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APPROXIMATE CONTROLLABILITY FOR SOME
INTEGRODIFFERENTIAL MEASURE DRIVEN SYSTEMS

WITH NONLOCAL CONDITIONS

M.P. LY - M.A. DIOP - K. EZZINBI

This paper investigates approximate controllability of semilinear mea-
sure driven equations in Hilbert spaces. We focus on a specific category of
nonlocal integrodifferential equations. We apply the theory of the resol-
vent operator in the sense of Grimmer, as well as the fixed point strategy
and the theory of the Lebesgue-Stieljes integral, in the context of the space
of regulated functions. In light of this, the prevalence of our findings is
greater than that which is found in the literature. At last, an example is
comprised that exhibits the significance of developed theory.

1. Introduction

Controllability was first assessed by Kalman et al. 1962 [19] as one of the key
properties that determine system behavior. It has attracted the attention of many
mathematicians and engineers as it plays a key role in control theory, physics,
and engineering and has very important applications in these fields. In recent
years, the concept of controllability has become widespread in many areas of
science and technology. For more details on this topic we refer to [1, 2, 4] and
the references therein.
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The ideas of exact and approximate controllability are the most important for
understanding differential equations with infinite dimensions. Exact controlla-
bility makes it possible to control the system from an initial state to any final
state. To solve the problem of exact controllability, the induced inverse of the
control operator must be present in the corresponding space. On the other hand,
Triggiani[30] showed that the control operator has no inverse if the C0 semi-
group is compact in an infinite dimensional space. Therefore, the concept of
precise controllability has gained ground. As a result, researchers are growing
interested in the study of approximately controllable systems. When we say that
a system is approximately controllable, we mean that there is a control that can
bring it from a certain initial state to a small range that comes relatively close to
the final state in a limited time. Approximately controllable systems are more
widespread, and approximate controllability is often sufficient in applications.
Hence it is important to examine this concept. Recently the authors discussed
the approximate controllability of the nonlinear evolution of systems under dif-
ferent conditions. Some references for the approximate controllability of the
nonlinear evolution of systems are [11, 20].

On the other hand, the theory of impulsive differential equations is mature
(see [5, 23] and the references contained therein). However, these systems only
allow several discontinuities within a limited area. As a result, there may be
some complex phenomena, such as the behavior of Zenos that the Impulsive
differential equations (IDE) does not simulate. The dynamical system with dis-
continuous trajectory is modeled by a measure differential system or measure
driven system, which is an ordinary differential equation (ODEs) with impulsive
inputs, see [6] where the MDEs are used to describe a system where the control
input is impulsive, see also [8, 22, 26] for more about measure differential sys-
tems (MDSs)).

Nonlocal initial conditions initiated by Byszewski [7] have a better effect
on physical problems than the classical initial condition u(0) = u0. For exam-
ple, Deng et al.[13] have used the nonlocal conditions u(0) = ∑

n
k=1 cku(tk) to

obtain better results about the diffusion phenomenon of a small amount of gas
in a transparent tube. That is, using the initial condition u(0) = ∑

m
k=1 cku(tk)

allow additional measurements at tk,k = 1,2, ...,m which is more precise than
the measurement at t = 0 only.

Haide Gou et al. [17] investigated existence and approximate controllability
of semilinear measure driven systems with nonlocal conditions. Cao et al.[10]
studied complete controllability of semilinear measure driven differential sys-
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tems with nonlocal conditions of the form{
dv(t) = Av(t)+Cu(t)dt + f (t,v(t))dλ (t), t ∈ J = [0,b],
v(0)+g(v) = v0.

They did it without assuming the compactness of the evolution system related
to the linear part of the measure system, some sufficient conditions for control-
lability are then established by using the measure of noncompactness and the
Mönch fixed point theorem.

There are no available results on the approximate controllability of measure
driven evolution systems governed by a nonlocal integrodifferential equation
of the form (1). This paper will fill the gap by constructing controls over the
conjugate problems and discussing the approximate controllability of abstract
semilinear measure driven evolution of integrodifferential equations. Specifi-
cally, the paper will focus on the evolution of the integrodifferential equations.

To the best of our knowledge, most of the works are devoted to study the
approximate controllability of evolution systems with the semigroup approach,
There have not been any results concerning the approximate controllability of
measure driven evolution systems of nonlocal integrodifferential equation in the
form (1). This paper will fill the gap and discuss approximate controllability
of abstract semilinear measure driven evolution of integrodifferential equations
by constructing the controls via the conjugate problems. Since the impulses de-
pending on the measure λ in measure-driven integrodifferential equations are
intrinsic and possibly not prefixed, we must study controllability in the space
of regulated functions, which is different from the space of continuous func-
tions and piecewise continuous functions. Haide Gou and Yongxiang Li [17] in-
vestigated the existence and approximate controllability of semilinear measure-
driven systems in nonlocal circumstances.

