LE MATEMATICHE
Vol. LXXVIII (2023) — Issue I, pp. 3-22
doi: 10.4418/2023.78.1.1

ON THE COMPLEMENTS OF UNION OF OPEN BALLS OF
FIXED RADIUS IN THE EUCLIDEAN SPACE

M. LONGINETTI - P. MANSELLI - A. VENTURI

Let an R-body be the complement of the union of open balls of radius
R in E?. The R-hulloid of a closed not empty set A, the minimal R-body
containing A, is investigated; if A is the set of the vertices of a simplex,
the R-hulloid of A is completely described (if d = 2) and if d > 2 special
examples are studied. The class of R-bodies is compact in the Hausdorff
metric if d = 2, but not compact if d > 2.

1. Introduction

Given a closed set E C E? (d > 2), the convex hull of E is the intersection of all
closed half spaces containing E; the convex hull can be considered as a regular-
ization of E. Given R > 0, a different hull of E could be the intersection of all
closed sets, containing £, complement of open balls of radius R not intersecting
E. Let us call this set the R-hulloid of E, denoted as cog(E); the R-bodies are
the sets coinciding with their R-hulloids. R-bodies are called 2R-convex sets in
[10].

The R-hulloid cog(E) has been introduced by Perkal [10] as a regularization
of E, hinting that cog(E) is a mild regularization of a closed set. Mani-Levitska
[8] hinted that the R-bodies cannot be too irregular.
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In our work it is shown that this may not be true: in Theorem 5.7 an example
of a connected set is constructed with disconnected R-hulloid. A deeper study
gave us the possibility to add new properties to the R-bodies: a representation
of cog(E) is given in Theorem 3.4 and new properties of dcog(E) are proved in
Theorem 3.5, Theorem 3.6 and Corollary 3.7. Moreover contrasting results on
regularity are found: every closed set contained in an hyperplane or in a sphere
of radius r > R is an R-body (Theorems 3.10 and 3.11). As a consequence
a problem of Borsuk, quoted by Perkal [10], has a negative answer (Remark
3.10). In § 4 it is shown that the R-body regularity heavily depends on the
dimension. A definition (Definition 4.3) similar to the classic convexity is given
for the class of planar R-bodies, namely (Theorem 4.5):

A isan R-body iff cog({a1,a2,a3}) CA Vaj,az,a3 € A.

As consequence, if d = 2: a sequence of compact R-bodies converges in the
Hausdorff metric to an R-body (Corollary 4.7). If d > 2, in Theorem 3.16 it is
proved that a sequence of compact R-bodies converges to an (R — €)-body, for
every 0 < € < R; however, the limit body may not be an R-body as an exam-
ple in § 5 shows. If E is connected, properties of connectivity of cog(E) are
investigated in § 4.3.

In [7, Definition 2.1] V. Golubyatnikov and V. Rovenski introduced the class

/Cé/ R In Theorem 6.1 it is proved that the class of R-bodies is strictly included

in ICé/ RIfta=2 , under additional assumptions, it is also proved that the two
classes coincide.

2. Definitions and Preliminaries

Let E?.d > 2, be the linear Euclidean Space with unit sphere S¢~!; A C E¢
will be called a body if A is non empty and closed. The minimal affine space
containing A will be Lin(A). The convex hull of A will be co(A); for notations
and results of convex bodies, let us refer to [13].

Definition 2.1. Let A be a not empty set.

Ae = {x € B4 : dist(A,x) < &;}; AL := {x € E? : dist(A,x) > e}; A~ :=
AUQJA; A°:=FE9\ A ; Int(A) = A\ 9A.

B(x,r) will be the open ball of center x € E¢ and radius » > 0; a sphere of
radius r is dB(x,r).

Let us recall the following facts for reference.
Proposition 2.2. Let A be a not empty set.
*1 Agisopen; A= (A7) C(Ag)".



ON THE COMPLEMENTS OF UNION OF OPEN BALLS OF FIXED RADIUS 5

*2 A.={xcE?:3JacA, for whichx € B(a,e)} = {x € EY : B(x,€)N
A#0}
= UgeaB(a,e) =A+ B(0,¢).

3 AL={xcE?:VacA x¢B(a,e)}={xcE:B(x,e)NA=0}=
ﬂaeA B(G,S)c.

* 4 LetA;i=1,2benonempty sets. Then

Al C A’ = (AY) € (A%)e.

* 5 If E is non empty, then E C (Eg)k C Eg, see [1, lemma 4.3].

Definition 2.3. ([3]) If A C E¢, a € A, then reach(A,a) is the supremum of all
numbers p such that for every x € B(a,p) there exists a unique point b € A
satisfying |b — x| = dist (x,A). Also:

reach(A) := inf{reach(A,a) : a € A}.

