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FACTORIZING SMALL 2-GROUPS

SÁNDOR SZABÓ

Let G be a finite abelian group and let G = A1 · · ·An be a factorization
of G into its subsets A1, . . . ,An. For a given G certain choices of the orders
|A1|, . . . , |An| guarantee that one of the factors is periodic. In connection
with an open problem we determine such choices of orders of factors in
two special cases. In these cases |G| is either 25 or 26.

1. Introduction

Let G be a finite abelian group. Let A1, . . . ,An be subsets of G. If the product
A1 · · ·An is direct and is equal to G, then we say that A1 · · ·An is a factorization
of G. In other words A1 · · ·An is a factorization of G if each element g of G is
uniquely expressible in the form

g = a1 · · ·an, a1 ∈ An, . . . ,an ∈ An.

If |A1|= q1, . . . , |An|= qn, then (q1, . . . ,qn) is called the type of the factorization
A1 · · ·An.

By the fundamental theorem of finite abelian groups each finite abelian
group is a direct product of cyclic groups. This decomposition into cyclic groups
is not necessarily unique. However, if G is the direct product of cyclic groups
of orders t1, . . . , tr respectively, then we say that G is of type (t1, . . . , tr). We use
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group types only to identify groups and so it does not cause any problem that a
given group may belong to different types.

Let e be the identity element of G. A subset A of G is called periodic if
there is an element g ∈ G such that Ag = A and g 6= e. Sometimes we express
this fact saying that A is periodic with period g or g is a period of A. Note that
Ag = A implies Agm = A for all natural numbers m. Thus we may assume that
the period g of a periodic subset A has prime order.

In 1965 L. Rédei [6] proved that if G = A1 · · ·An is a factorization of the finite
abelian group G and |A1|, . . . , |An| are primes, then at least one of the factors is
periodic.

Let G be a finite abelian group. If from each factorization G = A1 · · ·An of
type (q1, . . . ,qn) it follows that at least one of the factors is always periodic,
then we say that the factorization type (q1, . . . ,qn) is periodicity forcing for G.
Motivated by Rédei’s theorem we set forth the following problem. Given a
group classify all the possible factorization types that force periodicity for this
group.

It looks natural to try to solve this problem for p-groups first. K. Corrádi
and S. Szabó [3], [4], [5] are focused on the special case p = 2. Let (q1, . . . ,qn)
be a factorization type for the finite abelian 2-group G with q1 ≥ ·· · ≥ qn ≥ 2.
It is still not known whether (q1, . . . ,qn) forces periodicity for G when n ≥ 3,
q1
∣∣ 4, . . . ,qn

∣∣ 4 and G is not of type (2λ ,2, . . . ,2) or (2λ ,2µ). The main result
is that the factorization types listed in Table 1 force periodicity for groups of the
corresponding types.

Table 1: The main result

factorization group
type type
(4,4,2) (4,4,2)
(4,4,2,2) (4,4,2,2)

The first row in the table represents the only case of groups of order 25 that was
not decided in [1], [3], [4], and [5]. Thus the classification problem is solved for
2-groups of order not greater than 25. Namely, for an abelian 2-group with order
less than or equal to 25 every factorization type is periodicity forcing except the
four cases depicted in Table 2.
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Table 2: Groups of oder 25

factorization group
type type
(8,4) (8,4)
(8,4) (8,2,2)
(8,2,2) (8,4)
(8,2,2) (8,2,2)

2. Preliminaries

Let G be a finite abelian group. A subset A of G is called normalized if e ∈ A.
A factorization G = A1 · · ·An of G is called normalized if the factors A1, . . . ,An

are normalized.
Let G = A1 · · ·An be a factorization of G and let a1, . . . ,an be elements

of A1, . . . ,An respectively. Multiplying the factorization G = A1 · · ·An by a =
a−1

1 · · ·a−1
n leads to the factorization G = Ga = (A1a−1

1 ) · · ·(Ana−1
n ). Note that

the new factorization is normalized and if one of the new factors is periodic then
so is the corresponding original one. This means that when we deal with peri-
odicity forcing factorizations types we may restrict our attention to normalized
factorizations.

Let A and A′ be subsets of G. We say that A can be replaced by A′ if G = A′B
is a factorization of G whenever G = AB is a factorization of G. For example A
can be replaced by Ag for each g ∈ G. For a subset A of G and an integer t let
us define At to be {at : a ∈ A}. By Proposition 3 of [8], A can be replaced by
At , whenever t is relatively prime to |A|.

If A is a subset and χ is a character of G, then we use χ(A) to denote the
sum

∑
a∈A

χ(a).