Motivated by the above considerations, in this work we investigate the ex-
istence of mild solutions and approximate controllability for a measure driven
integrodifferential evolution system of with nonlocal conditions of the following
form

 dv(t) =
[

Av(t)+
∫ t

0
Γ(t − s)v(s)ds+Cu(t)

]
dt +∆1(t,v(t))dλ (t), t ∈ J = [0,b],

v(0) = v0 +g(v),
(1)

where J = [0,b] with b > 0. The state v(·) takes values in a Hilbert space Σ .
The operator A : D(A) ⊆ Σ → Σ is the infinitesimal generator of a strongly
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continuous semigroup T (t), t ≥ 0; (Γ(t))t≥0 is closed linear operators on Σ with
domain D(Γ) ⊃ D(A) which is independent of t. u(·) ∈ L2(J,V) is the control
variable, V is another Hilbert space; C : V → Σ is a continuous linear operator;
∆1 : J ×Σ → Σ and g : R f (J,Σ) → Σ are suitable functions; λ is continuous
from the left and nondecreasing and has the distributional derivative dλ .

Further down the page, the most important findings of this work are given:

• A new set of sufficient conditions has been constructed to ensure the exis-
tence of a solution and the approximate controllability of the system (1).

• The fact that MDEs are not continuous like ODEs presents the primary chal-
lenge associated with dealing with them.

• To obtain the results, both resolvent operator theory in the sense of Grim-
mer and fixed point techniques were used.

• To illustrate our results, we also constructed an example.

The rest of this work is organized as follows. Section 2 introduces some no-
tions and recalls some basic known results about Lebesgue-Stielje’s integral and
regulated functions. Section 3 discusses mild solutions for the system (1). Sec-
tion 4 presents an approximate controllability result for our system (1). Section
5 gives an example to illustrate the feasibility of our obtained results.

2. Preliminaries

This section introduces some notations, definitions, and preliminary results used
in this paper. Let X and V be two real Banach spaces with the norms || · || and
|| · ||V , respectively. J = [0,b] is a closed interval of the real line. We go further
by considering regulated functions.

2.1. Regulated and equiregulated functions

In this part, we recall some notions and definitions about regulated function.

Definition 2.1. [24] A function f : J → X is called regulated on J, if its limits
left and right given by

lim
s→t−

f (s) = f (t−), t ∈ (0,b] and lim
s→t+

f (s) = f (t+), t ∈ [0,b)

exist and are finite.
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We denote the space of all regulated functions f : J → X by R f (J,X). It
is well known that the set of discontinuities of a regulated function is at most
countable and that the space R f (J,X) is a Banach space endowed with the norm
|| f ||∞ = supt∈J || f (t)|| (see [28]) and by L(X) the Banach space of all linear
bounded operators on X endowed with the topology defined by the operator
norm. Let L2(J,V) be the Banach space of all V−valued Bochner square inte-
grable functions defined on J endowed of the norm

||v||2 =
(∫ b

0
||v(t)||2Vdt

)1/2

,v ∈ L2(J,V).

Denote by LSλ (J,X) the space of all functions f1 : J → X that are Lebesgue-
Stieltjes integrable with respect to λ . Let τλ be the Lebesgue-Stieltjes measure
on J induced by λ .

Lemma 2.2. [29] Let the functions f : J → X and λ : J → R be such that λ is
regulated and

∫ b
0 f dλ exists. Then for every t0 ∈ [0,b], the function

k(t) =
∫ t

t0
f dλ , t ∈ [0,b],

is regulated and satisfies

k(t+) = k(t)+ f (t)δ+
λ (t), t ∈ [0,b),

k(t−) = k(t)− f (t)δ−
λ (t), t ∈ (0,b],

where δ+λ (t) = λ (t+)−λ (t) and δ−λ (t) = λ (t)−λ (t−).

Definition 2.3. [24] A set P ⊂ R f (J,X) is called equiregulated, if for every
ε > 0 and t0 ∈ J, there is a σ > 0 such that :

(i) if x ∈ P, t ∈ J and t0 −σ < t < t0, then ∥x(t−0 )− x(t)∥< ε.

(ii) if x ∈ P, t ∈ J and t0 < t < t0 +σ , then ||x(t)− x(t+0 )||< ε .

Lemma 2.4. [24] Let {vn}∞

n=1 be a sequence of functions from J to X. If vn

converges pointwisely to v0 as n→∞ and the sequence {vn}∞

n=1 is equiregulated,
then vn converges uniformly to v0.

Lemma 2.5. [24] Let X be a Banach space. Assume that P ⊂ R f (J,X) is
equiregulated and, for every t ∈ J, the set {v(t) : v ∈ P} is relatively compact in
X. Then the set P is relatively compact in R f (J,X).

Lemma 2.6. [15, Corollary 2.6] Let X be the Banach space and L1
κ(J,X) be

the set of all integrable functions from J to X with respect to the measure κ .
Assume that W ⊂ L1

κ(J,X) is a bounded set and that there exists a positive
function q ∈ L1

κ(J,R) such that ||w(t)|| ≤ q(t) κ− a.e. t ∈ J for all w ∈W . If
for w ∈W , one has w(t) ∈ G(t) for κ− a.e. t ∈ J where, for t ∈ J, G(t)⊂ X is
weakly relatively compact, then W is weakly relatively compact in L1

κ(J,X).
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2.2. Integrodifferential equations in Banach spaces

In this part, we introduce some basic notions about resolvent operators that will
be used to develop the main results of this work.
Let X1 be a Banach space, A and Γ(t) are closed linear operators on X1. X2
represents the Banach space D(A) equipped with the graph norm defined by

|y|X2 := |Ay|+ |y| for y ∈ X2.

