) and a lemma such that an Lσ0-estimate for u with some σ0 > n
yields an L∞-estimate for u. In addition, we state a lemma, which guarantees
that

∫
Ω

wℓ is controlled by
∫

Ω
uℓ for ℓ > 1. Section 3 is devoted to the proofs of

boundedness (Theorem 1.1) and stabilization (Theorem 1.2). In Section 4 we
show exponential stabilization (Theorem 1.3).

Throughout this paper, we denote by ci generic positive constants, which
will be sometimes specified by ci(ε) and ci(M) depending on small parameter
ε > 0 and the mass M :=

∫
Ω

u0, respectively.



208 Y. CHIYO - T. YOKOTA

2. Preliminaries

We first give a result on local existence in (1.1), which can be proved by standard
arguments based on the contraction mapping principle (see e.g., [3, 14, 15]).

Lemma 2.1. Let Ω ⊂ Rn (n ∈ N) be a bounded domain with smooth boundary
and let m ≥ 1, p,q ∈ R, χ,ξ ,α,β ,γ,δ > 0. Then for all u0 satisfying the con-
dition (1.2) there exists Tmax ∈ (0,∞] such that (1.1) admits a unique classical
solution (u,v,w) such that{

u ∈C0(Ω× [0,Tmax))∩C2,1(Ω× (0,Tmax)),

v,w ∈
⋂

ϑ>nC0([0,Tmax);W 1,ϑ (Ω))∩C2,1(Ω× (0,Tmax)).

Moreover,

if Tmax < ∞, then lim
t↗Tmax

∥u(·, t)∥L∞(Ω) = ∞. (2.1)

We next give a lemma, which provides a strategy to prove global exis-
tence and boundedness. This lemma can be derived from the proof of [14,
Lemma A.1].

Lemma 2.2. Let Ω ⊂ Rn (n ∈ N) be a bounded domain with smooth boundary
and let m ≥ 1, p,q ∈ R, χ,ξ ,α,β ,γ,δ > 0. Assume that u0 satisfies (1.2).
Denote by (u,v,w) the local classical solution of (1.1) given in Lemma 2.1 and
by Tmax ∈ (0,∞] its maximal existence time. Then there are σ0 >max{n,−p+3}
and constants C1,C2 > 0 independent of M =

∫
Ω

u0 such that

∥u(·, t)∥L∞(Ω) ≤C1

(
sup

s∈(0,Tmax)

∥u(·,s)∥C2
Lσ0 (Ω)

)
+∥u0∥L∞(Ω) (2.2)

for all t ∈ (0,Tmax).

We next recall a lemma, which asserts that
∫

Ω
wℓ is dominated by

∫
Ω

uℓ for
ℓ > 1. This lemma can be shown by clarifying the part containing M =

∫
Ω

u0 in
[2, (3.3)].

Lemma 2.3. Let ℓ > 1. Denote by (u,v,w) the local classical solution of (1.1)
given in Lemma 2.1 and by Tmax ∈ (0,∞] its maximal existence time. Then the
first and third components of the solution satisfy that for all ε > 0,∫

Ω

wℓ(·, t)≤ ε

∫
Ω

uℓ(·, t)+ c(ε)MC1

for all t ∈ (0,Tmax) with some constants c(ε) > 0 and C1 > 0 independent of
M =

∫
Ω

u0.
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3. Boundedness and stabilization

In these next sections we assume that q = p and χα − ξ γ = 0, and that u0
satisfies (1.2). Then we denote by (u,v,w) the local classical solution of the
problem (1.1) given in Lemma 2.1 and by Tmax ∈ (0,∞] its maximal existence
time.

We employ the transformation

z = χv−ξ w

which was originally introduced by [13]. Noting that q = p and χα − ξ γ = 0,
we see from the transformation that the triplet (u,z,v) satisfies

ut = ∇ ·
(
(u+1)m−1∇u−u(u+1)p−2∇z

)
in Ω× (0,Tmax),

0 = ∆z−δ z+χ(δ −β )v in Ω× (0,Tmax),

0 = ∆v+αu−βv in Ω× (0,Tmax),

∇u ·ν = ∇z ·ν = ∇v ·ν = 0 on ∂Ω× (0,Tmax),

u(·,0) = u0 in Ω.

(3.1)

Lemma 3.1. Assume that m ≥ 1 and p−m ≤ 2
n . Then the first component of

the solution (u,z,v) to (3.1) satisfies that for all σ > max{n,−p+3} there exist
constants C1,C2,C3 > 0 independent of M =

∫
Ω

u0 such that

∥u(·, t)∥Lσ (Ω) ≤
{

C1(MC2 +MC3)+ e−t ·
[
∥u0∥σ

Lσ (Ω)−C1(MC2 +MC3)
]} 1

σ

(3.2)

for all t ∈ (0,Tmax).