If χ(A) = 0, then we say that χ annihilates A. The set of all characters for
which χ(A) = 0 will be called the annihilator set of A and will be denoted by
Ann(A). L. Rédei [6] developed a character test for the replaceability of factors
which reads as follows. The factor A can be replaced by A′ if |A| = |A′| and
Ann(A) ⊆ Ann(A′). In this paper character always means an irreducible linear
character.

From time to time we will work in the group ring Z[G]. The elements of
Z[G] are formal linear combinations of elements of G with integer coefficients.
The addition and multiplication of these elements are defined in a way which
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resembles the addition and multiplication of multivariate polynomials. A char-
acter of G can be extended to be a character of Z[G]. To a subset A of G we
assign the element

A = ∑
a∈A

a

of Z[G]. The fact that A1 · · ·An is a factorization of G can be expressed equiva-
lently by saying that the equation G = A1 · · ·An holds in Z[G].

Let A be a subset of G such that |A|= 4. If A contains two elements with a
common square we say that A is a type 1 subset of G. If A is normalized and A
contains an involution, then A is clearly a type 1 subset. On the other hand if A
is a type 1 subset, then it can be replaced by a normalized subset that contains an
involution. In order to verify this claim let A = {a,b,c,d}, where a2 = b2. Now
A is replaceable by Aa−1 = {e,ba−1,ca−1,da−1}. Clearly Aa−1 is normalized
and ba−1 is an involution.

To a subset A of G we assign the companion subgroup

K =
⋂

χ(A)=0

Kerχ

of G, where χ runs over all the (irreducible) characters of G. The reader can
easily verify that if A has two elements, then K = {e} implies the periodicity of
A. By Lemma 1 of [3], if A is a type 1 subset, then K = {e} implies that A is
periodic.

By Theorem 2 of [2], if G = A1 · · ·An is a factorization of G, K1, . . . ,Kn

are the companion subgroups assigned to the factors A1, . . . ,An respectively and
n≤ 4, then there is an i, 1≤ i≤ n such that Ki = {e}.

We would like to state explicitly the following corollary of the above theo-
rem as we will refer to it later. If G = A1 · · ·An is a factorization of G, where
each factor Ai either has two elements or it is a type 1 subsets and n≤ 4, then at
least one of the factors is periodic.

3. Lemmas

In this section we present two lemmas. The first is about vanishing products in
the group ring Z[G] and the second is about the annihilator of a subset.

Lemma 3.1. Let G be a finite abelian group and d1, d2, d3 involutions of G with
d1d2d3 6= e. If

A(e−d1)(e−d2)(e−d3) = 0, (1)

where A is a nonempty subset of G, then A contains two elements with a common
square.
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Proof. From the equation (1) by multiplying out and rearranging the terms we
get

Ae+Ad1d2 +Ad1d3 +Ad2d3 = Ad1 +Ad2 +Ad3 +Ad1d2d3.

It follows that

A∪Ad1d2∪Ad1d3∪Ad2d3 = Ad1∪Ad2∪Ad3∪Ad1d2d3.

Hence one of

A∩Ad1, A∩Ad2, A∩Ad3, A∩Ad1d2d3

is not empty. So there are elements a1,a2 ∈ A and d ∈G such that a1 = a2d and
d 6= e, d2 = e. Thus a1 6= a2 and a2

1 = a2
2.

This completes the proof.

Lemma 3.2. Let G be a finite abelian group and x,y ∈G such that |x|= |y|= 4
and x, y are independent. If A = {e,x,y,x3y3} and χ is an irreducible character
of G, then χ(A) = 0 implies χ(x2) = 1 and χ(y2) = 1.

Proof. Assume that χ(x) = ρ , where ρ is a primitive 4th root of 1. Then χ(y) =
ρk, for some k, 0 ≤ k ≤ 3. From χ(x3y3) = ρ3+3k = (−ρ)1+k it follows that
χ(A) ∈ {2,2ρ}. Hence the assumption χ(A) = 0 implies χ(x) = ±1, which
gives χ(x2) = 1. A similar argument gives that χ(y2) = 1 and this completes
the proof.

The proof above is from the anonymous referee of the paper. The original
proof was longer. We will use only the following consequence of Lemma 3.2.
If G = AB is a factorization of G, then by Theorem 1 of [9] it follows that B is
periodic with periods x2 and y2.

4. Groups of order 25

In this section we show that the factorization type (4,4,2) forces periodicity for
groups of type (4,4,2). With this result available all factorization types can be
classified into periodicity forcing or not periodicity forcing for groups of order
less than or equal to 25.