The notations C([0,+∞);X2),B(X2,X1) stand for the space of all continu-
ous functions from [0,+∞) into X2, the set of all bounded linear operators from
X2 into X1, respectively. We consider the following Cauchy problem v′(t) = Av(t)+

∫ t

0
Γ(t − s)v(s)ds for t ≥ 0,

v(0) = v0 ∈ X1,
(2)

where A and Γ are closed linear operator on a Banach space X1.

Definition 2.7. [18] A resolvent for Eq. (2) is a bounded linear operator valued
function R(t) ∈ B(X1) for t ≥ 0, having the following properties :

(a) R(0) = I and ||R(t)|| ≤ Meβ t for some constants M > 0 and β ∈ R.

(b) For each v ∈ X1,R(t)v is continuous for t ≥ 0.

(c) R(t) ∈ B(X2) for v ∈ X2,R(·)v ∈C1([0,+∞);X1)∩C([0;+∞);X2) and

R′(t)v = AR(t)v+
∫ t

0
Γ(t − s)R(s)vds

= R(t)Av+
∫ t

0
R(t − s)Γ(s)vds, t ≥ 0,

The existence of a resolvent operator has been discussed in [18]. In what fol-
lows, we suppose the following assumptions:

(H1) A is the infinitesimal generator of a c0-semigroup (T (t))t≥0 on X1.

(H2) For all t ≥ 0, Γ(t) is a closed linear operator from D(A) to X1, and Γ(t) ∈
B(X2,X1). For any w ∈ X2, the map t → Γ(t)w is bounded, differentiable
and the derivative t → Γ(t)′w is bounded uniformly continuous on R+.

The resolvent operator for Eq. (2) exists under the following theorem.

Theorem 2.8. [18] Assume that (H1)− (H2) hold. Then, there exists a unique
resolvent operator for the Cauchy problem (1).
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In the following, we give some results for the existence of solutions for the
following integrodifferential equation:v′(t) = Av(t)+

∫ t

0
Γ(t − s)v(s)ds+q(t) f or t ≥ 0

v(0) = v0 ∈ X1,
(3)

where q : R+ →X1 is a continuous function.

Definition 2.9. [18] A continuous function v : R+ → X1 is a strict solution of
equation (3) if :

1. v ∈C1(R+;X1)
⋂

C(R+;X2) and

2. v satisfies equation (3).

Theorem 2.10. [18] Assume that (H1)-(H2) hold. If v is a strict solution of
equation (3), then

v(t) = R(t)v0 +
∫ t

0
R(t − s)q(s)ds for t ≥ 0.

Lemma 2.11. [14] Assume that (H1)-(H2) hold. Then, the resolvent operator
R(t))t≥0 is compact for t > 0 if and only if the semigroup (T (t))t≥0 is compact
for t > 0.

Lemma 2.12. [21] Assume that (H1)-(H2) hold. If the resolvent operator
(R(t))t≥0 is compact for, t > 0 then it is norm continuous (or continuous in
the uniform operator topology) for t > 0.

Lemma 2.13. [21] For any b > 0, there exists a constant γ = γ(b) such that

||R(t + ε)−R(ε)R(t)||X1 ≤ γε f or 0 ≤ ε ≤ t ≤ b.

Therefore, we have the following definitions

Definition 2.14. A function v ∈ R f (J,Σ) is called a mild solution of the system
(1) on J if for any u ∈ L2(J,V) the following measure integral equation

v(t) = R(t)[v0+g(v)]+
∫ t

0
R(t−s)Cu(s)ds+

∫ t

0
R(t−s)∆1(s,v(s))dλ (s), t ∈ J.

is satisfied.

Definition 2.15. Let v(t,∆1,u) be a mild solution of the system (1) associated
with nonlinear term ∆1 and control u ∈ L2(J,V) at the time t. Then

Nb(∆1) =
{

v(b,∆1,u) : u ∈ L2(J,V)
}
,

is a nonempty subset of Σ consisting of all terminal states of (1) called the
reachable set of the system (1) at the time b.
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Definition 2.16. The system (1) is said to be approximately controllable on the
interval J if Nb(∆1) is dense in Σ , means Nb(∆1) = Σ . That is, for any ε > 0 and
every desired final state vb ∈ Σ , there exists a control u ∈ L2(J,V) such that v
satisfies ∥v(b)− vb∥< ε .

To discuss the approximate controllability of system (1) we introduce the
following operators.

1. The controllability Grammian Ξb
0 is defined by :

Ξ
b
0 =

∫ b

0
R(b− s)CC∗R∗(b− s)ds,

where C∗ and R∗(t) denote the adjoint operators of C and R(t), respec-
tively.

2. S(κ,Ξb
0) = (κI +Ξb

0)
−1.

In the sequel we assume that the operator S(κ,Ξb
0) satisfies

(A0) κS(κ,Ξb
0)→ 0 as κ → 0+ in the strong operator topology.

From [3], the above condition (A0) is equivalent to the approximate control-
lability of the linear system v′(t) = Av(t)+

∫ t

0
Γ(t − s)v(s)ds+Cu(t), t ∈ J,

v(0) = v0 +g(v),
(4)

In fact, we have that

Theorem 2.17. [3, 12] The following statements are equivalent:

(i) The control system (1) is approximately controllable on [0,b].

