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HAHN MULTIPLICATIVE CALCULUS

B. P. ALLAHVERDIEV - H. TUNA

In this study, Hahn multiplicative calculus was introduced. Some ba-
sic theorems are proved within this calculus. As an application of this
subject, the classical Sturm-Liouville problem was examined under this
structure.

1. Introduction

In 1949, Hahn combined two well-known operators under one definition ([12]).
With this definition he made, the quantum g-difference operator (see [13]) and
the forward difference operator (see [14]) were examined under a single struc-
ture. Until recently, this definition did not receive much attention. With the
definition of the right inverse of the Hahn derivative operator, the Hahn calculus
theory expanded and attracted the attention of researchers ( see [1, 3, 4]).
Meanwhile, in the 1970s, Grossman and Katz introduced the Non-Newtonian
calculus (see [9, 10]). They made a new definition of derivatives and integrals
and turned addition and subtraction into multiplication and division. Although
it did not attract the attention of researchers until the 2000s, interest in this sub-
ject has increased recently (see [2, 5-8, 11, 15]). In 2016, Yener and Emiroglu
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introduced the concept of multiplicative calculus for quantum calculus ([16]).
However, we are not aware of any result related to the Hahn multiplicative cal-
culus.

In this study, we will generalize the work of Yener and Emiroglu for Hahn
calculus and introduce Hahn multiplicative calculus.

2. Hahn multiplicative derivative

Throughout the paper, we let g € (0,1) and @ > 0. Define @y := »/ (1 — g) and
let 7 be a real interval containing @y. Now let’s remember the concept of the
Hahn derivative

Definition 2.1 ([12]). Lety:/ — R be a function. The Hahn derivative operator
Dg 4y is given by

1
D gy (x) = [,V(erqx)/—y(x)]m? x % ay,
| ¥ (@), = o,
provided that y is differentiable at ay.

The Hahn derivative operator has the following features.

Theorem 2.2 ([3]). Lety,z:I — R be @, g-differentiable at x € I, then we have
forallxel:

D 4 (Yy+82) (x) = YD 4y (x) + 0D 42 (%), 1,0 €1,

D4 (y2) (x) = Do g (y (%)) 2(x) +y (@ +xq) Do gz (%) ,

Doy (%) () = Dag (v (%)) 2(x) =y (¥) Do gz (¥)] [z (x) 2 (@ +xq)] "
Now, we will define the Hahn multiplicative derivative.

Definition 2.3. Let y be a positive function. The Hahn multiplicative derivative D

is defined by
1
) y(ﬁ)+61X)) =T
Di y(x) = ( .
@) (%) y(x)

Theorem 2.4. Let y be a @, g-differentiable function. Then we have

DZ) qy (x) — eDwxfI(lny(x)) .

*
w?q
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Proof. From Definition 2.3, we obtain

y(x)

L 1
) o+g-Dx Hotax) | o+ (g— T
Dthy (x) — <y(+qx)> q _ eln( ) q

y(x)
1 y(0+gx) Iny(@+gx)—Iny(x
— e @ta—1Dx 1n< y() ) —e n‘(g+?q)—1)‘;‘( ) — eDm,q(ln)’(x)).

Now let’s get the basic properties of the Hahn multiplicative derivative.

Theorem 2.5. Let y,z be (®,q)"-differentiable functions. Then we have the
following properties.

i)
D g (y(x)2(x)) = Doy g (¥ (x)) Dy g (2(%))

ii)

i)
Dy 4 (cy(x)) =Dy 4 (y(x)),

where c is a positive constant,
iv)
* * + ©
Dw7q (y (x)z(x)) — (Da),qy (x))z(qx w)y (X)D a8(x) ,

Diy g (v02) (x) = Dy g (v (2 (x))) P2,

vi) for all constant functions y (x) = ¢, we have

Dy (x) =1,

vii)
*,wqfn?qfly(x)] v = Z,’qy (hil (x)) ,

where h(x) = gx+ @.
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Proof. i)

iii)
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D*

w?q

(v (x) z(x)) = PoaMOW)) — Poq(In((x)+Inz(x)))
— Poqgn(()) Do gIn(z(x))

= D}y (7)) Dl ().