Theorem 4.1. Let G be a group of type (4,4,2) and G = ABC a normalized
factorization of G, where |A| = |B| = 4, |C| = 2. Then one of the factors is
periodic.
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Proof. Let

A = {e,a1,a2,a3},
B = {e,b1,b2,b3},
C = {e,c}.

If |c|= 2, then C is periodic and we are done. So we may assume that |c|= 4.
If A is a type 1 subset of G, that is, if A contains two elements with a common

square, then by Lemma 1 of [7], A or BC is periodic. If A is periodic, then we
are done. So we may assume that BC is periodic with period g such that |g|= 2.
This leads to the equation BC(e−g) = 0 in the group ring Z[G]. Multiplying by
(e− c) we get B(e− c2)(e−g) = 0. By Theorem 2 of [9], it follows that there
are subsets U and V of G such that

B = U〈c2〉∪V 〈g〉,

where the products U〈c2〉, V 〈g〉 are direct and the union is disjoint. If U = /0,
then B is periodic with period g. If V = /0, then B is periodic with period c2.
Therefore we may assume that U 6= /0 and V 6= /0. So there is an element u in U .
Clearly, the elements ue and uc2 belong to B and they have a common square.
Therefore B is a type 1 subset. As we are supposing that A is a type 1 subset,
the corollary of Theorem 2 of [2] is applicable to the factorization G = ABC and
gives that one of the factors is periodic.

Thus we may assume that A is not a type 1 subset. By symmetry we may
assume that B is not a type 1 subset either. If BC is periodic, then BC(e−g) = 0.
Multiplying by (e− c) we get B(e− c2)(e− g) = 0. Repeating the argument
above it follows that B is a type 1 subset. This is an outright contradiction. So
we may assume that BC is not periodic.

As A is not a type 1 subset, it follows that |ai|= 4 for each i, 1≤ i≤ 3. We
claim that

〈a1〉∩ 〈a2〉= 〈a1〉∩ 〈a3〉= 〈a2〉∩ 〈a3〉= {e}. (2)

Indeed, for instance 〈a1〉∩ 〈a2〉 6= {e} implies the contradiction that a2
1 = a2

2.
Let H = 〈a1,a2〉. Using (2) we can see that H is of type (4,4). As H contains

3 involutions and G contains 7 involutions, it follows that there is an involution
in G\H which together with a1, a2 form a basis for G. We can choose a basis
x, y, z of G with |x|= |y|= 4, |z|= 2, a1 = x, a2 = y. Note that G2 ⊆ 〈x2,y2〉.

From (2) we know that a2
1, a2

2, a2
3 are distinct involutions of G. Thus a2

1, a2
2,

a2
3 is a permutation of x2, y2, x2y2. Hence a2

3 = x2y2. Similarly, b2
1, b2

2, b2
3 is a

permutation of x2, y2, x2y2. By relabeling the elements of B, we may assume
that b2

1 = x2, b2
2 = y2, b2

3 = x2y2. This leaves 8 choices for a3, b3, b1, and b2
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independently. Namely,

a3,b3 ∈ xy〈x2,y2,z〉,
b1 ∈ x〈x2,y2,z〉,
b2 ∈ y〈x2,y2,z〉.

Since B can be replaced by B−1 = {e,b−1
1 ,b−1

2 ,b−1
3 }, it may be assumed that

b3 ∈ xy〈x2,z〉.
As |c| = 4, it follows that c2 is one of x2, y2, x2y2. This leaves us with

c∈ {x,y,xy}〈x2,y2,z〉. If a3 = xy, then A = {e,x}{e,y}. In this case by Theorem
2 of [4], it follows that one of the factors is periodic. So we may assume that
a3 6= xy. If a3 = x3y, then

A = {e,x,y,x3y}= {e,x}{e,x3y}

and so this case can be treated as the a3 = xy case. Plainly, the a3 = xy3 case
can also be reduced to the a3 = xy case. If a3 = x3y3, then by the remark after
Lemma 3.2, BC is periodic with period x2. This is not the case. So we may
assume that a3 6= x3y3. When a3 = x3yz, then setting x1 = x, y1 = x3yz we get

A = {e,x,y,x3yz}= {e,x1,y1,x1y1z}.

Thus the a3 = x3yz case can be reduced to the a3 = xyz case. Similarly the
a3 = xy3z case can be reduced to the a3 = xyz case. In short only the a3 = xyz,
a3 = x3y3z cases need to be dealt with.

The directness of the products AB, AC, BC gives that

AA−1∩BB−1 = AA−1∩CC−1 = BB−1∩CC−1 = {e}.