(ii) C∗R∗(t)v = 0 for all t ∈ [0,b] imply v = 0.

(iii) The condition (A0) holds.

Now, we give the following lemma and the Schauder fixed-point theorem
appeared in [31].

Lemma 2.18. [16, Lemma 12] Let Z be a Banach space and (Tn)n≥1 be a se-
quence of bounded linear maps on B converging pointwisely to T ∈ B(Z). Then
for any compact set K in Z, Tn converges to T uniformly in K, namely,

sup
x∈K

∥Tn(x)−T (x)∥→ 0, as n →+∞.
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Theorem 2.19. [31, Theorem 2.A] Let B be a Banach space and let D ⊆ B be
a bounded, closed and convex set. If the operator P : D → D is completely
continuous, then P has a fixed point in D.

3. Existence of mild solutions of system (1)

In this section, we will present and prove the existence of mild solutions of the
system (1) using Schauder’s fixed point Theorem. We first make the following
assumptions:

(A1) T (t), t > 0 is compact operator on Σ .

(A2) Let τλ be the Lebesgue-Stieljes measure on J induced by λ .

(i) For τλ− a.e. t ∈ J, the function ∆1(t, ·) : Σ → Σ is continuous and
for all v ∈ Σ and ∆1(·,v) : J → Σ is τλ− measurable.

(ii) There exist a function L∆1 ∈ LSλ (J,R+) and a non-decreasing con-
tinuous function Ψ : R+ → R+such that

||∆1(t,v)|| ≤ L∆1(t)Ψ(||v||) for v ∈ Σ , τλ a.e. t ∈ J

and lim
y→+∞

inf
Ψ(y)

y
= 0.

(A3) The function g : R f (J,Σ)→ Σ is continuous, compact and satisfies

lim
y→+∞

inf
gy

y
= 0

where gy = sup{||g(v)|| : ||v|| ≤ y}.

Let Mb = sup0≤t≤b ∥R(t)∥ and Mc = ∥C∥.

Theorem 3.1. Assume that the hypotheses (H1), (H2), (A0)-(A3) are satisfied,
then the nonlocal system (1) possesses at least one mild solution on J.

Proof. For any κ > 0 and vb ∈ Σ , we define the control function uκ(t,v) as
follows

uκ(t,v)

= C∗R∗(b− t)S(κ,Ξb
0)
(

vb −R(b)[v0 +g(v)]−
∫ b

0
R(b− s)∆1(s,v(s))dλ (s)

)
,
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and define the operator Gκ : R f (J,Σ)→R f (J,Σ) by

(Gκv)(t) = R(t)[v0 +g(v)]+
∫ t

0
R(t − s)Cuκ(s,v)ds

+
∫ t

0
R(t − s)∆1(s,v(s))dλ (s), t ∈ J.

As a result of the hypotheses (A1) and (A2), the integrals in the above formula
are well defined. Next it will be shown that for all κ > 0, the operator Gκv has
a fixed point and the proof will be divided into several steps.

For any ω0 > 0, we define the following set

Bω0 :=
{

v ∈R f (J,Σ) : ||v||∞ ≤ ω0
}
.

Bω0 is clearly a bounded closed convex set in R f (J,Σ). Write Gκ(Bω0) =
{Gκv : v(·) ∈ Bω0}. The proof will be given in four steps.
Step 1. We claim that there exists ω0 > 0 such that Gκ(Bω0)⊆ Bω0 . Suppose on
the contrary that this is not true. Then for each positive number ω0, there exist a
function vω0 ∈ Bω0 such that Gκ(vω0) /∈ Bω0 , i.e., ||(Gκvω0)(τ)||> ω0, for some
τ = τ(ω0) ∈ J. Now

||(Gκvω0)(τ)||
ω0

> 1 implies that lim
ω0→+∞

inf
||(Gκvω0)(τ)||

ω0
≥ 1. (5)

Note that

∥uκ(t,v)∥

= ∥C∗R∗(b− t)S(κ,Ξb
0)
[
vb −R(b)[v0 +g(v)]−

∫ b

0
R(b− s)∆1(s,v(s))dλ (s)

]
∥

≤ McMb
1
κ

[
∥vb∥+Mb(∥v0∥+gω0)+MbΨ(ω0)

∫ b

0
L∆1(s)dλ (s)

]
.

Here, we have supposed w.l.o.g by condition (A0) that there exists a positive
constant δ > 0 such that ∥S(κ,Ξb

0)∥ ≤
1
κ

, for all κ ∈ (0,δ ). Then we have

||(Gκvω0)(t)|| ≤ ||R(t)[v0 +g(vω0)]||+ ||
∫ t

0
R(t − s)Cuκ(s,vω0)ds||

+ ||
∫ t

0
R(t − s)∆1(s,vω0(s))dλ (s)||

≤ Mb||v0||+Mb||g(vω0)||+MbMc

∫ b

0
||uκ(s,vω0)||ds

+Mb

∫ b

0
||∆1(s,vω0(s))||dλ (s)
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≤ Mb||v0||+Mbgω0 +M2
b M2

c
b
κ

[
∥vb∥+Mb(∥v0∥+gω0)

+MbΨ(ω0)
∫ b

0
L∆1(s)dλ (s)

]
+MbΨ(ω0)

∫ b

0
L∆1(s)dλ (s)

≤ δω0 := M2
b M2

c
b
κ
∥vb∥

+
[
Mb +M3

b M2
c

b
κ

][
∥v0∥+gω0 +

∫ b

0
L∆1(s)dλ (s)Ψ(ω0)

]
.