Proof. Let σ > max{n,−p+3}. Then we verify that the asserted estimate (3.2)
holds on (0,Tmax); note that we omit the specification of the range of t in the
proof. The first equation in (3.1) and the condition m ≥ 1 as well as integration
by parts imply

1
σ

d
dt

∫
Ω

uσ =
∫

Ω

uσ−1
∇ ·

(
(u+1)m−1

∇u−u(u+1)p−2
∇z

)
=−(σ −1)

∫
Ω

uσ−2(u+1)m−1|∇u|2

+(σ −1)
∫

Ω

uσ−1(u+1)p−2
∇u ·∇z

≤−(σ −1)
∫

Ω

uσ+m−3|∇u|2 +(σ −1)
∫

Ω

∇ f (u) ·∇z

=− 4(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2 +(σ −1)

∫
Ω

∇ f (u) ·∇z, (3.3)



210 Y. CHIYO - T. YOKOTA

where f (u) :=
∫ u

0 sσ−1(s+ 1)p−2 ds. Also, multiplying the second equation in
(3.1) by f (u), integrating by parts and using z = χv−ξ w, we obtain

0 =
∫

Ω

f (u)∆z−δ

∫
Ω

f (u)z+χ(δ −β )
∫

Ω

f (u)v

=−
∫

Ω

∇ f (u) ·∇z−δ

∫
Ω

f (u)(χv−ξ w)+χ(δ −β )
∫

Ω

f (u)v

=−
∫

Ω

∇ f (u) ·∇z+ξ δ

∫
Ω

f (u)w−χβ

∫
Ω

f (u)v

≤−
∫

Ω

∇ f (u) ·∇z+ξ δ

∫
Ω

f (u)w,

that is, ∫
Ω

∇ f (u) ·∇z ≤ ξ δ

∫
Ω

f (u)w,

which combined with (3.3) entails

d
dt

∫
Ω

uσ +
4σ(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2 ≤ σ(σ −1)ξ δ

∫
Ω

f (u)w.

Here, noting from the choice σ >−p+3 that

f (u) =
∫ u

0
sσ−1(s+1)p−2 ds

≤
∫ u

0
(s+1)σ+p−3 ds

≤ 1
σ + p−2

(u+1)σ+p−2

and using the fact (A+1)σ+p−2 ≤ 2σ+p−3(Aσ+p−2 +1) for A > 0, we obtain

d
dt

∫
Ω

uσ +
4σ(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2

≤ σ(σ −1)ξ δ

σ + p−2

∫
Ω

(u+1)σ+p−2w

≤ 2σ+p−3σ(σ −1)ξ δ

σ + p−2

[∫
Ω

uσ+p−2w+
∫

Ω

w
]
. (3.4)

Moreover, from the third equation in (3.1) and the mass conservation property,
we derive ∫

Ω

w =
γ

δ

∫
Ω

u =
γ

δ

∫
Ω

u0 =
γ

δ
M.
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Substituting this into (3.4) yields

d
dt

∫
Ω

uσ +
4σ(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2 ≤ c1

∫
Ω

uσ+p−2w+ c2M. (3.5)

We now estimate
∫

Ω
uσ+p−2w. Employing the Hölder inequality, we have∫

Ω

uσ+p−2w ≤
(∫

Ω

uσ+p−1
) σ+p−2

σ+p−1
(∫

Ω

wσ+p−1
) 1

σ+p−1
.

Here, by virtue of Lemma 2.3 with ℓ= σ + p−1, we infer that for all ε > 0,∫
Ω

wσ+p−1 ≤ ε
σ+p−1

∫
Ω

uσ+p−1 + c3(ε)Mc4 .

Combining the above two inequalities implies∫
Ω

uσ+p−2w ≤ ε

∫
Ω

uσ+p−1 + c5(ε)M
c4

σ+p−1 . (3.6)

Thus we see from (3.5) and (3.6) that

d
dt

∫
Ω

uσ +
4σ(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2

≤ c1ε

∫
Ω

uσ+p−1 + c1c5(ε)M
c4

σ+p−1 + c2M. (3.7)

Here, the Gagliardo–Nirenberg inequality ensures∫
Ω

uσ+p−1 = ∥u
σ+m−1

2 (·, t)∥
2(σ+p−1)

σ+m−1

L
2(σ+p−1)

σ+m−1 (Ω)

≤ c6

(
∥∇u

σ+m−1
2 (·, t)∥

2(σ+p−1)
σ+m−1 θ1

L2(Ω)
∥u

σ+m−1
2 (·, t)∥

2(σ+p−1)
σ+m−1 (1−θ1)

L
2

σ+m−1 (Ω)

+∥u
σ+m−1

2 (·, t)∥
2(σ+p−1)

