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LORENTZIAN BELTRAMI-EULER FORMULA AND
GENERALIZED LORENTZIAN LAMARLE FORMULA IN Z}

SOLEY ERSQOY - MURAT TOSUN

In this paper, the sectional curvature of non-degenerate tangent sec-
tions of time-like ruled surface with the central ruled surface in n-dimen-
sional Minkowski space, ] is studied. The relationship between nor-
mal sectional curvature and the principal sectional curvatures of non-
degenerate tangent sections of time-like ruled surfaces is obtained and
called as Lorentzian Beltrami-Euler formula. Moreover, the relationship
between the Gaussian curvature and the principal distribution parameter
of the non-degenerate tangent sections of time-like ruled surfaces is ob-
tained and called as generalized Lorentzian Lamarle formula.

1. Introduction

Analysis of curvature is an important study field in the realm of differential
geometry because the theory of curvature has been used by various branches of
sciences. Euler formula and Beltrami formula are well-known theorems from
classical surface theory, [8]. Euler formula was applied to the tangent sections
in [3] and called as Beltrami-Euler formula, which is a relationship between
the normal curvature and the principal normal curvatures of the tangent sections
of the generalized ruled surface with the central ruled surface in n-dimensional
Euclid space, E”. Moreover, Lamarle formula was given for curvatures of three
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dimensional surfaces in [2]. Generalized Lamarle formula was applied to the
tangent sections, which is a relationship between the Gaussian curvature and
the principal distribution parameter of the tangent sections of the generalized
ruled surface with the central ruled surface in n-dimensional Euclid space E" in

[3].

2. Preliminaries

The Minkowski space 7 is the vector space %" provided that the Lorentzian
inner product ( , ) is given by

<m> —dP L d .t di | —dxd

where (x1,x2,...,X,) is a rectangular coordinate system of %7, [1]. Since ( , ) is
an indefinite metric, recall that a vector V € %] can have one of three Lorentzian
causal characters: it can be space-like if (v, V) > 0 or v =0, time-like if (V,V) <0
and null (light-like) if (V,¥) = 0 and ¥ # 0, [1]. Similarly, an arbitrary curve
o = a(t) C %} can locally be space-like, time- like or null (light-like), if all
of its velocity vectors ¢ () are respectively space-like, time-like or null (light-
like). The norm of V € Z7 is defined as

IVl = VIV, 9)-

Let W be a subspace of %} and denote (, )|, as reduced metric in subspace
W of Z7]. A subspace W of %] can be space-like, time-like or null (light-like)
if (, )|y is positive definite, ()|, is non-degenerate of index 1 or ()|, is
degenerate, respectively, [1]. Let the set of all time-like vectors in % be I'. For
uel, we call

Cu)={vel| (v,u) <0}

as time-conic of Minkowski space Z7 including vector i, [1].

Theorem 2.1. Let X and Y be linearly independent space-like vectors in X;.
Then the following are equivalent:

1. The vectors X and Y satisfy the equation

(&) <[%] 7]
2. The vector subspace V spanned by X and Y is space-like.

3. The hyperplanes P and Q of H" Lorentz orthogonal to X and?, respec-
tively, intersect, [4].
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Let X and ¥ be space-like vectors in %/ that span a space-like plane. Then
by Theorem 2.1, we have that

(7)< ][]

with equality if and only if X and ¥ are linearly dependent. Hence, there is a
unique 0 < 6 < 7 such that

(55) = s

The Lorentzian space-like angle between X and Y is defined to be 6, [4].

3. Generalized time-like surface with space-like generating space in %}

Let {e; (¢),...,ex ()} be an orthonormal vector field, which is defined at each
point ¢ () of a time-like curve of n—dimensional Minkowski space #}. This
system spanning at the point o (t) € %] a k-dimensional subspace is denoted by
Ey (t) and is given by Ey (t) = Sp{ei (¢),...,ex (t)}. If the space-like subspace
Ey (t) moves along time-like curve &, we obtain a (k + 1)-dimensional surface
in 7. This surface is called a (k+ 1)-dimensional time-like ruled surface of the
n-dimensional Minkowski space Z and is denoted by M. The subspace Ej ()
and the curve « are called the generating space and the base curve, respectively.
A parametrization of the ruled surface is the following:

k
(p(t,u1,...,uk):(x(t)—i—Zuvev(t) 2)
v=1

Throughout the paper we assume that the system

k
{(x(t) + ) uey(1),ei(t),....e (t)}
v=I
is linear independent, [6]. We call

Spiei(t) ;. ex ()1 (t),..ex (1)} 3)

the asymptotic bundle of M with respect to Ej, (¢) and denote it by A (r). We have
dimA (1) = k+m, 0 < m < k. There exists an orthonormal base of A (r) that we
denote as {e (t),...ex (t),ak+1(t),...ax1m (t)}. It is clear that the asymptotic
bundle is space-like subspace. The space