It follows now that

lim
ω0→+∞

inf
||(Gκvω0)(τ)||

ω0
= 0

since

lim
ω0→+∞

inf
δω0

ω0
= 0 = lim

ω0→+∞
inf

gω0

ω0
.

This is clearly a contradiction to (5). Consequently, there exists ω0 > 0 such
that Gκ(Bω0)⊂ Bω0 .
Step 2. Gκ(Bω0) is an equiregulated family of functions on J.
For t0 ∈ [0,b), we have

||(Gκv)(t)− (Gκv)(t+0 )||
≤ ||R(t)v0 −R(t0)v0||+ ||R(t)g(v)−R(t+0 )g(v)||

+ ||
∫ t

0
R(t − s)Cuκ(s,v)ds−

∫ t+0

0
R(t+0 − s)Cuκ(s,v)ds||

+ ||
∫ t

0
R(t − s)∆1(s,v(s))dλ (s)−

∫ t+0

0
R(t+0 − s)∆1(s,v(s))dλ (s)||

:= I1 + I2 + I3 + I4,

where,

I1 = ||R(t)v0 −R(t+0 )v0||,
I2 = ||R(t)g(v)−R(t+0 )g(v)||,

I3 = ||
∫ t

0
R(t − s)Cuκ(s,v)ds−

∫ t+0

0
R(t+0 − s)Cuκ(s,v)ds||,

I4 = ||
∫ t

0
R(t − s)∆1(s,v(s))dλ (s)−

∫ t+0

0
R(t+0 − s)∆1(s,v(s))dλ (s)||.

Therefore, we need to show that Ii tends to 0 independently of v ∈ Bω0 when
t → t0, i = 1,2,3,4.
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Firstly for t0 > 0. By (b) of definition 2.7, I1 tends to 0 as |t → t+0 | → 0.
That is

||R(t)v0 −R(t+0 )v0|| → 0 as |t → t+0 | → 0.

Furthermore we have that

I2 ≤ ∥R(t)−R(t+0 )∥∥g(v)∥
≤ ∥R(t)−R(t+0 )∥gω0 ,

where gω0 = sup{∥g(v)∥ : ∥v∥≤ω0}. And so ∥R(t)−R(t0)∥→ 0 as |t → t+0 |→
0, by the continuity of (R(t))t≥0 for t > 0 in the operator-norm topology which
shows that I2 tends to 0 as |t → t+0 | → 0

Now for t+0 = 0, we have that

∥R(t)g(v)− g(v)∥ ≤ sup
ω∈g(Bω0 )

∥R(t)ω −ω∥ → 0,asω → 0+, by Lemma

2.18 since g(Bω0) is compact. Therefore I2 tends to 0 as |t → t+0 | → 0.
For I3 we have that

I3 ≤ Mc

∫ t

t+0
∥uκ(s,v)∥ds

+
∫ t+0

0
||R(t − s)−R(t+0 − s)||∥uκ(s,v)∥ds

≤
[
McMb

1
κ

[
∥vb∥+Mb(∥v0∥+gω0)+MbΨ(ω0)

∫ b

0
L∆1(s)dλ (s)

]]
[
Mc(t − t+0 )+

∫ t+0

0
||R(t − s)−R(t+0 − s)||ds

]
→ 0 as t → t+0 .

Also we have that

I4 ≤
∫ t

t+0
||R(t − s)||||∆1(s,v(s))||dλ (s)

+
∫ t+0

0
||R(t − s)−R(t+0 − s)||||∆1(s,v(s))||dλ (s)

≤ MbΨ(ω0)
∫ t

t+0
L∆1(s)dλ (s)

+Ψ(ω0)
∫ t+0

0
||R(t − s)−R(t+0 − s)||||L∆1(s)||dλ (s)

:= I41 + I42.
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Let K(t) =
∫ t

0
L∆1(s)dλ (s), from the Lemma 2.2, K(t) is a regulated func-

tion on J. Thus,

I41 ≤ MbΨ(ω0)
∫ t

t+0
L∆1(s)dλ (s) = MbΨ(ω0)(K(t)−K(t+0 ))→ 0 as t → t+0 ,

also independently of v(·). By the Lebesgue dominated convergence theorem
we can see that I42 → 0 as t → t+0 .
A similar method can be used to show ||(Gκv)(t)− (Gκv)(t−0 )|| → 0 as t → t−0
for each t0 ∈ (0,b]. Therefore, Q(Bω0) is equiregulated on J from Definition 2.3.
Step 3. The operator Gκ : Bω0 → Bω0 is continuous. To this end, let {vn}∞

n=1 ⊂
Bω0 ⊂ R f (J,Σ) be a sequence such that limn→∞ vn = v in Bω0 . By the hypothesis
(A2), we have

lim
n→+∞

∆1(t,vn(t)) = ∆1(t,v(t)), for ∀t ∈ J.

