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A NEW CHARACTERIZATION AND A RODRIGUES
FORMULA FOR GENERALIZED HERMITE ORTHOGONAL
POLYNOMIALS

Y. HABBACHI - B. BOURAS

In this paper, we consider the raising operator R¢ = Ty, +x1, § #0,
where T}, and I are the Dunkl operator and the identity operator respec-
tively. Our purpose is to determine all monic orthogonal polynomials se-
quences { P, (x) } >0 such that the sequence of polynomials { (R¢Py)(x) }n>0
is also orthogonal. We prove that the only sequence of polynomials sat-
isfying this condition is, up to a dilation, the generalized Hermite poly-
nomial sequence. Then, we explore our result to deduce a Rodrigues

formula for the generalized Hermite polynomials sequence .

1. Introduction

Let P be the vector space of polynomials with complex coefficients and let
O be an operator on P. A monic orthogonal polynomial sequence (MOPS, for
shorter) { P,(x) },>0 is called O-classical polynomial sequence if { OP,41(x) }n>0
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is orthogonal. The family of O-classical polynomial sequences is wide enough
to accommodate the most famous orthogonal polynomial sequences. For in-
stance, when O is the derivative operator D, we find the continuous orthogonal
polynomial sequences (Hermite, Laguerre, Bessel, Jacobi) [15]. When O is
the difference operator A, i.e., Ap(x) = p(x+ 1) — p(x), the discrete orthogonal
polynomial sequences (Charlier, Meixner, Krawtchouk, Hahn) are the classi-
cal ones (see [12]). For the Dunkl operator 7, defined as Ty p(x) = p'(x) +
“M’ the Generalized Hermite and the Generalized Gegenbauer poly-
nomial sequences are the unique symmetric 7},-classical polynomial sequences
[2]-[5]. A curious problem is to see if there exists an operator O such that the
generalized Hermite polynomial sequence {’Hﬁl“ ) (x) }n>0 is O-classical. In the
case of existence, an other problem arises: Can we give a Rodrigues formula for
{”H,(f ) (%) }n=0? The aim of this paper is to solve these problems.

Recall that generalized Hermite polynomials were introduced by G. Szegd in
1939 as a set of real polynomials orthogonal with respect to the weight function
|x|2“e*"2, u> —% supported on the whole real line [20]. They can be written as

1
1 () = (1)L ) (62),n >0
(D
1
Hi 1 (x) = ()L (@) n >0
where {LSIO‘) (x) }n>0 is the sequence of Laguerre polynomials given by the fol-

lowing generating function:
t oo
(1— t)faflexp(—x—) = Z Lfla) (x)t" 2
These polynomials satisfy the second order linear differential equation [20]

xDZH,(Iﬁ)] (x)+2(u —xZ)DH,(I’i)l (x) + (2nx — Onx’l)H,(lﬁ)] (x)=0,n>0,

0 ifneven,
2U ifnodd,
and the three term recurrence relation

{ Po(x) = 1, Py (x) = x— Bo,
Pra(x) = (x = Bus1)Puy1(x) = Y 1Pu(x),n >0

where 6, =

3)
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with T+ (14 (1))
n+ —1)"
Bﬂzo;%+1: ‘uz )

where the regularity condition is 4 % —n — %, n>0.

n=>0, “)

In [8], T. S. Chihara established the following so-called structure relation for

generalized Hermite polynomials.

XDHL () =~ (1 ()R 00+ (1O (-1)) )63 (). n > 0.
&)

For more information in this subject, we refer the reader to [7, 14, 18].

This paper is organized as follows. In Section 2, we introduce some nota-
tions and preliminary results to be used in the sequel. In Section 3, we prove

that {a‘”’H,(,“ ) (ax) }n>0 is the unique R¢-classical polynomial sequence, where
1
a#0,a* = 5 Then we exploit these results to give a Rodrigues formula

for the generalized Hermite polynomials.