σ+m−1

L
2

σ+m−1 (Ω)

)
≤ c6

[(∫
Ω

|∇u
σ+m−1

2 |2
) σ+p−1

σ+m−1 θ1
M(σ+p−1)(1−θ1)+Mσ+p−1

]
, (3.8)

where θ1 = θ1(p) :=
σ+m−1

2 − σ+m−1
2(σ+p−1)

σ+m−1
2 + 1

n−
1
2

∈ (0,1). Indeed, since n
2(p−m)− p+1 <

−p+3 < σ due to the condition p−m ≤ 2
n and the choice σ >−p+3, we can

verify that

σ +m−1
2(σ + p−1)

>
1
2
− 1

n
.
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Noticing from the condition p−m ≤ 2
n that

σ + p−1
σ +m−1

θ1 =
σ+p−1

2 − 1
2

σ+m−1
2 + 1

n −
1
2

≤
σ+m−1

2 + 1
n −

1
2

σ+m−1
2 + 1

n −
1
2

= 1,

we see that (∫
Ω

|∇u
σ+m−1

2 |2
) σ+p−1

σ+m−1 θ1
≤

∫
Ω

|∇u
σ+m−1

2 |2 +1.

Hence we have from (3.8) that∫
Ω

uσ+p−1 ≤ c6M(σ+p−1)(1−θ1)
(∫

Ω

|∇u
σ+m−1

2 |2 +1
)
+ c6Mσ+p−1

≤ c6M(σ+p−1)(1−θ1)
∫

Ω

|∇u
σ+m−1

2 |2 + c6(M(σ+p−1)(1−θ1)+Mσ+p−1),

which combined with (3.7) entails

d
dt

∫
Ω

uσ +
4σ(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2

≤ c1c6M(σ+p−1)(1−θ1)ε

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2 + c7(M,ε),

where c7(M,ε) := c1c5(ε)M
c4

σ+p−1 + c2M + c1c6ε(M(σ+p−1)(1−θ1) +Mσ+p−1).
We now add

∫
Ω

uσ on the both sides of this inequality. Then we have

d
dt

∫
Ω

uσ +
∫

Ω

uσ +
4σ(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2

≤
∫

Ω

uσ + c1c6M(σ+p−1)(1−θ1)ε

∫
Ω

|∇u
σ+m−1

2 |2 + c7(M,ε). (3.9)

Here, using (3.8) with p = 1, we infer∫
Ω

uσ ≤ c8

[(∫
Ω

|∇u
σ+m−1

2 |2
) σ

σ+m−1 θ2
Mσ(1−θ2)+Mσ

]
,

where θ2 := θ1(1) =
σ+m−1

2 − σ+m−1
2σ

σ+m−1
2 + 1

n−
1
2

∈ (0,1), because the relation

σ +m−1
2σ

≥ 1
2
>

1
2
− 1

n

holds by the condition m ≥ 1. Also, since the condition m ≥ 1 again ensures

σ

σ +m−1
θ2 =

σ

2 − 1
2

σ+m−1
2 + 1

n −
1
2

≤
σ

2 − 1
2

σ

2 + 1
n −

1
2

< 1,
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the Young inequality derives that for all ε ′ > 0,∫
Ω

uσ ≤ c8Mσ(1−θ2)
(

ε
′
∫

Ω

|∇u
σ+m−1

2 |2 + c9(ε
′)
)
+ c8Mσ

≤ c8Mσ(1−θ2)ε
′
∫

Ω

|∇u
σ+m−1

2 |2 + c10(ε
′)(Mσ(1−θ2)+Mσ ).

Applying this inequality to the right-hand side of (3.9), we see that

d
dt

∫
Ω

uσ +
∫

Ω

uσ +
4σ(σ −1)
(σ +m−1)2

∫
Ω

∣∣∇u
σ+m−1

2
∣∣2

≤
(

c1c6M(σ+p−1)(1−θ1)ε + c8Mσ(1−θ2)ε
′
)∫

Ω

|∇u
σ+m−1

2 |2 + c11(M,ε,ε ′),

where c11(M,ε,ε ′) := c7(M,ε) + c10(ε
′)(Mσ(1−θ2) + Mσ ). Hence, choosing

ε,ε ′ > 0 small enough, we obtain

d
dt

∫
Ω

uσ +
∫

Ω

uσ ≤ c12(M). (3.10)

Here we put

ω∗ := min
{

1,
c4

σ + p−1
, (σ + p−1)(1−θ1), σ + p−1, σ(1−θ2), σ

}
and

ω
∗ := max

{
1,

c4

σ + p−1
, (σ + p−1)(1−θ1), σ + p−1, σ(1−θ2), σ

}
,

which is the smallest and largest power of M appearing in c12(M), respectively.
Then, noting from the choice of σ that (σ + p− 1)(1−θ1) and σ(1−θ2) are
possibly smaller than 1, we can estimate c12(M) as c12(M)≤ c13(Mω∗ +Mω∗

).
We thereby infer from the inequality (3.10) that

d
dt

∫
Ω

uσ +
∫

Ω

uσ ≤ c13(Mω∗ +Mω∗
).