Further note that

||∆1(t,vn(t))−∆1(t,v(t))|| ≤ 2Ψ(ω0)L∆1(t), τλ −a.e. t ∈ J,

||uκ(t,vn(t))−uκ(t,v(t))||

≤ McM2
b

2
κ

[
||g(vn)−g(v)]||+

∫ b

0
||∆1(t,vn(t))−∆1(t,v(t))||dλ (s)

]
, s ∈ J.

Using the fact the function t → L∆1(t) is Lebesgue-Stieljes integrable with re-
spect to λ and by the dominated convergence Theorem, we have

||(Gκvn)(t)− (Gκv)(t)|| ≤ ||R(t)[g(vn)−g(v)]||

+
∫ t

0
||R(t − s)||||uκ(s,vn(s))−uκ(s,v(s))||ds

+
∫ t

0
||R(t − s)||.||∆1(s,vn(s))−∆1(s,v(s))||dλ (s)

≤ Mb||g(vn)−g(v)||+McM2
b

2
κ

[
||g(vn)−g(v)]||

]
+McM2

b
2
κ

[∫ b

0
||∆1(t,vn(t))−∆1(t,v(t))||dλ (s)

]
+Mb

∫ t

0
||∆1(s,vn(s))−∆1(s,v(s))||dλ (s)

→ 0 as n → ∞,
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In addition, the same analysis as in Step 2 demonstrates that {Gκvn}∞

n=1
is equiregulated on J. This property combined with Lemma 2.4 implies that
{Gκvn} converges uniformly to {Gκv} as n → ∞, namely,

||(Gκvn)− (Gκv)||∞ = sup
t∈J

||(Gκvn)(t)− (Gκv)(t)||∞

= sup
t∈J

||(Gκvn)(t)− (Gκv)(t)|| → 0, as n → ∞.

Therefore, the operator Gκ : Bω0 → Bω0 is a continuous operator.
Step 4. Finally, we demonstrate that the operator Gκ : Bω0 → Bω0 is compact.
To prove this, we show that {(Gκv)(t) : v ∈ Bω0} is relatively compact in Σ , for
every t ∈ J. We have that for t = 0, the set

{(Gκv)(0) : v ∈ Bω0}= {v0 +g(v) : v ∈ Bω0}= v0 +g(Bω0)

is relatively compact in Σ . Since g is compact, it follows that g(Bω0) is compact
also.
Let t ∈ (0,b] be given, 0 < ε < t and v ∈ Bω0 , we define the operators

(Gε
κv)(t) = R(ε)[v0 +g(v)]+R(ε)

∫ t−ε

0
R(t − ε − s)Cuκ(s,v)ds

+R(ε)
∫ t−ε

0
R(t − ε − s)∆1(s,v(s))dλ (s)

and

(G̃ε
κv)(t)

= R(ε)[v0 +g(v)]+
∫ t−ε

0
R(t − s)Cuκ(s,v)ds+

∫ t−ε

0
R(t − s)∆1(s,v(s))dλ (s).

By Lemma 2.13 and the compactness of the operator R(ε), the set Ωε(t) =
{(Gεv)(t) : v ∈ Bω0} is relatively compact in Σ . Moreover, also by Lemma 2.13,
for each v ∈ Bω0 , we obtain

||(Gε
κv)(t)− (G̃ε

κ)(t)||

≤ ||
∫ t−ε

0
[R(ε)R(t − ε − s)−R(t − s)]Cuκ(s,v)ds||

+ ||
∫ t−ε

0
[R(ε)R(t − ε − s)−R(t − s)]∆1(s,v(s))dλ (s)||

≤ (γε)
∫ t−ε

0
||Cuκ(s,v)||ds+(γε)

∫ t−ε

0
||∆1(s,v(s))||dλ (s)

≤ γε

(∫ t−ε

0
||Cuκ(s,v)||ds+Ψ(ω0)

∫ t−ε

0
L∆1(s)dλ (s)

)



APPROXIMATE CONTROLLABILITY FOR SOME MEASURE DRIVEN SYSTEMS 433

→ 0 as ε → 0.

So the set Ω̃ε(t) =
{
(G̃ε

κv)(t) : v ∈ Bω0

}
is precompact in Σ by using the total

boundedness.
Applying this idea again, we obtain

||(Gκv)(t)− (G̃ε
κ)(t)||

≤ ||
∫ t

t−ε

R(t − s)Cuκ(s,v)ds||+ ||
∫ t

t−ε

R(t − s)∆1(s,v(s))dλ (s)||

≤ Mb

[∫ t

t−ε

||Cuκ(s,v)||ds+Ψ(ω0)
∫ t−ε

0
L∆1(s)dλ (s)

]
→ 0 as ε → 0,

and there are precompact sets arbitrarily close to Ω(t) = {(Gκv)(t) : v ∈ Bω0}.
Thus, the set Ω(t) = {(Gκv)(t) : v ∈ Bω0} is precompact in Σ . Therefore, by
Lemma 2.5, we see that Gκ : Bω0 → Bω0 is a compact operator.
Finally, by Schauder’s fixed-point theorem, we obtain that the operator G has at
least one fixed point v ∈ Bω0 , which is a mild solution of system (1) on J. This
completes the proof.