_ <y(w+qX)>M

y(x)

=Dgy 4 (y(x))-

(X z(x)
Dz),q <y (x)z(X)) _ eDw‘,q <1n()( ) )) _ eDw,q(Z(X)ln(y(x)))
— oA(@+2)Do 4 (In(y(x)))+In(y(x)) Do 42(x)

— {@+x4)Do 4 (In(y(x))) ,In(y(x))Da ¢2(x)

= (DZ),qy (x))z(w—l-qx) y (x)Dwtqg(x) '
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v)
1
* )’(Z(a)—l-qx)))w(ql)x
D o7)(x) = (2= 11
04009 () ( y(z(x))
_ <y (z(@+gx)) ) T e
IRNERIEIEY)
=D} 40 (v (2 (x))) P08
Vi)
I
Do) = ()" =
Vi)
Iny(x)—Iny h*l(x)
Do.gy (') = ePagny(h7'(x)) — e%l)x)

[ elny(x) w+(f;*1)x
| ()

1 —1/q
7wq’1+(q’1—l)x

-\ b
= (D" g1y ¥() v

Let us now define the higher-order Hahn multiplicative derivative.

Definition 2.6. Let y be a positive function. The nth order Hahn multiplicative
derivative is defined by

DMy (x) = Poa(ny(x)

o,



394 B. P. ALLAHVERDIEV - H. TUNA

3. Hahn multiplicative integral

Let’s start this section by recalling the Jackson—Norlund Integral definition.

Definition 3.1 (Jackson—Norlund Integral [3]). Let y: / — R be a function and
a,b,wy € 1. We define o, g-integral of the function y by

/:y (X)degx := /a: ¥ (x)de g% — /C:) ¥ (x) dg.g%,

where

X oo 1—g"
[30dagi=1-gr-a) Loy (07=L 13 ) xer
(24 n=0 1_C]

provided that the series converges at x = a and x = b. In this case, y is called
o, g-integrable on [a, b].

Definition 3.2. Let y be a function on / and a,b, @y € I. Then we define the
Hahn multiplicative integral ((®,q)"-integral ) of the function y by

b
/ y(x)dw‘qx — eff Iny(x)dg,gx
a

S (W v 1Yo

It is easy to check that the Hahn multiplicative integral has the following
properties.

Theorem 3.3. Let y,z be (®,q)"-integrable functions on I and a,b,c € I. Then

i)
ii)
/: (7 ()2 (x)) o = </aby<x>"“”qx> </abz(">dw'qx> |
iii)
[ R
iv)

b d ¢ d b d
/ y ()t = / y (x)“et / y(x)“*, where a < ¢ < b.
a a C
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Now, the (®,q)"-integration by parts will be proved.

Theorem 3.4. Let y be (w,q)"-integrable and z be ®,q-differentiable, they are
continuous on the interval wy < a < b, then

dogt z oa\ !
[ (@0 —igzizzz(ub(y(qwrw))Dw.qz(r)]d > .

Proof. From Definition 3.2, we obtain

/ b { (D5 ( Z))z(z)r“’ﬂt _ / b [ez(t)Dw‘q(lny(t))}dw‘qt — IO 0ot (1)

By using the m, g-integration by parts ([3]), we have

[ 20Dy (05(0)) dog = (1) y(5) ~2(a) ny @)

b
— / Iny (gt + @)D gz(t)de. g 2)

It follows from (2) and Definition 3.2 that

/b |:(D* (t))z(t)} dw7ql _ eZ(b) ]ny(b) 1
a w,qY " gzla)ny(a) -efab Iny(gt+®)Dg 42(1)de 4