Therefore we have∫
Ω

uσ ≤ c13(Mω∗ +Mω∗
)+ e−t ·

[
∥u0∥σ

Lσ (Ω)− c13(Mω∗ +Mω∗
)
]
,

which leads to the conclusion.

We are now in a position to complete the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. A combination of (2.2) and (3.2) with σ = σ0 ensures
that ∥u(·, t)∥L∞(Ω) ≤ c1. Therefore, by virtue of the extensibility criterion (2.1),
we arrive at the conclusion.

Proof of Theorem 1.2. Thanks to boundedness established by Theorem 1.1, the
stabilization properties (1.3)–(1.5) result from [1, Remark 1.1].
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4. Exponential stabilization

In this section, assuming that n = 2 and m = 1, we prove Theorem 1.3. To this
end we further rewrite the system (3.1) reduced by (1.1). Setting u0 := 1

|Ω|
∫

Ω
u0,

we define the functions U =U(x, t), Z = Z(x, t) and V =V (x, t) as

U(x, t) := u(x, t)−u0,

Z(x, t) := z(x, t)−χα

( 1
β
− 1

δ

)
u0,

V (x, t) := v(x, t)− α

β
u0

for x ∈ Ω ⊂ R2, t > 0, where z = χv−ξ w. Then we see from (3.1) with m = 1
that the triplet (U,Z,V ) satisfies

Ut = ∇ ·
(
∇U −u(u+1)p−2∇Z

)
in Ω× (0,∞),

0 = ∆Z −δZ +χ(δ −β )V in Ω× (0,∞),

0 = ∆V +αU −βV in Ω× (0,∞),

∇U ·ν = ∇Z ·ν = ∇V ·ν = 0 on ∂Ω× (0,∞),

U(·,0) = u0 −u0 in Ω.

(4.1)

We first present the following lemma which can be proved by well-known
estimates for solutions of elliptic equations.

Lemma 4.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary. Let
ψ ∈C0(Ω) and let a,b > 0. Then the solution ϕ of the boundary value problem{

0 = ∆ϕ +aψ −bϕ in Ω,

∇ϕ ·ν = 0 on ∂Ω

fulfills

∥ϕ∥Lθ (Ω) ≤ aC⟨θ⟩∥ψ∥L1(Ω),

∥∇ϕ∥Lµ (Ω) ≤ aC⟨µ⟩∥ψ∥L2(Ω)

for all θ ,µ > 1 with some C⟨θ⟩,C⟨µ⟩ > 0 independent of ∥ψ∥L1(Ω) and ∥ψ∥L2(Ω).

We next prove an estimate for U , which is the key to the derivation of L∞-
convergence of u. The proof is parallel to [8, Proof of Lemma 4.3], however,
we confirm it because (4.1) is the quasilinear system including (u+1)p−2.

Lemma 4.2. Assume that 1 < p ≤ 2. Then the first component of the solution
(U,Z,V ) to (4.1) satisfies that for all σ > 2 there exist constants C1,C2,C3 > 0
independent of M =

∫
Ω

u0 such that

limsup
t→∞

∥U(·, t)∥L∞(Ω) ≤C1M(MC2 +MC3). (4.2)
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Proof. Let σ > 2. Then we infer from (3.2) that there exists t1 > 0 such that for
all t > t1,

∥u(·, t)∥Lσ (Ω) ≤ c1(Mc2 +Mc3). (4.3)

Also, we can show that the second component Z of the solution (U,Z,V ) to
(4.1) satisfies

∥∇Z(·, t)∥Lθ3 (Ω) ≤ c4M (4.4)

for all t > t1 and all θ3 > 1. Indeed, by the identity ∇Z = ∇z and the second
equation of (3.1), we see from Lemma 4.1 that

∥∇Z(·, t)∥Lθ3 (Ω) = ∥∇z(·, t)∥Lθ3 (Ω)

≤ χ|δ −β |c5 · ∥v(·, t)∥L2(Ω)

for all t > t1. Moreover, from the third equation of (3.1), again by Lemma 4.1,
we have

∥v(·, t)∥L2(Ω) ≤ αc6∥u(·, t)∥L1(Ω)

= αc6M

for all t > t1. The above two estimates yield (4.4). We now rewrite the first
equation in (4.1) as

U(·, t) = e(t−t1)∆U(·, t1)−
∫ t

t1
e(t−s)∆

∇ ·
[
u(·,s)(u(·,s)+1)p−2

∇Z(·,s)
]

ds

=: I1(·, t)+ I2(·, t) for t > t1. (4.5)