4. Approximate Controllability

In this section, we establish the sufficient conditions for the approximate con-
trollability of system (1).

Theorem 4.1. Assume that the assumptions (H1), (H2) and (A0)-(A3) are valid.
Then the nonlocal integrodifferential system (1) is approximately controllable
on J.

Proof. For κ > 0, define the operator Gκ on R f (J,Σ) as following,

(Gκvκ)(b)

= R(b)[v0 +g(vκ)]+
∫ b

0
R(b− s)Cuκ(s,vκ)ds+

∫ b

0
R(b− s)∆1(s,vκ(s))dλ (s),

where

uκ(t,vκ) = C∗R∗(b− t)S(κ,Ξb
0)z(vκ(·)),

z(vκ(·)) = vb −R(b)[v0 +g(vκ)]−
∫ b

0
R(b− s)∆1(s,vκ(s))dλ (s).
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Let vκ(.) be the fixed point of Gκ in Bω0 . By Theorem 3.1, any fixed point of
Gκ is a mild solution of the control system (1) under the control

uκ(t,vκ) = C∗R∗(b− t)S(κ,Ξb
0)z(vκ(·)),

and satisfies

vκ(b)

= R(b)[v0 +g(vκ)]+
∫ b

0
R(b− s)Cuκ(s,vκ)ds+

∫ b

0
R(b− s)∆1(s,vκ(s))dλ (s).

From definition of Ξb
0, it follows that

vκ(b)

= R(b)[v0 +g(vκ)]+ vb −R(b)[v0 +g(vκ)]− z(vκ(·))+Ξ
b
0S(κ,Ξb

0)z(vκ(·))
= vb − z(vκ(·))+Ξ

b
0S(κ,∆b

0)z(vκ(·))
= vb − (∆b

0S(κ,Ξb
0)− Id)z(vκ(·))

= vb −κS(κ,Ξb
0)
[
vb −R(b)[v0 +g(vκ)]

−
∫ b

0
R(b− s)∆1(s,vκ(s))dλ (s)

]
.

By hypothesis (A2) and Lemma 2.6, the set {∆1(·,vκ(·))} is weakly relatively
compact in LSλ (J,Σ). Then it could be taken a sequence κn → 0 and to ex-
tract a subsequence from {∆1(·,vκn(·))}, still denoted by {∆1(·,vκn(·))}, which
converges weakly to some M(·) ∈ LSλ (J,Σ). Let

τ := vb −R(b)[v0 +g(vκ)]−
∫ b

0
R(b− s)M(s)dλ (s).

Thus, we have

||z(vκ(·))− τ|| ≤ ||
∫ b

0
R(b− s)[∆1(s,vκn(s))−M(s)]dλ (s)||. (6)

From the fact that T (t) is a compact operator for t > 0, by Lemma 2.11, we get
that R(t) is compact for t > 0. And similarly to the proof of compactness of the
operator Gκ in Theorem 3.1, one can easily verify that the mapping

x(·)→
∫ .

0
R(·− s)x(s)dλ (s)

defined from LSλ (J,Σ) to R f (J,Σ) is compact. Therefore, we have∫ b

0
R(b− s)[∆1(s,vκn(s))−M(s)]dλ (s)→ 0 as κn → 0+ (7)
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Thus, from (6) and (7), we have

||z(vκ(·))− τ|| → 0 as κ → 0+. (8)

Finally, from (8) and the assumption (A0), we have

||vκ(b)− vb|| ≤ ||κS(κ,Ξb
0)z(vκ(·))||

≤ ||κS(κ,Ξb
0)(τ)||+∥κS(κ,Ξb

0)|| · ||z(vκ(·))− τ||
→ 0 as κ → 0+.

This concludes that the control system (1) is approximately controllable on J.
This completes the proof of Theorem 4.1.

5. Application

We consider the following partial integro-differential equation of evolution type
with nonlocal conditions of the form

∂

∂ t y(t,z) =
∂ 2

∂ z2 y(t,z)+αy(t,z)+
∫ t

0
ζ (t − s)

∂ 2

∂ z2 y(s,z)ds

+δ1(t,y(t,z))dλ (t)+Cµ(t,z), t ∈ [0,1],z ∈ [0,π],
y(t,0) = y(t,π) = 0,

y(0,z) = y0(z)−
∫ 1

0
ρ(s) log(1+ |y(s,z)|)ds, z ∈ [0,π],

(9)

where α > 0 is a constant, δ1 : J ×R → R, u ∈ L2(J,L2([0,π];R)) and ρ ∈
L2([0,1],R).
Let Σ = V = L2([0,π];R) with the norm || · || and inner product ⟨·, ·⟩. Consider
the linear operator Q in Hilbert space Σ defined by

Qy :=
∂ 2

∂ z2 y, y ∈ D(Q),

where
D(Q) = H2([0,π])∩H1

0 ([0,π]).

By Lemma 2.5 in [27], the operator Q generates a compact c0-semigroup T (.) in
Σ . Furthermore, Q has a discrete spectrum, and its eigenvalues are −n2,n ∈N+

with the corresponding normalized eigenvectors en(z) =
√

2
π

sin(nz),0 ≤ z ≤
π,n = 1,2, · · ·
Define the operator Ay = Qy+αy on L2([0,π];R) with domain D(A) = D(Q).
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It follows from ([27] and Lemma 2.6) that the operator A generates a strongly
continuous semigroup T (t) defined by,

T (t)y =
∞

∑
n=1

e(−n2+α)t ⟨y,en⟩en, y ∈ Σ ,

then (H1) is satisfied.