2. Preliminaries and notations

Let P’ be the algebraic linear dual of P. The elements of the dual space
are called linear functionals. We denote by (u, f) the action of u € P’ on
f € P. In particular, we denote by (u), = (u,x"), n > 0, the moments of u.
For f € P, a € C\ {0}, we define the linear functionals fu and h,u as follows

(fu,p) = (u,fp), (hau,p) = (u;hap),p € P,
where (h,p)(x) = p(ax).
Let {P,(x)},>0 be a sequence of monic polynomials (MPS, for shorter) with
degP, = n,n > 0. The dual sequence of {P,(x)},>0 is the sequence {u, }n>0,
u, € P', defined by (u,, Py) = 8y m, n, m > 0.
A linear functional u is said to be regular (quasi-definite) if there exists a MPS
{P.(x) }n>0 such that [8]

(u,PuPy) = rnSpm,n,m>0,r, #0,n>0,

where 6, , is the Kronecker’s symbol.

In this case,the sequence {P,(x)},>0 is said to be orthogonal with respect to u
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and we have
un = ((uo, P;)) ™" Pyug, n > 0. (6)

n

Moreover, u = Aug, where (u)o = A # 0 [17].

In the sequel, we will assume that all regular linear functionals u are normalized,
i.e. (u)o=1. Then, u = up

According to Favard’s theorem, a sequence of monic orthogonal polynomials

satisfies the following three-term recurrence relation [8]:

{ Py(x) =1, Pi(x) = x — Bo, 7
Pn+2(x) = (x_ﬁnJrl)PnJrl(x) - %1+1Pn(x>a n>0,
with X 5

ﬁn _ <M0,XPn (X)> Yl = M > 0.

(10, P2()) (o, B3)) "
A dilatation preserves the property of orthogonality. Indeed, the sequence {P,(x) } >0
defined by P,(x) = a "P,(ax),n >0, a € C\ {0}, satisfies the recurrence rela-

tion [16]

szO(-x) = 17 ﬁl (X)~: -xig(% _ (8)
Poy2(x) = (x = Bug 1) Pas1(x) = Yar1Pu(x), n >0,
En:&Q%H:}/nHanZO- )

a a?

Moreover, if {P,(x)},>0 is orthogonal with respect to the regular linear func-
tional up, then {Eq(x)}nzo is orthogonal with respect to the regular functional
ﬁo = ]’la—] up.

A polynomial set {P, },>0 is called symmetric if P,(—x) = (—1)"P,(x),

n > 0, or equivalently, in (7), B, =0,n > 0.

A monic orthogonal polynomial sequence {P,(x)},>o is said to be T,-classical
[2], (or Dunkl-classical) polynomial sequence, if {(7y,P,)(x) }»>1 is an orthogo-

nal polynomial sequence. Here 7, is the Dunkl operator defined by [11]:
1
Ty=D+2uH 1, u> 5

where H_ is the Hahn’s operator defined by:

1) = f(=x)

(Hof)x) = T2
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For the Dunkl operator 7}, the following rules hold [6]

Tyohg =ah,oTy,ac C\{0}. (10)

Tuf (%) = 2xf' (%), f € P. (11)

Tu(xf(x?) = (1+20) f(x*) + 227 f' (%), f € P. (12)

(Tuf8)(x) = (T f) (x)8 (x) + £ (x) (Tug) (x) —4ux(H-, ) (x) (H-18)(x), f,g € P.
(13)

In particular, if f (or g) is an even function, then

(Tusfg)(x) = (Tuf)(x)8(x) + f (x) (Tpg) (x)- (14)

In [14], A. Ghressi and L. Khériji proved that the generalized Hermite polyno-
mial sequence is, up to a dilation, the unique symmetric 7;-Appell MOPS. In
particular, they showed that

THH;(H)l( )= lJn+1H£l“)(X), n>0, (15)
where
Mny1 =n+14+pu(1+(=1)"),n>0.