In order to prove (4.2) we first show that

∥I1(·, t)∥L∞(Ω) → 0 as t → ∞. (4.6)

We infer from [16, Lemma 1.3 (i)] with n = 2 that

∥I1(·, t)∥L∞(Ω) = ∥e(t−t1)∆U(·, t1)∥L∞(Ω)

≤ c7(1+(t − t1)−1)e−λ1t∥U(·, t)∥L1(Ω)

≤ c7(1+(t − t1)−1)e−λ1t ·2M

for all t > t1, where λ1 > 0 is the first nonzero eigenvalue of the Neumann
Laplacian in Ω. Hence we derive (4.6). We next estimate ∥I2(·, t)∥L∞(Ω). For
k > 2, we observe from [16, Lemma 1.3 (iv)] with n = 2 that

∥I2(·, t)∥L∞(Ω)

≤ c8

∫ t

t1
(1+(t − s)−

1
2−

1
k )e−λ1(t−s)∥u(·,s)(u(·,s)+1)p−2

∇Z(·,s)∥Lk(Ω) ds

(4.7)
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for all t > t1. Here, owing to the Hölder inequality and the condition 1 < p ≤ 2,
we deduce

∥u(·,s)(u(·,s)+1)p−2
∇Z(·,s)∥Lk(Ω)

≤ ∥up−1(·,s)∇Z(·,s)∥Lk(Ω)

= ∥u(·,s)∥p−1
Lσ (Ω)∥∇Z(·,s)∥

L
kσ

σ−k(p−1) (Ω)

for all s > t1. Since kσ

σ−k(p−1) > 1 due to the facts k > 2 and σ

σ−k(p−1) > 1, the
estimates (4.3) and (4.4) imply that

∥u(·,s)(u(·,s)+1)p−2
∇Z(·,s)∥Lk(Ω) ≤ c9M(Mc2 +Mc3) (4.8)

for all s > t1. A combination of (4.7) and (4.8) yields

∥I2(·, t)∥L∞(Ω) ≤ c9M(Mc2 +Mc3)
∫ t

t1
(1+(t − s)−

1
2−

1
k )e−λ1(t−s) ds. (4.9)

Also, noting from the condition k > 2 that −1
2 −

1
k >−1, we derive that∫ t

t1
(1+(t − s)−

1
2−

1
k )e−λ1(t−s) ds ≤

∫
∞

0
(1+η

− 1
2−

1
k )e−λ1η dη

=
1
λ1

+
1

λ
1
2−

1
k

1

Γ

(1
2
− 1

k

)
=: c10,

where Γ(·) is the gamma function. Thus we see from (4.9) that

∥I2(·, t)∥L∞(Ω) ≤ c11M(Mc2 +Mc3) (4.10)

for all t > t1. Combining (4.6) and (4.10) with (4.5), we arrive at (4.2).

In light of Lemma 4.2 we infer that there exist t2 > 0 and c1,c2,c3 > 0 such
that

∥U(·, t)∥L∞(Ω) ≤ c1M(Mc2 +Mc3) (4.11)

for all t > t2. We now pick ε0 > 0 such that

2c1(ε
c2
0 + ε

c3
0 )≤ 1, (4.12)

and for each ε ∈ (0,ε0), fix M =
∫

Ω
u0 such that 0 < M ≤ ε . Then we deduce

from (4.11), the fact M ≤ ε < ε0 and (4.12) that

∥U(·, t)∥L∞(Ω) ≤ 2c1(ε
c2 + ε

c3) · 1
2

ε ≤ 1
2

ε (4.13)
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for all t > t2. Thus we have that

S∗ :=
{

T ∗ ≥ t2 | ∥U(·, t)∥L∞(Ω) ≤ εe−κ(t−t2) for all t ∈ [t2,T ∗]
}

(4.14)

is nonempty, where κ ∈ (0,λ1) and λ1 > 0 is the first eigenvalue of the Neumann
Laplacian in Ω. Indeed, noting that if t = t2, then εe−κ(t−t2) = ε (> 1

2 ε), we
derive from the continuity of the function t 7→ εe−κ(t−t2) that there exists T ∗ > t2
such that εe−κ(t−t2) > 1

2 ε for all t ∈ [t2,T ∗], which in conjunction with (4.13)
implies ∥U(·, t)∥L∞(Ω) ≤ εe−κ(t−t2) for all t ∈ [t2,T ∗].

We put

T := supS∗ ∈ (t2,∞] (4.15)

and note that

∥U(·, t)∥L∞(Ω) ≤ εe−κ(t−t2) for all t ∈ [t2,T ] (4.16)

holds by the definition of S∗. In the following lemma we derive T = ∞ which
yields that u converges to u0 at an exponential rate as t → ∞. The argument in
[8] based on [16, Lemma 1.2], however, this is not applicable directly to our
case because the system (4.1) includes (u+1)p−2. So, we go back to the proof
of [16, Lemma 1.2].