Spiei(t),...,ex(t),é1(t),...éx(t),a(t)} “4)
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includes the union of all the tangent spaces of Ej (¢) at a point p. This space is
denoted by 7 () and called the tangential bundle of M in Z7. It can be easily
seen that

k+m<dimT (r) <k4+m+1 , 0<m<k.

In what follow we examine separately two cases. Let dim7 (¢) = k + m then
{e1(t),...ex (t),axs1(t),...ax1m (¢)} is an orthonormal bases of the asymptotic
bundle A (7) as well as of the tangential bundle T (¢). Let dim7 (1) = k+m+ 1.
In this case, {e (t),...ex (t),ar+1 (t) . -Qpsm (1) ,@gym1 (2)} is an orthonormal
base of T (r) and the tangential bundle 7 (7) is a time-like subspace, [6]. If
dimT (t) = k+ m, then (k+ 1)-dimensional time-like ruled surface M has a
(k —m)-dimensional subspace and this subspace is called edge space of M and
denoted as Kj_,, (¢). Edge space Ki_,, (t) C Ej (¢) is space-like subspace. If we
take edge space Kj_,, (1) to be generating space and base curve o of M to be
base curve, then there will be (k—m+ 1)-dimensional ruled surface contained
by M. This surface is called edge ruled surface and the edge ruled surface is a
time-like ruled surface, [6]. If dimT (t) = k+m+ 1, then (k+ 1)-dimensional
time-like ruled surface has a (k —m)-dimensional subspace called central space
of M and denoted as Z;_,, () C Ex(r). This space is a space-like subspace.
Similarly, if we take base curve of M to be the base curve and Z;_,, (¢) to be the
generating space, we get a (k—m + 1)-dimensional ruled surface contained by
M in %} and this is called central ruled surface and denoted by Q. The central
ruled surface Q is a time-like surface, too [6].

For the basis vectors of Ej (1) we write the following derivative equations, [6];

k
éc = Y Oopey+Ksaryog , 1<0<m
S 5)
emtp = Z] Xm+p)ulu , 1<p<k—-m
l‘l‘:
where o, = —0oy, and K1 > K > ... > K, > 0.

Let subspace F, (1) = Sp{ei (t),...en, (t)} be totally orthogonal to generating
space Zi_,, (t) of Q and orthogonal trajectories of central ruled surface Q be
r. If generating space F, (t) moves along base curve r it produces a (m+1)-
dimensional ruled surface. This surface is known as principal ruled surface and
denoted by A and (m -+ 1)-dimensional principal ruled surface is a time-like
ruled surface, [7].

In #7, 1-dimensional generating spaces hs = Sp {ec}, 1 < 0 < m, of base
curve o (t) of time-like ruled surface M at the point § € Z;_,, (¢) are in Ey (¢).
The generating space given by the parametric expression § + ues (¢) is called
principal rays of F, (¢), [7].

Let M be a generalized time-like ruled surface with the central ruled surface in
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K. o principal rays hs = Sp{es}, 1 < 6 < m, generates 2-dimensional prin-
cipal surface M along the time-like base curve « () of central ruled surface Q.
This ruled surface is defined as the principal ray surface of M and parametrically
given by

O (t,u)=0a(t)tues(t) , 1<o<m , (t,u)e(,%)

It is clear that the principal ray surface @g, 1 < o < m, is time-like, [7]. If one
choose base curve a (¢) of central ruled surface Q as the orthogonal trajectory of
M, then « (t) becomes a striction line ¢5. Therefore, every principal ray surface
has its own striction line, [7].

Let M be a generalized time-like ruled surface with the central ruled surface Q
in Z}. Every principal ray surface @5, 1 < 0 < m, defined by the time-like base
curve « (t) of central ruled surface Q, has a striction line. If the base curve o (¢)
of central ruled surface Q is an orthogonal trajectory of M, then base curve « ()
coincides with the striction line of principal ray surface ¢, [7].