4. An application: Sturm-Liouville problem

It is well-known that the Sturm—Liouville theory is important in many areas
of sciences, physics and engineering. Therefore, in this section, let’s examine
the classical Sturm-Liouville problem as an application of Hahn multiplicative
calculus.
Firstly, we will give the following notation we will use in this section. Let
y®z=yz, yOz= %, yOz=y" =",

where y,z € RT.
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Definition 4.1 ([11]). Let H # @ and (.,.), : H x H — R be a function such
that the following axioms are satisfied for all x,y,z € H :

i)
XD, 2) = (6,3)5 D (1 2)s,
ii)
<xay>* = (y,x>*,
iii)
(x,x), = 1 ifand only if x =1,
iv)
(x,x) > 1,

v)

(" Ox, ) = O (x,y)e, kER.
Then (#,(.,.).) is called multiplicative inner product space.
Let

Log(ant)i={y: [ b ortee <ol

(my,b) is a multiplicative inner product space with

<'7 '>*,(D,q :Lz,a),q (C()o,b) X Lz,a),q (w07b) — R+7

Then L2

*7w7q

b
(y,Z>*,a),q - /(Uo |y (x) QZ(X)’dw’qxa €))

where y,z € Liw,q (my, b) are positive functions.

Now consider a boundary value problem which consists of
1. a Hahn multiplicative Sturm-Liouville (HMSL) equation of the form

2@ = (Dt 1y1) Do) @ (¢ 02(0)
=t Oz(x), x € [wy,b], 4)

where r(.) is a real-valued continuous function at @y defined on [@y,b], and A
is a parameter independent of x; and
2. two supplementary conditions

(€7 @z (@) @ (¢ @ D}y 2 (@) = 1, )
<ec056 @Z(b)>@(esin5 ®Dto7qz (hfl (b))) =1, (6)
where 7,0 € R.
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Theorem 4.2. HMSL operator defined by (4)-(6) is formally self-adjoint on the
space L2,y (@n,b).

Proof. Letz,t € L2 0 (@, D) . From (3), we obtain

) [do.gx

<<I)Z,t>*,w,q:/a: ([(D*_WW)‘/‘I Z’qu(x)} {Z(x)r(x)Dlm()

2 |do.qx

b . l/q . lnt( )
= /(UU [(D—wa-,ql> 0.q° (x)]
a do.gx
<],
(O]

By Theorem 2.5, we get

(z (x)r(x)) e

de gx

<z (x)r(x)> e

cDZt *a)q—/ ‘ DZ)qZ 1(x)))]1nt()€)

I,

From Theorem 3.4, we deduce that

(D g2 (" (8))"™")
(DZWZ(G)O))W(%)

1 /b
dg gx
(.X')) Da,_q lnl(x) q o

(Do ()™
— (D*w’qz(wo))lnt(a)o)

<q)zvt>*7qu =

dp.gx

<Z (x)’(")) Int

e

de.gx

(N

(z (x) r(x)> e

quhlz X qulnl X qu.f /
X
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Similarly,

de.gx

(2, D) 0g = /b ’Z(x)ln[DZ,‘,q(DZ,?qt(h—l(x)))]
@y

de.gx

b )
% / ‘(Z <x>)ln(f(X))
wy

de gx

= [ [P (D (7 )

b
X/
Wo

(Dt (! ()"
(D*wgl (wo))lnz(wo)

dggx

(t (x)r(x)) e

1
Dg,gInt(x)Dg g Inz(x)de 4x

b
ef“’o

b
X/
Wo

It follows from (7) and (8) that

de gx

<t (x)r(x)) e

( Z)qz(hil(b )lnt(b)
(Dz,‘qz(w()))lm(wo)
Dzt g = , Dt
(®01e0q (D gt (1 (6))) " & Plema
(D gt () ™)
Consequently, we see that
[2,2] (b)
<¢Z,t>*,w,q = m<27¢t>*,w7qa

where

[2,1] (x) 1= (1 () ©D, g2 (W' (1)) © (2(x) © D gt (7" (1))

®)

©))
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By (5) and (6), we conclude that
<¢Z,t>*,w,q = <Z,cbt>*,a),q- (10)
O

Theorem 4.3. Eigenfunctions corresponding to distinct eigenvalues are orthog-
onal.