Lemma 4.3. Let ε0 > 0 satisfy (4.12). Let κ ∈ (0,λ1). Assume that 1 < p ≤ 2.
Then for all ε ∈ (0,ε0), whenever u0 fulfills that 0 < M =

∫
Ω

u0 ≤ ε , the first
component of the solution (U,Z,V ) to (4.1) satisfies that

∥U(·, t)∥L∞(Ω) ≤ εe−κ(t−t2) (4.17)

for all t > t2 +1, where t2 > 0 is the time appearing in (4.11).

Proof. We first rewrite the first equation in (4.1) as

U(·, t) = e(t−t2)∆U(·, t2)−
∫ t

t2
e(t−s)∆

∇ ·
[
u(·,s)(u(·,s)+1)p−2

∇Z(·,s)
]

ds

=: I3(·, t)+ I4(·, t) for t ∈ (t2,T ) (4.18)

with T = supS∗, where S∗ is defined in (4.14). We then estimate ∥I3(·, t)∥L∞(Ω).
Using [16, Lemma 1.3 (i)] with n = 2 and the fact e−λ1(t−t2) ≤ e−κ(t−t2), we have

∥I3(·, t)∥L∞(Ω) ≤ c1(1+(t − t2)−1)e−λ1(t−t2)∥U(·, t2)∥L∞(Ω)

≤ 2c1e−κ(t−t2)∥U(·, t2)∥L∞(Ω)
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for all t ∈ (t2,T ). Moreover, by virtue of the estimate (4.11) and the condition
M ≤ ε , we obtain

∥I3(·, t)∥L∞(Ω) ≤ 2c1e−κ(t−t2) · c2ε(εc3 + ε
c4)

= c5ε(εc3 + ε
c4)e−κ(t−t2) (4.19)

for all t ∈ (t2,T ). We next estimate ∥I4(·, t)∥L∞(Ω). Taking k > 2, we see from
[16, Lemma 1.3 (iv)] with n = 2 that

∥I4(·, t)∥L∞(Ω)

≤ c6

∫ t

t2
(1+(t − s)−

1
2−

1
k )e−λ1(t−s)∥u(·,s)(u(·,s)+1)p−2

∇Z(·,s)∥Lk(Ω) ds

(4.20)

for all t ∈ (t2,T ). Here, we infer from the condition 1 < p ≤ 2 that

∥u(·,s)(u(·,s)+1)p−2
∇Z(·,s)∥Lk(Ω) ≤ ∥u(·,s)∥k(p−1)

L∞(Ω) ∥∇Z(·,s)∥Lk(Ω) (4.21)

for all s ∈ (t2,T ). Let us estimate the right-hand side of this inequality. In view
of the definition of U (see the beginning of Section 4), the estimate (4.16) and
M ≤ ε , we derive

∥u(·,s)∥L∞(Ω) = ∥U(·,s)+u0∥L∞(Ω)

≤ ∥U(·,s)∥L∞(Ω)+
M
|Ω|

≤ c7εe−κ(s−t2)+
ε

|Ω|

for all s ∈ (t2,T ), which means that

∥u(·,s)∥k(p−1)
L∞(Ω) ≤

(
c7εe−κ(s−t2)+

ε

|Ω|

)k(p−1)
(4.22)

for all s ∈ (t2,T ). Also, by virtue of the second and third equations in (4.1) and
the estimate (4.16) as well as Lemma 4.1, we obtain

∥∇Z(·,s)∥Lk(Ω) ≤ χ|δ −β |c8 · ∥V (·,s)∥L2(Ω)

≤ χ|δ −β |c8 ·αc9∥U(·,s)∥L1(Ω)

≤ c10|Ω| · ∥U(·,s)∥L∞(Ω)

≤ c11εe−κ(s−t2) (4.23)
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for all s ∈ (t2,T ). Collecting (4.21), (4.22) and (4.23) in (4.20), we have

∥I4(·, t)∥L∞(Ω) ≤ c12ε

∫ t

t2
(1+(t − s)−

1
2−

1
k )e−λ1(t−s)

·
(

c7εe−κ(s−t2)+
ε

|Ω|

)k(p−1)
· e−κ(s−t2) ds (4.24)

for all t ∈ (t2,T ). Combining (4.19) and (4.24) with (4.18) yields

∥U(·, t)∥L∞(Ω) ≤ c5ε(εc3 + ε
c4)e−κ(t−t2)

+ c12ε

∫ t

t2
(1+(t − s)−

1
2−

1
k )e−λ1(t−s)