If (k+ 1)-dimensional time-like ruled surface M is cylindrical (i.e., m = 0),
then there is no principal ray ruled surface of M. A base curve o of (k+1)-
dimensional ruled surface M is a base curve of edge or central surface Q C M,
too iff its tangent vector has the form

k
a(t) =) Cvey+Mmt1arims1 (6)
v=l1
where 1,11 # 0, @gime1 18 @ unit vector well defined up to the sign with the
property that {ej,...,ex, akr1, .-, Aktm,Ar+m+1} 1S an orthonormal base of the
tangential bundle of M. One shows: 7,1 =0, in ¢ € J iff generating Ey (¢)
contains the edge space Ky, (¢), [7].

If Nut1 # 0, we call m—magnitudes

Peo=" <o <m (7
Ko

the o' principal distribution parameter of M, [7]. Moreover in [7] the parameter
of distribution of a generalized ruled surface M is given by

P=/|P..P,]. (8)

The canonical base of the tangential bundle of generalized time-like ruled sur-
face with space-like generating space is

k k m
Z &+ Z Oyplty | ey + Z U Koitro + N+ 10ktm+1, €1, €2,...,€k
v=1 u=1 o=1
©)
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We can evaluate the first fundamental form and the metric coefficients of M. To

use the conventional notation we can choose up = t and find metric coefficients
of M as follows:

g00:<(Pl7(PI> ; gv0:<(Puva(Pt> ) gvu:<(Puva(Pu,l> ) 1 SV,‘USk

Furthermore, considering dim7 (t) = k+m+ 1, i.e. agim1 is time-like, we
reach

2
k k m 2 )
go=Y |&+ X Oyptty | + X (UKs) = (Mms1)”,
v=1 u=1 o=1
k
ng:Cv‘f‘Zavpuy , 1<v <k,
u=1
gvu:(svu , 1<v,u<k.
Thus, we find [g;;] =
k k m ) N k k k ]
Y (&t X owpup | + ¥ (toks)™ = (Mmt1) G+ L onpup &+ ¥ opup oo G+ ¥ oguup
v=1 u=1 o=1 u=1 u=1 u=1
i+ % Qypltp 1 0 0
pu=1
= &L+ i Qo up 0 1 0
pu=1
. :
G+ ¥ oy 0 0 1
p=l
From the last equation we get
L 2 2
g = det [gij] = Z (MGKG) — M+ 15 0<i,j<k. (10)
o=1

As a consequence we find the following results:

2
k k
go=g¢g+ X (&+ X Oyyuy )
v=1 u=1
;- 11
gvo=|Cv+ ¥ Oyuuy . 1<v<k, (11)
u=1

gvu = vy , 0<v,u<k.
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In addition to these, the coefficients of the inverse matrix [gif ] of the matrix
gij], 0 < i, j <k, are as follows

k
g0 =— (Cv+ Y O‘vu”u)é’_la 1<v<k
p=1

k k
gt = (5\//184- (Cv+ )y aVﬂ”#) (C)mL )y O‘Mt“#)) gl 1<v,A<k
u=1 u=1

(12)
Considering the Koszul equation given by [1]
1 dgim Odgim O0gij
Fk _ = km jm im ij 13
S ;g [ ox; + oxj  dxy (13)

Christoffel symbols for 1 < v, u, A < k are determined to be
o —1 dg k dg
00 = 2g | Juo +v§1 &+ ): Ovplu | 3uy |

=
k
95 9
To = 3¢ |~ (C’l +,£‘1 OW”“) (a (CWL )y ‘Xvu”u) aug>

k k
: 2
G+ X O‘ML”#) + X (& + Z avu“u) O‘?Lv_;augl>] 5
nu=1 v=1 u=1

».

+
)
oQ
VR
VR

Fvu:F#VZO,a
— 1 dg
r‘(l)O_r‘gl_Qg uy

d
Lo =I5, = 5 [ <Cx + Z Om:w) Fr +2g(0¢/1v)] :
(14)
Adopting that the base of tangential space in the neighborhood of coordinate
system {ug,uy,...,u;} is {d,01,...,0} (% =0;,0<i< k), the Riemann

curvature tensor of the generalized time-like surface M with space-like gen-
erating space is given by

Ra& al ZRIU

where the coefficient of the Riemann curvature tensor is

d

0 k k
Em = ou, il ZOF?ZF; + X‘ari'zrzrs
S§= §=

roo__
Rjj =
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Hence the Riemann-Christoffel curvature tensor of becomes

k d d ko ko
Rpij = Zgrh <(9MF;1—(9M 0 Zrilrjs—{_zl—‘;lris)' (15)
r=0 ! J s=0 s=0
Furthermore, for the curvature tensor following relations hold