Application of (10), formula (15) becomes

T (H™), (ax)) = s HY (ax), n > 0. (16)

n+1

Next, using the generating function of Laguerre polynomials, we will give an
other proof of (16). From (2) and (11) we have

ZTM A"t = Ty, <(1—t) B zexp ) (Tuacts on x)
n>0
2t
= 2d°xt(1—1)7H 2exp( Cixt)
- o Zan”+7)(a2x2)t”+1
n>0 1
= -2} afofiJlrf)(azf)t"
n>1

(17)

Taking into account (1), we get

Ty (Hgﬁ)(ax)) = auz,,?-[gi)_] (ax),n>1. (18)
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Similarly, from (2) and (12) we have

Y T(axt ) (@) = a((1+20)(1=1) =222 ) (1 = 1) #F exp(—

n>0
d I —a’x’t
- o oa—pet
= a(Zt%t—i-l—FZu)((l 1) H 2 exp( T ))
(M=3)/ 2 2\.n
= 2%—+1+2 L, ?
a(t8t+ +u)n;) (a“x")t
B 1
= a) (2n+1 +2/.L)L£,#_7)(a2x2)t"
n>0
19)
Taking into account (1), we get
TH, (@) = aftan Y (ax), n >0, (20)

From (18) and (20) we obtain (16).

3. A new characterization and a Rodrigues formula for generalized Her-

mite polynomials
3.1. Rg-classical orthogonal polynomial

Let R be the linear operator defined on the vector space of polynomials as

follows
Re:P—P 21
fr— Re(f)(x) = &(Tuf)(x) +xf(x), § #0,
where 7, is the Dunkl operator.
Lemma 3.1. Forac C\ {0} and & = —2%2 we have
Re (H,(,“)(ax)) = a_l”;’-[ii)l (ax),n >0, (22)
g(?—[(()“)(ax)) = a‘"?—[fl“)(ax), n>0, (23)
and
2(HE (ax)) = a " HE, (ax), n,m >0, (24)

where R’g is defined by iteration as follows

0 __ n+1 __ n
Ry =1, Ry =Rz oRY, n>0.

a*x%t

1—1t

)
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Proof. In (2), we replace x by a’x* and we take @ = 1 — %, we get

379

— l‘
(1 —t)*“*%exp @ =Y L @) (25)
n>0
1
Applying the operator R¢, where &= EEyE and using (11), we obtain
a
1y Xt 1 a’x’t
2 2 2 _ —U—>
"= —)(1—1t —
TRV = (o (-0 ep(-2))
2,2
= x(1—1)7H3 exp(—ci a ) (26)
1
= a! Z axL,(lu+2)(a2x2)t"
n>0
Taking into account (1), we obtain
Re Hg;) (ax) = a_l’ngﬂrl (ax) (27)
1
Similarly, from (2), where x — a’x* and o = u—+ > we have
3 —a’x’t (u+3), 2 2
(1—1)"* 2xexp( )= Zan 2ax )" (28)
11—t 230
1
Applying the operator R, where &= g and using (12), we obtain
a
(+3), 2.2 2 s —a’x’t
Y ReGL! @) = (2 +E1+20)(1=1) ) (1 =) Fexp(=—)
n>0 -
(29)

But,

2 —[.L—i —azle‘ ) u
(P+e(+2m)(1=0)) (1= Fexp(S—7) = —a 22 ((1=1) " Fexp(
Then,

2 (ut3)r 2 2\\,n J AT —ax’
angoné(an (ax))t - a;(“ 0" Zexp(l_t
= ZL azzt
n>0
— Z—nLE,“ 7)(612x2)t"*1

n>1

— Z (l’l—l—l) ( )(22)l

n>0
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So, by virtue of (1), we get
Re(HY, (ax)) = a " HYE,, (ax) (30)

From (27) and (30), formula (22) follows.
Relations (23) and (24) are straightforward consequences of (22). ]

Next, we will determine all R¢-classical polynomial sequences.

Definition 3.1. A MOPS {P,(x) },>0 is called R¢-classical polynomial sequence
if the sequence {S,(x) }n>0 defined by

So(x) =1, Sp1(x) = (RePy)(x),n >0,
is orthogonal.

Remarks 3.1. 1. The orthogonality of the sequence {Sy(x)},>0 is not nec-

essarily with respect to the same linear functional as {P,(x) }n>0.

2. According to Lemma 3.1, {7—[,(1” ) (ax) }n>0 is an Re-classical MOPS, where
1
=

2a%
Theorem 3.2. For any non-zero complex number & and any MOPS {P,(x) } >0,
the following statements are equivalent.
(a) {Pu(x) }n>0 is Re-classical.
(b) Py(x) = a_”’HS,#)(ax),n >0, where a> = —(2&)~!