·
(

c7εe−κ(s−t2)+
ε

|Ω|

)k(p−1)
· e−κ(s−t2) ds (4.25)

for all t ∈ (t2,T ). We next estimate the integral appearing in the right-hand side
of (4.25). We first estimate it as∫ t

t2
(1+(t − s)−

1
2−

1
k )e−λ1(t−s) ·

(
c7εe−κ(s−t2)+

ε

|Ω|

)k(p−1)
· e−κs ds

≤ c13ε
k(p−1)

∫ t

t2
(1+(t − s)−

1
2−

1
k )e−λ1(t−s) · (e−k(p−1)·κ(s−t2)+1) · e−κs ds

≤ 2c13ε
k(p−1)

∫ t

t2
e−λ1(t−s)e−κs ds

+ c13ε
k(p−1)

∫ t

t2
(t − s)−

1
2−

1
k e−k(p−1)·κ(s−t2)e−λ1(t−s)e−κs ds

=: 2c13ε
k(p−1)I5(·, t)+ c13ε

k(p−1)I6(·, t) (4.26)

for all t ∈ (t2,T ). From a straightforward calculation we rewrite I5(·, t) as

I5(·, t) = e−λ1t · 1
λ1 −κ

(e(λ1−κ)t − e(λ1−κ)t2)

=
1

λ1 −κ
(e−κt − eκt2e−λ1(t−t2)) (4.27)

for all t ∈ (t2,T ). We next estimate I6(·, t) by dividing the interval (t2, t) into
(t2, t −1) and (t −1, t) for t ∈ (t2 +1,T ). Namely, we rewrite I6(·, t) as

I6(·, t) =
∫ t

t−1
(t − s)−

1
2−

1
k e−k(p−1)·κ(s−t2)e−λ1(t−s)e−κs ds

+
∫ t−1

t2
(t − s)−

1
2−

1
k e−k(p−1)·κ(s−t2)e−λ1(t−s)e−κs ds

=: I(1)6 (·, t)+ I(2)6 (·, t) for t ∈ (t2 +1,T ), (4.28)
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and estimate I(1)6 (·, t) and I(2)6 (·, t). As to I(1)6 (·, t), we see from the condition
k > 2 and the fact e−κs ≤ e−κ(t−1) for all s ∈ (t −1, t) that

I(1)6 (·, t) =
∫ t

t−1
(t − s)−

1
2−

1
k e−k(p−1)·κ(s−t2)e−λ1(t−s)e−κs ds

≤ e−κ(t−1)
∫ t

t−1
(t − s)−

1
2−

1
k ds

=
2keκ

k−2
e−κt (4.29)

for all t ∈ (t2 +1,T ). Also, as to I(2)6 (·, t), we observe that

I(2)6 (·, t) =
∫ t−1

t2
(t − s)−

1
2−

1
k e−k(p−1)·κ(s−t2)e−λ1(t−s)e−κs ds

≤
∫ t−1

t2
e−λ1(t−s)e−κs ds

=
e−λ1t

λ1 −κ
(e(λ1−κ)(t−1)− e(λ1−κ)t2)

=
1

λ1 −κ
(e−(λ1−κ)e−κt − eκt2e−λ1(t−t2)) (4.30)

for all t ∈ (t2 + 1,T ). Hence, combining (4.29) and (4.30) with (4.28) asserts
that

I6(·, t)≤
2keκ

k−2
e−κt +

1
λ1 −κ

(e−(λ1−κ)e−κt − eκt2e−λ1(t−t2)) (4.31)

for all t ∈ (t2 +1,T ). Collecting (4.27) and (4.31) in (4.26) ensures

∫ t

t2
(1+(t − s)−

1
2−

1
k )e−λ1(t−s) ·

(
c7εe−κ(s−t2)+

ε

|Ω|

)k(p−1)
· e−κs ds

≤ 2c13ε
k(p−1)I5(·, t)+ c12ε

k(p−1)I6(·, t)

≤ 2c13εk(p−1)

λ1 −κ
(e−κt − eκt2e−λ1(t−t2))

+
2c13εk(p−1)keκ

k−2
e−κt +

c13εk(p−1)

λ1 −κ
(e−(λ1−κ)e−κt − eκt2e−λ1(t−t2))

≤ c13ε
k(p−1)

[ 2e−κt2

λ1 −κ
+

2keκ(1−t2)

k−2
+

e−λ1+κ(1−t2)

λ1 −κ

]
e−κ(t−t2) (4.32)
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for all t ∈ (t2 +1,T ). Thus, a combination of (4.32) and (4.25) implies

∥U(·, t)∥L∞(Ω)

≤ c5ε(εc3 + ε
c4)e−κ(t−t2)

+ c12ε · c13ε
k(p−1)

[ 2e−κt2

λ1 −κ
+

2keκ(1−t2)

k−2
+

e−λ1+κ(1−t2)

λ1 −κ

]
e−κ(t−t2)

= c14ε(εc3 + ε
c4 + ε

k(p−1))e−κ(t−t2)

for all t ∈ (t2 +1,T ). Taking ε0 such that c14(ε
c3
0 + ε

c4
0 + ε

k(p−1)
0 )< 1

2 , we have

∥U(·, t)∥L∞(Ω) <
ε

2
e−κ(t−t2)

for all t ∈ (t2 + 1,T ). Therefore, in view of the definition of T (see (4.15)
together with (4.14)), we conclude from the continuity of U that T = ∞, which
completes the proof.