Ryij = Rijni,
Rijn = —Rjin-
Taking equation (14) into consideration, the curvatures of R;jo0, Rijvyu, Rvouos

0<i,j<k, 1 <v,u <k) are found to be (in terms of the determinant of the
first fundamental form of M, the first and second order partial differentials of g)

RijOOZO ) 0§l7]§k,
Rijyy =0 , 0<i,j<kl<v,u<k, (16)
_ 1 _d% 1 Jdg dg
Rvouo = =3 3090, T 25 2uy 9y Isvipsk

4. Sectional curvatures of the time-like generalized ruled surface with
space-like generating space in %}

Two-dimensional subspace IT of (k+ 1)-dimensional time-like ruled surface at
the point & € Ty (£) is called tangent section of M at point &. If ¥ and w form
a basis of the tangent section I, then Q (¥,w) = (¥, %) (i, w) — (¥,w)? is a non-
zero quantity if and only if IT is non-degenerate. This quantity represents the
square of the Lorentzian area of the parallelogram determined by v and w. Using
the square of the Lorentzian area of the parallelogram determined by the basis
vectors {V,w}, one has the following classification for the tangent sections of
the time-like ruled surfaces:

oW w) = #V) (w,w)— #w)? <0 , (time—like plane),
Q7 w) =¥ (w,w)— #Fw)>=0 , (degenerate plane),
0 w) =@V (w,w)—(#w)? >0 , (space—like plane).

For the non-degenerate tangent section IT given by the basis {V,w} of M at point

S

<R\7ﬂ_)v W) _ ZRijkmBi}/jBk}/m
(7.9) (0,%) = F.0) (53) (9,%) - (7.0)°
is called sectional curvature of M at the point £. Here, the coordinates of the
basis vectors v and w are (fo, fB1,...,Bx) and (%0, %, ..., %), respectively, [1]. A
normal tangent vector

n=Y usks (1) arro () + Mmi1@ime1 (1), (Mwi1 #0) (18)
o=1
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is time-like or space-like vector. This means that the tangent sectional (ey,n),
1 < v <k, at the point V& € M is time-like or space-like. This tangent sec-
tion is called v principal tangent section of M. Thus, whether v principal
tangent section is time-like or space-like, we can give following theorems and
corollaries.

Theorem 4.1. Let M be generalized time-like ruled surface with central ruled
surface and n be non-degenerate normal tangent vector in Zy. Curvature of
(ey,n), 1 < v <k, non-degenerate v principal section of M, at the point V& €

M is
1P 1 (3%
2g du?  4g* \ du,

2

Ke (ey,n) = ) , 1<v<k. (19)
Proof. Let the coordinates of e, and n generating the base of v principal sec-
tion of generalized time-like ruled surface M with central ruled surface and
space-like generating space be (Bo, B1,---,Bvs---»Br) and (Y0, Vi, Wye -5 %)s
respectively. According to the canonical base of the tangential bundle of M
given by equation (9), correspondence of these coordinates are (0,...,1,...,0)
and (1,...,0,...,0), respectively. Therefore the curvature of the v principal
section (ey,n), 1 <v <k, is

RvaO

<eV76V> <fl,l’l> - <€v,l’l>

K (ey,n) = 5

Substituting equations (16) and (18) into last equation we find

Ke (ey,n) = —; , 1<v<k
)Y (MGKO') - T]3H1
o=
The last equation and the equation (10) complete the proof. Ul

First and second partial derivatives of g, given by equation (10), with respect
to o and (m + p) are as follows

dg 2 d9%g 2 dg 2 2\2 2
— =2 — =2 — ) =4 1<o<
e UsKs T ke e (usk3) kz ,1<0<m
and
dg 0%g dg 2
=0 , = = 0 , ( > =0 , 1< p <k—-m
A p iy At p
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Substituting these equations into equation (10) o' principal sectional curvature
becomes K¢ (eg,n) =

B 2(1(0)2 4(MGK6)2(KG)2
- m 5 ) T m 2
2(): (ui k) _nm+1> 4<): (”lKl)z_n;%hLl)

1=1 —1

, 1 <o <m.

After simplifying the last equation we reach

(Kcr)2 [ "le (g Kl)z - m%m - (”6’(0)2]

1=

m 2
<lZ (u Kl)z - 77,%,“)

Ke (eg,n) = —
=1
It can be easily seen that (m + p)th principal sectional curvature is
Kg (em+p,n) =0 , 1<p<k—m.