Let by,by € E? |b; — by| < 2R and let h(by,b>) be the intersection of all
closed balls of radius R containing by, b;.

Proposition 2.4. ([1, Theorem 3.8], [11]) The body A has reach > R if and only
if ANh(b1,by) is connected for every by,by € A,0 < |by —by| < 2R.

Remark 2.1. The R-hull of a set E was introduced in [1, Definition 4.1] as the
minimal set £ of reach > R containing E. Therefore if reach(A) > R , then A
coincides with its R-hull. The R-hull of a set E may not exist, see [1, Example
2].

Proposition 2.5. [1, Theorem 4.4] Let A C EZ. If reach(A%) > R then A admits
R-hull A and

A= (AR)k-
Proposition 2.6. [1, Theorem 4.8] If A C [E? is a connected subset of an open
ball of radius R, then A admits R-hull.

Let us also recall the following result:

Proposition 2.7. [1, Theorem 3.10], [12]) Let A C E“ be a closed set such
that reach(A) > R > 0. If D C E“ is a closed set such that for every a,b € D,
H(a,b) C D and AND # 0, then reach(AND) > R.
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3. R-bodies

Let R be a fixed positive real number. B will be any open ball of radius R. B(x)
will be the open ball of center x € E¢ and radius R. Next definitions have been
introduced in [10].

Definition 3.1. Let A be a body, A will be called an R-body if Vy € A€, there
exists an open ball B in E¢ (of radius R) satisfying y € B C A°. This is equivalent

to say
A°=U{B:BNA=0};

that is
A=n{B :BNA=0}.

Let us notice that for any » > R and for every x, the body (B(x,r)) is an
R-body.

Definition 3.2. Let £ C E be a non empty set. The set
cogr(E) :=N{B°:BNE =0}
will be called the R-hulloid of E. Let cog(E) = E? if there are no balls B C E°.

Remark 3.1. In [10] the sets defined in Definition 3.1 are called 2R convex sets
and the sets defined in Definition 3.2 are called 2R convex hulls. On the other
hand Meissner [9] and Valentine [15, pp. 99-101] use the names of R-convex
sets and R-convex hulls for different families of sets. An s-convex set is also
defined in [4, p. 42]. To avoid misunderstandings we decided to call R-bodies
and R-hulloids the sets defined in Definition 3.1 and in Definition 3.2.

Remark 3.2. Let us notice that cog(E) is an R-body (by definition) and E C
cog(E). Moreover A is an R-body if and only if A = cog(A). The R-hulloid
always exists.

Clearly every convex body E is an R-body (for all positive R) and its convex
hull co(E) = E coincides with its R-hulloid.

Remark 3.3. It was noticed in [1, Corollary 4.7] and proved in [2, Proposition
1] that, when the R-hull exists, it coincides with the R-hulloid. If A has reach
greater or equal than R, then (see remark 2.1) A has R-hull, which coincides
with A and with its R-hulloid, then A is an R-body.

Proposition 3.3. Let £ be a non empty set. The following facts have been
proved in [10].

*a cor(E) = (Ep)g;
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*b E~ Ccor(E);
s ¢ Let E' C E?; then cog(E') C cor(E?);
o d cor(E")Ucog(E?) C cor(E'UE?);
e e cog(cog(E))=cor(E);
o f Let A® o € Abe R-bodies, then Ngeq A is an R-body;
* g diamE = diamcog(E);
* h If Ais an R-body then A is an r-body for 0 < r < R;

* i cogr(E) Cco(E) forall R > 0.

Remark 3.4. Let E be a body. From ¢ of Proposition 3.3 it follows that if A
is an R-body and A D E, then A D cor(E) and cog(E) is the minimal R-body
containing E.

Lemma 3.5. A point k € cog(E) if and only if there does not exist any open ball
B(x,l) > k with 1 > R, B(x,l) C EC.

Proof. As (B(x,l))¢ is an R-body, the set cog(E) N (B(x,1)) D E would be an
R-body strictly included in cog(E), which is the minimal R-body containing
E. O

Lemma 3.6. Let E be a body. Then
cogr(E) C Eg. (1)
Moreover there exists E such that (Eg)™ is not an R-body.

Proof. By 5 of Proposition 2.2, (Eg)k C Eg and by a of Proposition 3.3, the
inclusion (1) follows. Let xo € E?, R < p < 2R and let E = (B(xo,p))¢. Then
(Eg)~ is (B(xo,p —R))€, not an R-body. O

Theorem 3.4. Let E C E4 be a body. Then
cor(E) = EgN (8(ER));. )
Proof. Formula (2) can also be written as:
(cor(E)) = ExU (9(Ex)) . 3

Let Q = ELU (8(ER)>R.
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Inclusion (1) implies that Ex C (cog(E))¢. Let us notice that:

(a(ER))R — U{B(x) : x € d(Ex)} = U{B(x) : dist (x,E) = R},

then
(a(ER>)R C U{B(x) : dist (x,E) > R} = (cor(E))". )
Then from (4):
Q C (cor(E))¢
holds too.