Proof of Theorem 1.3. We put U(x, t) := u(x, t)− u0, V (x, t) := v(x, t)− α

β
u0

and W (x, t) := w(x, t)− γ

δ
u0 for x ∈ Ω ⊂ R2, t > 0. Then the second and third

equations and boundary conditions in (1.1) are rewritten as

0 = ∆V +αU −βV, ∇V ·ν |∂Ω = 0,

0 = ∆W + γU −δW, ∇W ·ν |∂Ω = 0.

Thus the maximum principle warrants that

α

β
min
x∈Ω

U(x, t)≤V (·, t)≤ α

β
max
x∈Ω

U(x, t),

γ

δ
min
x∈Ω

U(x, t)≤W (·, t)≤ γ

δ
max
x∈Ω

U(x, t)

for all t > 0. Under the assumption of Lemma 4.3, this along with (4.17) yields

∥V (·, t)∥L∞(Ω) ≤
α

β
∥U(·, t)∥L∞(Ω) ≤

α

β
εe−κ(t−t2),

∥W (·, t)∥L∞(Ω) ≤
γ

δ
∥U(·, t)∥L∞(Ω) ≤

γ

δ
εe−κ(t−t2)

for all t > t2 +1. Therefore we arrive at (1.6)–(1.8).
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[3] T. Cieślak - M. Winkler, Finite-time blow-up in a quasilinear system of chemo-
taxis, Nonlinearity 21(5):1057–1076, 2008.

[4] S. Frassu - T. Li - G. Viglialoro, Improvements and generalizations of results con-
cerning attraction-repulsion chemotaxis models, arXiv: 2110.12164 [math.AP].

[5] S. Frassu - C. van der Mee - G. Viglialoro, Boundedness in a nonlinear attraction-
repulsion Keller–Segel system with production and consumption, J. Math. Anal.
Appl. 504(2):Paper No. 125428, 20 pages, 2021.

[6] H.-Y. Jin - Z.-A. Wang, Boundedness, blowup and critical mass phenomenon in
competing chemotaxis, J. Differential Equations 260(1):162–196, 2016.

[7] H-Y. Jin - Z.-A. Wang, Global stabilization of the full attraction-repulsion Keller–
Segel system, Discrete Contin. Dyn. Syst. 40(6):3509–3527, 2020.

[8] Y. Li - K. Lin - C. Mu, Asymptotic behavior for small mass in an attraction-
repulsion chemotaxis system, Electron. J. Differential Equations 2015(146):1–13,
2015.

[9] K. Lin - C. Mu - L. Wang, Large-time behavior of an attraction-repulsion chemo-
taxis system, J. Math. Anal. Appl. 426(1):105–124, 2015.

[10] J. Liu - Z.-A. Wang, Classical solutions and steady states of an attraction-
repulsion chemotaxis in one dimension, J. Biol. Dyn. 6(suppl. 1):31–41, 2012.

[11] M. Luca - A. Chavez-Ross - L. Edelstein-Keshet - A. Mogliner, Chemotactic sig-
nalling, microglia, and Alzheimer’s disease senile plague: Is there a connection?,
Bull. Math. Biol. 65:673–730, 2003.

[12] K. J. Painter - T. Hillen, Volume-filling and quorum-sensing in models for
chemosensitive movement, Can. Appl. Math. Q. 10(4):501–543, 2002.

[13] Y. Tao - Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,
Math. Models Methods Appl. Sci. 23(1):1–36, 2013.

[14] Y. Tao - M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–
Segel system with subcritical sensitivity, J. Differential Equations, 252(1):692–
715, 2012.

[15] J. I. Tello - M. Winkler, A chemotaxis system with logistic source, Comm. Partial
Differential Equations, 32(4–6):849–877, 2007.

[16] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional
Keller–Segel model, J. Differential Equations, 248(12):2889–2905, 2010.



STABILIZATION IN A QUASILINEAR ATTRACTION-REPULSION SYSTEM 223

Y. CHIYO
Department of Mathematics
Tokyo University of Science

e-mail: ycnewssz@gmail.com

T. YOKOTA
Department of Mathematics
Tokyo University of Science

e-mail: yokota@rs.tus.ac.jp