Corollary 4.2. Let M be generalized time-like ruled surface with central ruled
surface and n be non-degenerate normal tangent vector in %y. o 1<o<m,
principal sectional curvature and (m+ p)th, 1 < p <k—m, principal sectional
curvature of M at the point V¢ € M are

(Kﬁ)z |: ﬁl (u Kl)Z*TI,%M —(uo KO‘)Z:|

1=

(& (M>Lnrgﬂ)2 T (20)

1=1

K (em+p,n):0 , 1<p<k—m,

Kf (ec,n) ==

respectively.

Corollary 4.3. (m+ p)th, 1 < p <k —m, principal sectional curvature of gen-
eralized time-like ruled surface with central ruled surface is zero at the point

VéEeMin %.

Theorem 4.4. Let M be generalized time-like ruled surface with central ruled
surface and n be non-degenerate normal tangent vector in Zy. ol 1<o<m,
principal sectional curvature and (m+ p)th, 1 < p <k—m, principal sectional
curvature of M at the point V{ € M are

Kc(ec,n):[,ig , 1<o<m,

KC (em+p7n):O ) lgpgk_mv (21)

respectively, where Ps = n%:‘, 1 < 6 <m, is the o™ principal distribution
parameter of M.
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Proof. Let M be generalized time-like ruled surface with space-like generating
space and central ruled surface in #. Considering equation (20) and the con-
dition ug =0, 1 < o < m, at the central point { € Q, we find the o™ sectional
curvature of M to be

(=%3) (=Ts1)
2
(=Mas1)
Taking the last equation with equation (7) into consideration, we see that the
following relation

1 <o <m.

)

KC (60'7’1) =

1
Kg(ec’n):ng, , 1<o<m
holds between the o principal sectional curvature of M and the ¢ principal
distribution parameter of M. Furthermore, from Corollary 4.2, it is obvious that

the (m+ p)™ principal sectional curvature of M is
K¢ (emﬂ),n):() , 1<p<k—m.
O

In %] if 1-dimensional generator i = Sp{es}, 1 <o <m,( o' principal
ray) moves along the orthogonal trajectory of M, then 2-dimensional ray surface
is obtained. This surface is called o principal ray surface and denoted by ¢,
1 < 0 < m. A parametrization of @5 is

O (t,u) =a(t)fues(t) , 1<o<m.

Now the theorem about non-degenerate sectional curvature of ¢ can be given
in the following.

Theorem 4.5. Let M be generalized time-like ruled surface with central ruled
surface and @y, 1 < & < m, be 2-dimensional time-like ™ principal ray surface
in Z}. For § € Q CM, u € Z, the sectional curvature of ¢ at the point § +ues
on generator hs = Sp{es} is

P

KC+ue5 (807 n) =

where Py, 1 < 6 <m, is the 6™ principal distribution parameter of M.

Proof. The determinant of the first fundamental form of @4, 1 < ¢ < m, gener-
ated by the principal ray hs = Sp {es} along the orthogonal trajectory of M in
n-dimensional Minkowski space Z7 is expressed to be

g=(uks)’-mi, . 1<o<m
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Therefore, the first and the second order partial derivatives of g are

0%g g\’ 2
2 <8u> =4 (ukz) k3.

Era

dg
aiu = 21/”((2; s

252
To find the curvature of (eg,n), 1 < o < m, section at the point { + ues on
generator hgs = Sp{es},ie. £ € Q C M, u € %, we substitute the last equation

into equation (17) and get

Rs060
<60'760'><n7n>7<60'7n>2
192 1 (9
= %kt (%)
_ 2(ko )’ 4(uks)* (ko)
2((“7(0')2;"31+1)2 4((m<6)2—12;31+1)2
_(Kﬁ) [(“KG) *7731+1*(u’<6) ]
((MKG)27T”2"+1)2
— (KGnm+l)
(uK6)472(uKo‘nm+l)2+(n/11+1)4 ’

KCJrueg (60'7 n)

If we simplify the last equation by dividing numerator and denominator k% we

reach )
Mim+1
Ko

4 27112 7714
m+ m+
-2 () ()

At this point, if we consider equation (17) then we find

KC+ue6 (66’ n) =

P

5 1<o<m.
ut—2WP2+P; T ="

K(’;-i-ueg (€G7n) =

Therefore, the sectional curvature of two-dimensional time-like principal ruled
surface @g at the point { + ues on generator hgs = Sp{es} is found to be

P

e — 1<o<m.
(u? — P3)?