Proof. Let &, 1 be two distinct eigenvalues with corresponding eigenfunctions
z,t, respectively. By (10), we have

<CI)Z,t>*7w,q = <Z7 q)t>*7w»q
(€ Oz, 0q= (2" O1)0g

& M2, wg = 1.

Since & # 1, we get
<Z7t>*>waq = 1'

The (®,q)"-Wronskian is defined by the formula
W*’qu (Z’t) = (ZQDZQI) e (t QDZ)ﬂZ) :
Then we have the following.

Theorem 4.4. Any two solutions of Eq. (4) are multiplicative linearly dependent
ifand only if W, 4, = 1.

Proof. Let z and t be two multiplicative linearly dependent solutions of Eq. (4),
i.e, z=1*, where k # 1 (see [15]). Then, we have

Wy (26) = (20D ) © (10 D)y g2) = (Fo D 1) © (10 Dy ) = 1.
Conversely, let W, o 4 (2,1) = (:© D}, 1) © (t © D}, ,z) = 1. Then,

* Inz __ * Int
Dy gt™" =Dy 42

eln ZDgglnr _ elntDw_,q Inz

Inz Int
InzDg ,Int —IntDg ,Inz = =
Nla gt —NtDe g N2 Dggylnz Dy g4lInt 0
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Consequently, Inz and In7 are linearly dependent (see [4]), i.e., Inz =kIn¢, where
k#1. O

Theorem 4.5. The (®,q)"-Wronskian of any two solutions of Eq. (4) is inde-
pendent of x.

Proof. Let z and ¢ be two solutions of Eq. (4). By (9), we see that

[2,1] (b)

(Pz,1)s,04 = (z,¢] (a%)

<Zaq)t>*.,w,q-

Since ®z = ¢* ®z and dr = ®t, we obtain

2 ®) _,
[z,¢] ()

Thus,
[2:1](b) = [z,1] (@) = Wi 0,4 (21) (@)

O]

Theorem 4.6. All eigenvalues of (4)-(6) are simple from the geometric point of
view.

Proof. Let & be an eigenvalue with eigenfunctions z(.) and 7 (.). From (5), we
deduce that

Weoq(2:1) (@) = (z(00) © Dg, 4t (@) © ( (@0) © Dy 4z (a0)) = 1,
i.e., z and ¢ are multiplicative linearly dependent. O

Now, we shall construct Green’s function for the following problem

((D*wa,ql) i <x)> (e rorw) =, ap

where x € [a,b], r(.) is a real-valued continuous function at @y defined on
[a,b] and 8™ € L2, (awp,b), which fulfills the supplementary conditions

*,0,9
(eCOS’)/GZ(COO)) @ (esin}’QD*&qZ(a)O)) =1, 12)
(ecos5®z(a)>@(esinEQDZLqZ (h—l(b))> =1, (13)

where 7,0 € R.
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Let E(x,A) and ¥ (x,A) be two basic solutions of Eq. (4) which satisfy the
following initial conditions

(]

((1)0) — efsiny, DZLQE((DO) — ecos'y’
P(b) =e 0 Dp P (h7 (b)) = 0.
We see at once that

O(A) = W0y (W) £ 1.

Theorem 4.7. If A is not an eigenvalue of (4)-(6), then the HMSL problem (11 )-
(13) is solvable for any function e, i.e., the function

2(6, ) = (G (x,0,1),¢5")), g, (14)

where

G(x,t,mze—m@{ YEAOI(A), m<i<y o

is the solution of the problem (11)-(13). Conversely, if A is an eigenvalue of
(4)-(6), then the HMSL problem (11)-(13) is generally unsolvable.