The open set (cog(E))¢ is the union of the balls B(x), satisfying B(x) N
E = 0; clearly dist (x,E) > R; if dist (x,E) = R then x € d(Eg) and B(x) C
(8(ER)>R; if dist (x,E) > R, then B(x) C Ey. Therefore

(cor(E))¢ C Q.
Then Q = (cor(E))". O

Remark 3.7. The previous theorem is the analogous, for the R-hulloid, of the
property of the convex hull of a body E: co(E) is the intersection of all closed
half spaces supporting E.

If E is a compact set, part of the following theorem has been proved in [2,
Proposition 2].

Theorem 3.5. Let E be a body, k € cog(E), | = infiep |k — x| = dist (k, Eg).
Then / is a minimum and / > R. Moreover / = R if and only if k € dcog(E) and
there exists xo € Ej, satisfying B(xg) C E¢, dB(xg) > k.

Proof. As cogr(E) = N{B°: B° D E}, then dist (Eg,cor(E)) > R. Let x, € Ej
satisfying |x, — k| — [ > R; by possibly passing to a subsequence, one can as-
sume that x, — xo € Eg, where |xo —k| = [. If |xo — k| = R then k € cog(E) N
dB(xp). As I =R, it cannot be k € Int(cog(E)). Therefore the claim of the
theorem holds. 0

Theorem 3.6. Let E be a body, k € dcog(E). Then there exists B C E€ satisfy-
ing k € dB. Moreover if § = {B C E° : dBNcog(E) # 0}, then § is not empty
and if B € § then dBNE # 0.

Proof. If k € dcog(E), by previous theorem there exists xo € Ey with the prop-
erty B(xo) C E€, dB(xo) 2 k. If dist (xo,E) = [ > R then k € B! = B(x,1) C
E“, this is impossible by Lemma 3.5 and § is non empty. Let B(x) € § and,
by contradiction, let dBNE = 0; then, R; = dist (x,E) > R. Thus B(x,R;)¢
is an R-body containing E, then cor(E) C B(x,R;)"; as dB(x) C B(x,R1) so
dB(x)Ncog(E) = 0, contradiction with B(x) € §. O
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Corollary 3.7. Let A be an R-body. Then :

(i) E(A) := {x: B(x) C A“} (the set of centers of balls of radius R contained
in A°) is closed;

(ii) Vy € dA, there exists xo € E(A) with the property: y € dB(xy).

Proof. Let xo be an accumulation point of E(A) and E(A) 3 x, — xo; let b €
B(xp), then lim,,_,c0 |b — x,,| = |b — x9| where |b — xo| < R. Thus for n sufficiently
large |b — x,| < R, therefore b € B(x,) C A°,Vb € B(xp). Then B(xy) C A,
xo € E(A) and (i) holds.

(ii) follows by Theorem 3.6. O

Lemma 3.8. Let A be a body; if A€ is union of closed balls of radius R, then A
is an R-body.

Proof. For every y € A¢ there exists (B(z))™ C A%, y € (B(z))”. As A and
(B(z))~ are closed and disjoint, there exists R; > R so that B(z,R;) C A¢. Then
there exists a ball B C A°,B > y. Thus A€ is union of open balls of radius R and
A is an R-body. OJ

Let us notice that there exist R-bodies A such that A€ is not union of closed
balls of radius R. As example, let A = B€.

Theorem 3.8. Let A be a body, which is not an R-body. Then there exists
Yo € A¢ such that yg belongs to no closed ball of radius R, contained in A€.

Proof. By contradiction, let us assume that every y € A€ is contained in a closed
ball of radius R contained in A€, then A€ is union of closed balls of radius R and
satisfies the hypothesis of Lemma 3.8, then A is an R-body. Impossible. U

Let C¢ be the metric space of the compact bodies in E¢ with the Hausdorff
distance 6y (F,G) :=min{€ > 0: F C G¢, G C F}.

From a bounded sequence in C? one can select a convergent subsequence in
the Hausdorff metric (see e.g. [13, Theorem 1.8.4]).

Let RY = {A CC?:Ais an R-body }. Let A C E? be a body, £ > 0. Let
A = {x € E?: dist(A,x) < €} = (A¢)". D = B~ will be any closed ball of
radius R.

Theorem 3.9. Let A™ be a sequence of compact R-bodies; let us assume that
A — A € ¢ in the Hausdorff metric. Then, A is an R¢-body for every 0 <
R: <R.