K§+u66 (60-7 fl) =

Y

O]

Let My, 1 < 6 < m, be 6™ principal ray surface produced by hs = Sp{es}
C Ej () along the orthogonal trajectory of M and Py, 1 < o < m be the o'
principal distribution parameter of M in #]. The sectional curvature given in
equation (22) is the generalized form of the Lamarle formula in %f, which
is the relationship between the Gaussian curvature and principal parameter of
2-dimensional ruled surface. Thus, equation (22) is named as generalized
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Lorentzian Lamarle formula by us.

Now we find the curvature of non-degenerate section (e,n), e being a unit vec-
tor within the space-like generating space Ej (¢) of generalized time-like ruled
surface with central ruled surface M and n being non-degenerate normal tan-
gent vector of M orthogonal to Ej (¢). Here while the normal tangent vector 7 is
space-like or time-like, the following equations are hold

(e,e) (n,n) — (e,n)> =1>0
and
(e,e) (n,n) — (e,n)*> = —1<0

respectively. This means that the tangent section (e,n) is either space-like or
time-like plane. The curvature of space-like and time-like section are same for
both cases. Therefore, instead of space-like or time-like section (e,n), we may
give a theorem regarding to the non-degenerate section (e, n).

Theorem 4.6. Let M be generalized time-like ruled surface with space-like gen-
erating space and central ruled surface and e be unit vector within Ey (t) in
n-dimensional Minkowski space Z}. Taking n to be non-degenerate normal
tangent vector of M orthogonal to Ej (t), we write the relation

K¢ (e,n) = Zl cos? 05K (es,n) (23)
o=

between the curvature of non-degenerate section (e,n) and curvatures of non-
degenerate principal sections (eq,n) at the point § € Q C M, where

k k
e—= Zcos@vev , 200526\,:1

v=1 v=1

in which the angles between unit vector e and the base ey, ey, ... ey are 01, 0,
. O, respectively.

Proof. Since the vector e = Z Bvey is a unit vector within the space-like gen-

erating space Ej () of generahzed time-like ruled surface M with central ruled
surface Q, the relation

B2+B3+...+Br=1
is hold, i.e.

and



38 SOLEY ERSOY - MURAT TOSUN

Therefore, (ey,n), 1 < v <k, plane is space-like. From equation (1) we may
write
By = (e,ey) =cosB, , 1<v<k

where the 6,, 1 < v <k, are the angles between space-like unit vector e and
space-like base vectors ey, 1 < v <k, in the space-like plane (e,ey), 1 <v <k.
From the last relation one may get

k k
e=Y cosbe, , Y cos’6, =1. (24)

v=1 v=1

Suppose that the coordinates of the space-like vector ¢ and non-degenerate nor-
mal tangent vector n, which are the base of non-degenerate section (e,n), are
(Bo,B1s---,Bx) and (Y0, %,---, %), respectively. From equations (18) and (24),
we find

BO:<€,€0>:0 ) ﬁv=<e,ev>:cosev , 1<v<k
and
W= (ne)=1 , w=ne)=0 , 1<v<k

Substituting these equations into equations in to equation (17) for the central
point § € Q, we obtain

m
Y cos? 05 R 5060
K¢ (e,n) = o=l , 1<o<m.

(e,e) (n,n) — <e,n)2

Therefore, the curvature of non-degenerate section (e,n) becomes

K¢ (e,n) = (gfl (COS2 O01R 010+ cos? ORYpo+ ...+ cos? QmRmom())

If we consider the curvature formula of non-degenerate principal section (eq,n),
1 < 6 <m, given by equation (19) at the point V{ € Q, we find that the following
relation is hold between curvature of non-degenerate section (e,n) and princi-
pal sectional curvature of generalized time-like ruled surface M with space-like
generating space
m
K¢ (e,n) = Z cos? 05K (eg,n).
o=1

O

This relation is called Lorentzian Beltrami-Euler formula for the gener-
alized time-like ruled surface M with space-like generating space and central
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ruled surface at the point § € Q.
Additionally, sectional curvature of (e,n) at any non-central point & € M is

¥ oty | L0, L (98
Kg (e,n) = Z_:cos 90[ 2g8u§+4g2 g ) |

If we substitute the determinant of the first fundamental form g of M and the
first and second order partial derivatives of g into the last equation sectional
curvature of (e,n) is found to be

m m
Y (cos GGKG) y 1(Icc;rq)zcos 05 cos B, usiu,
—1 o,l=

(o}
; (uy Kl) n31+1 <Z (u Kl)2—n3,+1)
= 1

=1

Ke (e,n) =

It is clear from the last equation that at non-central points Lorentzian Beltrami-
Euler Formula does not exist.