Hence we may discard the cases

b1 ∈ {x,x3},
b2 ∈ {y,y3},
b3 ∈ {x3y,xyz},
c ∈ {x,y,xyz,x3y}.

Table 3 summarizes the remaining choices for the elements a1, a2, a3, b1, b2,
b3, c. With the assistance of a computer we can inspect all the arising

(1)(1)(2)(6)(6)(2)(8) = 1 152

cases. None of them provides a factorization for G.
This completes the proof.
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Table 3: The choices

a1 a2 a3 b1 b2 b3 c
x y xyz xy2 x2y xy xy

x3y3z x3y2 x2y3 x3yz x2y
xz yz xy2

x3z y3z xz
xy2z x2yz yz
x3y2z x2y3z x2yz

xy3z
xy2z

5. Groups of order 26

We are not able to solve the classification problem of periodicity forcing factor-
ization types for groups of order 26. In this section we present a partial result.
Namely, we show that the factorization type (4,4,2,2) is periodicity forcing for
the group of type (4,4,2,2).

Theorem 5.1. Let G be a group of type (4,4,2,2) and G = ABCD a normalized
factorization, where |A| = |B| = 4, |C| = |D| = 2. Then one of the factors is
periodic.

Proof. Let x, y, u, v be a basis of G with |x|= |y|= 4, |u|= |v|= 2 and let

A = {e,a1,a2,a3},
B = {e,b1,b2,b3},
C = {e,c},
D = {e,d}.

If |c|= 2, then C is periodic. So we may assume that |c|= 4. Similarly, we may
assume that |d|= 4.

If both A and B have two elements with a common square, then by the
corollary of Theorem 2 of [2], one of the factors A, B, C, D is periodic. In the
remaining part of the proof we distinguish two cases.
Case 1: Neither A nor B is a type 1 subset.
Case 2: A is not a type 1 subset and B is a type 1 subset.

Let us turn to case 1 first. As we have seen in the proof of Theorem 4.1, the
elements a2

1, a2
2, a2

3 form a permutation of x2, y2, x2y2. Similarly the elements b2
1,

b2
2, b2

3 form a permutation of x2, y2, x2y2. We can choose the basis x, y, u, v such
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that a1 = x, a2 = y. Note that G2 ⊆ 〈x2,y2〉. By rearranging the elements of B,
we may assume that b2

1 = x2, b2
2 = y2, b2

3 = x2y2 and that a3,b3 ∈ xy〈x2,y2,u,v〉.
If a3 = xy, then A = {e,x}{e,y}. In this case, by Theorem 2 of [4], one of the

factors {e,x}, {e,y}, B, C, D is periodic. So we may discard the choice a3 = xy.
By the argument used in the proof of Theorem 4.1 and using the symmetry of
the elements u, v, uv, the following choices remain for a3

xyu, x3y3, x3y3u.

If a3 = x3y3, then by the remark after Lemma 3.2, BCD is periodic with period
x2 and so

B(e+ c)(e+d)(e− x2) = 0.

Multiplying by (e− c)(e−d) gives that

B(e− c2)(e−d2)(e− x2) = 0.

If c2d2x2 6= e, then by Lemma 3.1, B is a type 1 subset. This is not the case and
so it follows that c2d2x2 = e, that is, c2d2 = x2. Repeating the argument with y2

in place of x2 gives that c2d2 = y2. But this is not possible since 〈x〉∩〈y〉= {e}.
Thus we may assume that a3 6= x3y3. Now b1 ∈ x〈x2,y2,u,v〉. We can discard the
choices b1 = x and b1 = x3 as AA−1∩BB−1 = {e}. Similarly, b2 ∈ y〈x2,y2,u,v〉.
We can discard the choices b2 = y and b2 = y3 as AA−1∩BB−1 = {e}. Since B
can be replaced by B−1 = {e,b−1

1 ,b−1
2 ,b−1

3 } it follows that b3 ∈ xy〈x2,u,v〉. We
can discard the choices b3 = x3y, b3 = xyu as AA−1∩BB−1 = {e}.

We know that |c|= |d|= 4 and that C,D can be replaced by C−1 = {e,c−1},
D−1 = {e,d−1}. This leaves us with c,d ∈ {x,y,xy,xy2,xy3,x2y}〈u,v〉. The
choices when c or d is equal to one of x, y, xy3, xyu can be discarded.

There are

(1)(1)(2)(14)(14)(6)
[
(
1
2
)(20)(19)

]
= 446 880

choices for the elements a1, a2, a3, b1, b2, b3, c, d. With the help of a computer
we can inspect all the arising cases. None of them provides a factorization for
G.