Proof. (a) = (b) Let {P,(x)}n>0 be a MOPS fulfilling (7) and {S,(x)},>0 be
the MPS defined by

So(x) =1, Suy1(x) = E(TuPy)(x) +xPy(x), n = 0. €2))
According to Favard’s theorem, {S,(x)},>0 satisfies

{ So(x) =1, S1(x) = x — ap, (32)

Sn+2(x%) = (x = 04+1)Sn1(x) = Ay 1Sp (%), A1 #0, n> 0.

Applying the operator 7 to (7), where n — n— 1 and using (13),we get

(TPai) (¥) = (1420) Pa()+ (x— Bo) (TuPo) (¥) —440x(H 1 Py) (9) = Y TuPa 1), > 1.
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Equivalently,

(TuPos1)(x) = Pa(x) + 20Ps (—x) + (x— Bu) (TuP) (x) — Wa(TuPr ) = 1.
(33)
Multiplying (33) and (7) by & and x, respectively, and summing the result, we

obtain

E(TuPai)(6) 3Py (5) = (v = Bu) (E(TuP) (x) + 5P

=Y (XPa—1 + & (TuPu—1)(x)) + & (Pu(x) + 2uPu(—x)), n > 1.
(34)

Taking into account (31), we get

Snt2(x) = (= Bu)Sui1(X) = %Su(x) + & (Pu(x) +21Py (—x)),n 2 1. (35)

Identification of (32) with the last equation gives

(0= 0 1)Sn 1 (X) = At 180 (x) = (6 = B)Sp1 (X) = %S () + & (P () + 21 P (—x)), n > 1.
(36)
Or, equivalently,

(Bn = 0 1)Sn41(X) + (% = Any1)Sn(x) = S (Pu(x) +2uPy(—x)), n > 1. (37)
Comparing the degrees in the last equation, we obtain
Br=0pi1,n > 1, (38)

and
=M =E(1+2u(=1)"),n> L. (39)

Notice that from Definition 3.1 we get S;(x) =x, i. e. o = 0. Since & # 0, then
(37) becomes

(1420 (=1)")Sp(x) = Pu(x) + 2uPy(—x), n > 1. (40)

On the other hand, for n = 1, the last equality gives (1+2u)By = 0. Taking into
account the fact that u # —1/2, we get fy = 0.

Using (31) and (40), we will prove by recurrence on n, that

Su(—x) = (—=1)"Sy(x),n > 0. 41)
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and
Py(—x) = (—1)"Py(x),n > 0.

The assumption is true for n = 0. In fact,

So(—x) = 1= (=1)"So(x), Po(—x) = 1 = (—=1)°Py(x).

Suppose that the assumption is true until n and let us prove it for n+ 1.

Using the definition of the operator 7, (31) can be written as

Py (x) — Py(—x)

) +xP,(x),n>0.
x

Sp1(x) = E(Py(x) +
Taking into account (42), we get

P, (x)

Sni1(x) = E (P (x) + u(1 = (=1)") =) +xPy(x), n > 0.
Using (42) and (44), we get

Spy1(—x) = (—1)n+15n+1(x)'
The change of indices n — n+ 1 in (40) yields

(1420 (=1)" 1S4 (%) = Past (x) + 2Py 41 (=), n > 0.

Replacing x by —x in (46), we obtain

(1201 (— 1) )81 (=) = Pasa (=) + 21 Pas (x), 1> 0.

From (45), (46) and (47), we get

Po1(—x) +2uP, 1 (x) = (—1)""! (Pn+l (%) +2uP 11 (—x)).

Or, equivalently,
((~1)" 4+ 20)Pas (x) = (2 (1) = 1)Pry ().

So,
Popi(—x) = (=1)""' Py (x).