Theorem 4.7. Let M be 2-dimensional time-like ruled surface with the space-
like generators hg (e) C Ey (t) and P be the distribution parameter of M at the
central point § € Q in n-dimensional Minkowski space Z}. The non-degenerate
(space-like or time-like) sectional curvature of (e,n) of M at the point § € Q is

1

K¢ (e,n) = P (25)

Proof. 2-dimensional ruled surface M with space-like generator i (e) C Ey (t)
in is given parametrically by

O (t,u)=oa(t)+ue(t).

Since ug =0, 1 < 0 < m, at the central point { € Q, evaluating equation (23)
gives the sectional curvature of (e,n) to be

)= § e [<—xg> <—n,a+l>].

2
(="M41)

Simplifying this equation gives us
m
Y. cos? 0K

Ke(en)=2"1 0. (26)
nm+1
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In addition to that, a space-like unit vector in e is

k
e—= cos Oyey,
v=1
where 01, 6,,..., 6, denote the angles between the space-like unit vector e and
the base vectors ey, ez, ..., ex. Thus the tangential vector of the space-like vector

e has the form )
ée= Z cos Byéy.
v=1
Furthermore, the asymptotic bundle A () = Sp{ey,... e, é1,...,€é;} has an or-

o o .
thogonal base as q eq,...,ex,e1,...,en ¢, We Write

k
e=é— Z <é,eu>eu

p=1
k k k
= Z cos By,¢éy, — Z Z Cos yéy,ey )ey
v=l1 u=1 \v=I1
k k
== Z COSGV év_ Z <év,eu>eﬂ
v=1 u=1
Since
o] n o)
e= Z cos 05 es
o=1
and we find
ol|2 o ) °
ell = Z cos” B4 eGH
o=1
.. . o o .
In addition to these, since eH =k and ||es ‘ = Ky, 1 <0 <m, we obtain

m
K2 = Z cos’ O5K2.
o=1
If the last equation is substituted in to the equation (26) we reach

Kelem) = (n:+1>2'

Since the distribution parameter of M has the form P = n”,’: L finally we reach to

1
K¢ (e,n) = ok
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This equation is called Lorentzian Lamarle formula for the curvature of
non-degenerate sections (e,n) of two-dimensional time-like ruled surface with
space-like generator at the central point § € Q.

The sectional curvature of two dimensional time-like surface generated by
the movement of space-like generator /i (e) C Ey (¢) along the time-like or-
thogonal trajectory of M in n-dimensional Minkowski space # degenerates to
Gauss curvature two-dimensional time-like surfaces with space-like generators
in 3-dimensional Minkowski space % .

Example 4.8. Considering X = (x1,x2,x3,x4,x5) and Y = (y1,y2,3,Y4,¥s), let
us take 5-dimensional Minkowski space %’f given by Lorentz metric

(X,Y) = x1y1 +x2y2 + X33 + X4Y4 — X5Y5.

Suppose that the curve a : [ — %]5 is given by
1,5 . . .
ot)= s (28 t,KSin€t — KCOs €, TSINEL — TCOSEL, —ECOSEL — € smhst,O)

and the subspace E; (1) = Sp{e; (t),ex (¢)} defined at every point of curve o is
given by
|

1 () = —= (€, Kcoset — 1, Tcoser + K, €siner,0)
€

2 (1) = 18(8 Ksiner+ T, Tsiner — k, —ecosé€t,0)

&w

where k, T and € = /2 + 72 are arbitrary constants. Since (¢, &) = —3&? <
0, o is time-like curve and since (ej,e;) = (ez,e2) = 1, E5 (t) is a space-like
subspace. In this case the transformation

O (t,uy,up) —f—Zuvev

defines 3-dimensional time-like ruled surface with time-like base curve and
space-like generating space in %;. Let {e; (t),e2(¢)} be the principal frame
of generating space E, (1) and {e (¢t),e2(t),é1(t),é2 (), ()} be the base of
tangential bundle of 3-dimensional time-like ruled surface M. From the Gram-
Schmidt method, we find

as(t) = fg (e, —2Ksinet + 1, —27siner — k, 2ecos€t,0),
1
as(t) = @ (—€, 2xcoset + 1, 2Tcos €t — Kk, 2¢€sinet,0),

as(t) =(0,0,0,0,1).
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From these equations we establish the orthonormal base

{e1(t),e2(t),a3(t),a4(t),as (1)}

of tangential bundle of M. Therefore, derivative equations for principal frame
{e1(t),ex(t)} of generating space of M are found to be