Proof. Suppose that A is not an eigenvalue of (4)-(6). We shall use the method
of multiplicative variations of constants. Assume that a particular solution of
(11) is given by

2(6,A) = Z (5, )@ (x, 1))

where k; (x) and k; (x) are solutions of the following equations

Dt = A1)
D gk (x) = — qg (h (XB a? (h(x)) .

Hence, we get

da)7qt7

b=k ) [0 <fl>)1&‘§’ (h(1)

E(h(1))
)

ky (x) =kp () — /a: 9g (h (IB Ei dg 4t
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Then, the general solution of (11) is given by

Z(0,A) = E (x,A) ¥ (x,1)°

_ b ag(h(t)) InP(h(r))
X E(x, A) R T e deat g (x 2y e

x  qg(h (())qu,

where x € [@y,a] and cy,c; are arbitrary constants. By (12) and (13), simple
calculations imply

g ) ()
=/, oy
P asa)mz(0)

am S em et

Consequently

h 1 (b) gg(h(t) ¥ (h(r)) b qg(h(t) In¥(h(1))
LAY = B (xr, A) o G o gt G o

x gg(h(r))InE( )qut fb qg(h

hZ(0)
P (x, 1) T e ot .t

b g(t)InZE(r)

= 5 (o, ) o ot oat (i 2) R ot ot

and the proof is complete. In fact, by (14) we have
Z(X,A) = <G(JC,I,A) 7eg(X)>*~,q
— plag 8ONG5t A)dogt [7g(1)InG(xtA)dag! (16)

From (15), we see that

o
InZ(1,0) <<
Gy =] (PEDD) <<

(E (t,/l)‘“‘y(x’“>_“’( " x<t<b.

A7)

We conclude from (16) and (17) that

8()InE
Z(X,A):E()@)L) f w dwqt (x ﬂ,) rhli)()dwqt.
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Theorem 4.8. Green’s function G (x,t,A) defined by (17) is unique.

Proof. Assume that there is another Green’s function G (x,7,A) for the problem
(11)-(13). Then, we get

Z(xal) = <6(X,[,7L) 7eg(X)>*7C]'

Thus _
(G(x,1,L) ©G (x,1,A),e5D), , =0. (18)

Putting g (x) =In [G (x,t,A)© G(x,t,l)] in (18), we obtain

G(x,t,A) =G (x,1,1).
O

Theorem 4.9. Green’s function G (x,t,A) defined by (17) satisfies the following
properties.

i) G(x,t,A) is continuous at (@, @) .

ii) G(x,t,A) =G (t,x,A).

iit) For each fixed t € (a,b], as a function of x, G (x,t,A) satisfies Eq. (11) in
the intervals [wy,1), (t,b] and it satisfies (12)-(13).

Proof. i) Since W (.,A) and E(.,A) are continuous at @y, it may be concluded
that G (x,¢,A) is continuous at (@, @).

ii) Easy to be checked.

iit) Let t € (o, b] be fixed and x € [ay,?]. Then, we see that

~InE(r.A)

G(x,1,A) =¥ (x,A) o®

It follows that
®G (x,1,1) = e* ©G(x,1,A).
Similarly for x € (z,b].
(*TOG (wy,1,A)) B (eSi”@DZwG(a)o,t,l))

—In¥(r)
(1)

- [3(%)C°WD:)#3(%)““Y} —1

)

(ecosﬁ @G(b,t,)t)) @ (esiné ©D;,G (k™ (b) ,;,A))

—InE(r)

cos % -7 — sind] ")
:[lp(b) 5Dl & (b (b)) ] My,
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Conclusion. In this study, we introduce the Hahn multiplicative calculus.

Basic theorems are proved within this calculus. Next the Hahn multiplicative
Sturm—Liouville is defined. Some spectral properties of this problem were stud-

ied.

Finally, Green’s function is created for this problem. Some properties of

Green’s function have been given.
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