(42)

(43)

(44)

(45)

(46)

(47)



A NEW CHARACTERIZATION AND A RODRIGUES 383

This completes the recurrence proof.
Notice that (41) and (42) mean that {S,(x)},>0 and {P,(x)},>0 are two sym-
metric sequences. Furthermore, according to (40) and (42), we have

Su(x) = Pu(x),n > 0. (48)
Therefore,
ﬁnZOCnZO,HEQ (49)
and
Yo=Ay,n>1. (50)
Thus, (39) becomes
=Y =8E(1+2u(=1)"),n > L (51)
Writing
1 +2‘u(_1)n = Uni1 — My, 1 > 07.“0 = 07
Equality (51) becomes
Vi1 — Yo = —E(Mns1 — Mn),n > 1.
Hence,

Yo—N =&y — 1), n > 1. (52)

But, from (31), where n = 1, we have

n=—Sl.
Therefore, (52) becomes
Yo =—Clp,n > 1.
Application of (9) with
a=—(28)"", (53)
we obtain

Br=0: T = 22 0> 0.

So, according to (4),
Po(x) =a "H (ax), a® = —(2€) ', n >0,

where {H,(f )},,20 is the generalized Hermite sequence.

(b) = (a) The proof is an immediate consequence of Remarks 3.1 O
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3.2. Rodrigues formula of generalized Hermite polynomials

In this subsection, we will write ’H,(l“ ) (x), n >0 as follows

M) (x) = Cnal) el (0" ().n >0,

where §, is a normalization factor, 7(x) is a polynomial of degree less than or
equal to 2, and @(x) is an integrable function supported on a subset of the real
line. The last equality is known as Rodrigues formula of generalized Hermite

polynomials. We need the two following results:

1
Proposition 3.3. Fora € C\ {0} and § = — 32 the operator R satisfies the
following relation
( 1)” a2x2 n 761 X
(REF)() = Sogee™ T (f )™ ), f € Pon > 0. (54)

Proof. The proof is based on the following result: If A is an operator on func-

tions and g(x) # O for all x then g~'Ag, the conjugate of A, satisfies
(§7'Ag)" =g 'A"g,n>0 (55)
Putting
gx) = exp(—%azx% (56)
On account of (53), we can easily see that
g T8 = (—2a*)R; (57)

So, application of (55) with A =T, and g — g7, the desired result follows. []

1
Corollary 3.4. Forac C\ {0} and & = ——

22 the generalized Hermite poly-
a

nomial sequence {7—[,(#) (x) bn>o satisfies

—1
Z(H,(n )(ax)) = (2" 2)11 a’xn (7—[( )(ax)e_azxz) ,n,m>0. (58)

1
Theorem 3.5. Fora € C\ {0} and § = L the generalized Hermite polyno-
a

mials sequence satisfies the following Rodrigues formula:

- —a’x
H,(,‘i)m(ax) = (2”a21 e”zszlf (H,(n“)(ax)e ’ 2), n,m>0. (59)
In particular,
(w) _ (_l)n a*x*pn —atx?
Hy ' (ax) = S € T, (e ),n>0. (60)
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Proof. From (58) and (24), we obtain (59).
From (59), where m = 0. we get (60). O

Remarks 3.2. 1. When u =0, we recover the classical Rodrigues formula

for the Hermite polynomials sequence [19].
2. Notice that the results of this paper generalize those in [1].

To conclude this paper, we will give some relations between 7}, and R¢ and
their applications in physics. Fore more information the reader can be referred
to [13]. Put

AF=ad?x1+Tu, A, =a*xI— T,

Then, we have
g 'Afg=Tu, g 'A g =2a"R;

These formulas can be used for an interesting application to the quantum har-

monic oscillator. First, note that

1 - - 2, 42
E(AZ{AG +A AL) =T +a'xT

and ( —T; + a4x2}1) Y(x) = E¥(x) is a modified form of the Schrodinger equa-
d

tion for the harmonic oscillator on the line, namely ( — (d—)2 + a4x2]1) Y(x) =
X

E¥(x), with the potential a*x? (and a > 0). The ei genfunctions are of the form

p(x)g(x). Moreover, using the definition of the operator Rz and (14), we can

see that
(=72 +a*1) p()g(x) = a2g(x) (TuRe +ReTo)p(x) 61)
Consequently, using (15) and (16), we get
( - T“2 + a4x2JI) P (ax)g(x) =a®*(2n+1+ 2#)7—[,(1“) (ax)g(x).
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