é1 (1) = —Zea (1) + Y2eas (1),
ér(1) = e <>+fea4<>

In addition to that the velocity vector of the base curve of M is evaluated
& = /3ee; +/3€eey + 3eas

In this case the metric coefficients of 3-dimensional time-like ruled surface with
space-like generating space are

2
€
= —E€Uu —E + —ui+—u —382
£00="3 3 3T 30 ’
€
g10 = go1 = 38—§M2,
€
820 =80 = V3e+ gul,
g12 =81 =0,
gin=gn=1
and first fundamental form is
23—\/582141 z‘fs up + 3141—1- -3¢ V3e—%uy V3e+5u
[gij]3><3 = \fg—*l/lz 1 0
\/§8+§u1 0 1

From these equations we see that the determinant of the first fundamental form
of M is

2 2
= 58211% + 682u% —9¢?

the normal tangent vector of 3-dimensional time-like ruled surface M which is
orthogonal to the generating space E, (1) at the point V& € M is defined to be

2 2
= \3[8141513 + [€u2a4 + 3¢€as

g = det[g;}]

so that, since

2
(n,n) = 582 (uf +u3) —9¢?
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normal tangent vector n to be non-degenerate (space-like or time-like) the re-
lation u} + u3 # 8 should be satisfied. Thus, from Theorem 4.1, the sectional
curvature of non-degenerate first principal section (ej,n) and non-degenerate
second principal section (e,n) of M regarding to the principal frame of E; (¢)

are given by ) )
1d¢ 1 [dg
K - 2% (2=
13 (elyn) zg au% + 4g2 <8M1>

19% 1 [0dg 2
Kt =358+ 5 (7)

and

respectively. Since

dg 4, ’g 4 5 dg 2 16 42

du 9" 2o 0 \ow) Tsr ™
and )

dg 4 , 328 4 , dg 16 4 »

-2 =_¢ —2 =_¢ —= | =—¢

dw 9" 29 0 \ow) "1

the sectional curvature of non-degenerate 1*' principal section (e;,n) and non-
degenerate 2" principal section (e,n) are found to be

—4u% +162 81
Kelenn)= —— 2000 didgs
(203 +2u3 — 81) 2
and )
—4u? +162 81
Kg(@z,fl): ! ’ u%+u%7é7

(22 +2u3 —81)°

respectively. Considering u; = up = 0 at the central point V{ € Q, the principal
curvatures Ky (e1,n) and Ky (e2,n) are found to be

2 2
KC (el,n) = 871 and Kg (62,1’1) = 871

Furthermore, since 1% and 2"¢ principal distribution parameters of M at point
V¢ € Qare

e _ 9 a9
TRV TR
respectively. From Theorem 4.4, the result is obtained as
1 2 1 2
Kg(el,n)zp—lzza and Kg(eg,n)zp—zzzﬁ.
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Now we consider 2-dimensional principal ray surfaces in %15 Let ¢; be time-
like principal ray surface with space-like generator given by

()] (t,u) = Ot(t) +ueq (t) .
From Theorem 4.5, curvature of non-degenerate section (e;,n) of ¢; at the point
£ + ue; is found to be
162 9
— , u# —.
(2u? —81)? V2

Let ¢, be time-like principal ray surface with space-like generator given by the
parametrical equation of

K§+uel (61 ) n) =

O (t,u) = o (t)+uer(t).

Similarly from Theorem 4.5, curvature of non-degenerate section (e;,n) of ¢,
at the point § + ue; is evaluated to be

162 9
KCJruez (62,7’1) = 7 M;é 72

(2u? —81) V2

Now we consider space-like unit vector e within E; (¢). Taking angles 6; and 6,
between the unit vector e and the base vectors e and e, respectively, we write
the space-like unit vector as

e =cosB0ie| +cosbrey cos’ 0 + cos’ 6, =1.

From Theorem 4.6, since there exists a relation between sectional curvature and
principal sectional curvature of M at the central point as

K¢ (e,n) = cos? 01K¢ (e1,n) + cos’ 6:K; (e2,n)

we find for the curvature of non-degenerate section (e,n) the following result

2, 2, 2
K =— 0+ — 0 =—
¢ (e,n) o1 cos 1—1—81 cos” 0, o1
this result is consistent with the Theorem 4.5, because the distribution parameter
of M is
9 9 9
P=+/|PL.P|=\||—=—F%=|=—F5
PR~ | v = v
Therefore, it can be seen that the sectional curvature of (e,n) is
1 2

Kg (eﬂ’l) = [TZ = 871
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