Let us turn to case 2. We can write b3 in the form b3 = b1b2d3 with a suitable
d3 ∈ G. By Lemma 1 of [3], we may assume that |d3| = 2. So we may assume
that B is in form B = {e,b1,b2,b1b2d3}. We claim that d3 ∈ 〈x2,y2〉. In order to
prove the claim note that by Lemma 1 of [3], ACD is periodic with period d3.
This leads to the equation

A(e−d3)(e− c2)(e−d2) = 0
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in the group ring Z[G]. Write d3 in the form d3 = x2αy2β uγvδ , where 0 ≤
α,β ,γ,δ ≤ 1. If uγvδ = e, then d3 ∈ 〈x2,y2〉 and we are done. So we may
assume that uγvδ 6= e. Now d3c2d2 6= e and Lemma 1 is applicable and it gives
that A contains two elements with a common square. Thus A is a type 1 subset
contrary to our assumption.

Next we claim that {b1,b2,b3}∩〈x2,y2〉 6= /0. In order to prove the claim we
distinguish two subcases.
Subcase 2(a): B contains two involutions.
Subcase 2(b): B contains only one involution.

Let us deal first with subcase 2(a). Suppose that B contains two involutions,
say b1 and b2. In this case, by Lemma 1 of [3], B can be replaced by H =
〈b1,b2〉. From the factorization G = AHCD we get the factorization G/H =
(AH)/H · (CH)/H · (DH)/H of the factor group G/H, where

(AH)/H = {H,a1H,a2H,a3H},
(CH)/H = {H,cH},
(DH)/H = {H,dH}.

As G/H is of type (4,4) or (4,2,2) or (2,2,2,2), by [4] it follows that one of
the factors is periodic. So (gH)2 = g2H = H holds, where g ∈ {a1,a2,a3,c,d}.
In particular g is not an involution, that is, g2 6= e. In addition we know that
g2 ∈H = {e,b1,b2,b1b2}. Thus g2 ∈ {b1,b2,b1b2}. It means that one of b1, b2,
b1b2 is a square that is an involution too and so it can only be one of x2, y2, x2y2.

Clearly {b1,b2,b3}∩〈x2,y2〉 6= /0 holds unless b1b2 ∈ 〈x2,y2〉. So we assume
that b1b2 ∈ 〈x2,y2〉. As d3 ∈ 〈x2,y2〉, it follows that b3 = b1b2d3 ∈ 〈x2,y2〉. Thus
{b1,b2,b3}∩〈x2,y2〉 6= /0 as claimed.

Let us turn to subcase 2(b). Assume that B contains only one involution,
say |b1| = 2, |b2| = |b3| = 4. By Lemma 1 of [3], B can be replaced by HB2,
where H = {e,b1}, B2 = {e,b2}. From the factorization G = AB2HCD we get
the factorization G/H = (AH)/H · (B2H)/H · (CH)/H · (DH)/H of the factor
group G/H, where

(AH)/H = {H,a1H,a2H,a3H},
(B2H)/H = {H,b2H},
(CH)/H = {H,cH},
(DH)/H = {H,dH}.

As G/H is of type (4,4,2) or (4,2,2,2), it follows that one of the factors is
periodic. So (gH)2 = g2H = H holds, where g ∈ {b2,a1,a2,a3,c,d}. In par-
ticular g cannot be an involution, that is, g2 6= e In addition we know that
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g2 ∈ H = {e,b1}. Thus we left with the g2 = b1 possibility. This in turn means
that b1 ∈ 〈x2,y2〉.

Summing up our argument we may assume that {b1,b2,b3}∩ 〈x2,y2〉 6= /0.
By reordering the elements of B we may assume that b1 ∈ 〈x2,y2〉.

The choices for a1, a2, a3, c, d are the same as in case 1. The choices for b1,
d3 are

x2, y2, x2y2.

As B can be replaced by B−1 = {e,b−1
1 ,b−1

2 ,b−1
3 } the choices for b2 are the

elements of
{x,y,xy,xy2,xy3,x2y,x2,y2,x2y2}〈u,v〉.

We can discard the choices x, y, xy3, xyu as AA−1∩BB−1 = {e}. There are

(1)(1)(2)(3)(32)(3)
[
(
1
2
)(20)(19)

]
= 109 440

choices for the elements a1, a2, a3, b1, b2, d3, c, d. With some assistance
of a computer we can inspect all the arising cases. None of them provides a
factorization for G.

This completes the proof.
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[2] K. Corrádi - S. Szabó, The size of an annihilator in a factorization, Mathematica
Pannonica 9 (1998), 195–204.
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