Let Γ : D(A) ⊂ Σ → Σ be the operator defined by Γ(t)(z) = ζ (t)Az for t ≥
0 and z ∈ D(A)
Define the bounded linear operator C : V → Σ as

(Cu)(z) := u(t)(z) = µ(t,z), t ∈ [0,1],z ∈ [0,π].

Let

λ (t) =


1− 1

2 , 0 ≤ t ≤ 1− 1
2 ,

· · ·
1− 1

n , 0 ≤ t ≤ 1− 1
n , for n > 2 and and n ∈ N,

· · ·
1, t = 1.

(10)

It is easy to see that λ : J → R is nondecreasing left continuous function on J.

In order to reformulate the partial differential system(9) as the abstract problem
(1), we introduce the following notations{

v(t)(z) = y(t,z) for t ∈ [0,1] and z ∈ [0,π],
v(0)(z) = y(0,z) for z ∈ [0,π].

We suppose the following assumptions

(F1) δ1(·,v) : [0,1]→Σ is τλ -measurable for all v∈Σ and the function δ1(t, ·) :
Σ → Σ is continuous for τλ −a.e.t ∈ [0,1].

(F2) ||δ1(t,v)|| ≤ ψ(l) for all v ∈ Σ , where ψ(·) ∈ LSg(J,R+).

Let us introduce the operators ∆1 and g defined by

∆1(t,v)(z) = δ1(t,v(t,z)), for t ∈ [0,1] and z ∈ [0,π],

g(v)(z) =
∫ 1

0
ρ(s) log(1+ |v(s,z)|)ds, z ∈ [0,π], s ∈ [0,1].
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Then the system (9) can be transformed into the abstract form of system (1) : dv(t) =
[

Av(t)+
∫ t

0
Γ(t − s)v(s)ds+Cu(t)

]
dt +∆1(t,v(t))dλ (t), t ∈ J,

v(0) = v0 +g(v).
(11)

Moreover, we suppose that ζ is a bounded and C1 function such that ζ ′ is
bounded and uniformly continuous, then (H2) is satisfied, hence by theorem
2.8 equation (2) has resolvent operator (R(t))t≥0 on Σ .

Lemma 5.1. The map g : R f ([0,1],Σ)→ Σ defined by

g(v)(z) =
∫ 1

0
ρ(s) log(1+ |v(s,z)|)ds, f or z ∈ [0,π] and v ∈ R f ([0,1],Σ),

is compact.

Proof. With v(s)z = v(s,z). By using the same proof as in the article [9] we
show that g is a continuous and compact operator, and we have

||g(v)||Σ ≤
(∫ 1

0
|ρ(s)|2ds

)1/2
||v||∞ = ||ρ||L2 ||v||∞.

Thus the hypothesis (A4) in Theorem 3.1 is satisfied.

Theorem 5.2. Assume that the conditions (F1) and (F2) are satisfied. The
systems (10) has at least one mild solution v ∈C([0,π]× J,Σ).

Proof. From the definition of nonlinear term ∆1 and bounded linear operator C
combined with the above discussion, we can easily guarantee that assumptions
of Theorem 3.1 hold. This completes the proof of Theorem 5.2.

To obtain the approximate controllability for system (9), it suffices for us to
verify that hypothesis (A0) is satisfied. To this end, we have the following result
:

Lemma 5.3. [25] Let θ(t) ∈ L1(R+)∩C1(R+) with primitive B(t) ∈ L1
loc(R+)

such that Γ(t) is non-positive, non-decreasing and B(0) =−1. If the operator A
is self-adjoint and positive semi-definite, the resolvent operator R(t) associated
to system (2) is self-adjoint as well.

From Lemma 5.3 above, the resolvent operator R(t) of (9) if self-adjoint.
Since C = I in the system (9) then we have C∗R∗(t)v = R(t)v, for any v ∈ Σ .
Now, let C∗R∗(t)v = 0, for all t ∈ [0,b], then R(t)v = 0,∀t ∈ [0,b]. Since R(0) =
Id for t = 0, we get v = 0. So from [12](Theorem 4.1.7), it follows that the
linear control system corresponding to (9) is approximately controllable on J,
which mean that the hypothesis (A0) is satisfied. Therefore, by Theorems 3.1
and 4.1, the integrodifferential equation (9) is approximately controllable on J.



438 M.P. LY - M.A. DIOP - K. EZZINBI

6. Conclusion

The question of the approximate controllability of measure-driven semilinear
control equations in Hilbert spaces has been addressed in this article.These
equations can model a large class of hybrid systems without imposing any re-
strictions on the Zeno behavior of the systems. The existence criteria of mild so-
lutions for this kind of measure control system can be obtained using Schauder’s
fixed point theorem. The results of the approximate controllability are then pre-
sented. There are immediate concerns that require additional research to be
conducted. We will extend and unify the existing results on evolution equations
with discrete nonlocal initial conditions and state-dependent delays by introduc-
ing a new Green’s function, which is very important in dealing with these types
of problems.
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