Proof. By contradiction, let us assume that A it is not an R¢-body. Then by
Theorem 3.8, there exists yg € A° with the property

yo belongs to no closed ball, of radius R, subset of A°. ®))
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As dist (y9,A) > 0, then yg € (A¢)¢ for suitable ¢ > 0. As A" — A in
the Hausdorff metric, there exists a sequence &, — 07 satisfying A" C Ag,,
A C A,,. For n sufficiently large (A)° C (Ag,)¢ and yo € (Ag, )¢ C (AM)C. As
A € R4, then there exist open balls B(x,) satisfying yo € B(x,) C (A"™)¢; then
dist (x,,A™) >R, dist (x,,A) >R—¢,.

As |x, — yo| < R, by possibly passing to a subsequence, x, — xo € E¢.
The point xo satisfies: |xo —yo| < R, dist (xg,A) > R. Then B(xy) C A° and
D := (B(xp))~ is a closed ball of radius R containing yy. If yo € B(xp), then
D, = B (xg,p), with p = max{|yo — xo|,Re} is a closed ball which provides
a contradiction with (5). In case yg € dB(xp) the closed ball enclosed in D,
tangent to dB(xp) at yo, with radius R, provides a contradiction with property
(5). 0

Remark 3.9. In section 5 it will be shown that in E* a limit (in Hausdorff
metric) of a sequence of R-bodies may be not an R-body. In Corollary 4.7 it will
be proved that, in E2, a limit of a sequence of R-bodies (in Hausdorff metric) is
an R-body too.

Theorem 3.10. Let X = dB(r) C E“ be a sphere of radius » > R and let E be a
body subset of ¥. Then E is an R-body.

Proof. X is a topological space with the topology induced by E¢ and E is closed
in that topology. Then X\ E is union of (d — 1)-dimensional open balls in X. Let
D = (B(r))~,as EY\ £ = B(r)UD¢, then

EY\E =B(r)UD‘U(X\E)

is union of the following open balls of radius R:
(i) all open balls of radius R contained in B(r), which fill B(r) since r > R;
(i) all open balls B of radius R contained in D¢;
(iii) all open balls B of radius R satisfying the property: BNX is a (d — 1)-
dimensional open ball in £\ E.
So E is an R-body. O

With a similar proof, the following fact can be proved.

Theorem 3.11. Let E C E“ be a body, subset of a hyperplane IT. Then E is an
R-body.

Remark 3.10. In [10], p.9, a question of Borsuk was stated: ’Are the R-bodies
locally contractible?’.

The Borsuk’s question has a negative answer: let IT be an hyperplane in E<.
By Theorem 3.11 every body, subset of II, is an R-body; then there exist not
locally contractible bodies subsets of I1.
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4. Properties of R-bodies in 2.
4.1. R-hulloid of three points in 2.

Let R be a fixed positive real number. Let 7 be a not degenerate triangle in
E2, V = {x1,x2,x3} be the set of its vertices, (V) be the radius of the circle
circumscribed to T. By Theorem 3.10, if (V) > R, then cog(V) =V.

Proposition 4.1. Let {x,x;,x3} be the vertices of a triangle 7 inscribed in a
circumference C of radius r. Three possible cases may occur:

1) ([6, pag 16]) if T is acute-angled then the three circumferences of radius r,
each one through two vertices of 7', different from C, meet in the orthocenter y
of T;

ii) if T is obtuse-angled in x3 then the two circumferences of radius r through the
vertices {x1,x3} and {x2,x3}, respectively, different from C, meet C in x3 and in
a point exterior to T;

iii) if 7 is right-angled at x3 then the two circumferences of radius r through the
vertices {x;,x3} and {xy,x3}, different from C, are tangent at x3.

Proof. 1) it is related to the Johnson’s Theorem [5]; ii) and iii) follows by con-
struction. O

Theorem 4.2. Let V = {x;,x2,x3} be the set of the vertices of a triangle T with
circumradius r = r(V). If r(V) < R, then

cor(V)=VUT,

where T C T is the curvilinear triangle bordered by three arcs of circumferences
of radius R; each one through two vertices of 7" and relative to the circle not
containing the remaining vertex of 7. If T is a right-angled or obtuse-angled
then the vertex of the greatest angle of T is also a vertex of 7, that is the end
point of two consecutive arcs of 9T

Proof. Let B(g;,r),B(c;,R) be the open circles, not containing x;, with boundary
through the two vertices of T different from x;,i = 1,2, 3. In the case i) of Propo-
sition 4.1, the orthocenter y of T is in the interior of T and y € N;—; 239 B(q;,r).
As R >r: TNB(c;,R) C TNB(qi,r), then dist (y,B(c;,R)) > 0, (i = 1,2,3).

Thus
3 C
=T (U (cj,R ) (6)
J

is a curvilinear triangle with y € Int(T
of the circumferences dB(c;,R) (i =1

); moreover AT is union of of three arcs
,2,3).
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If T is obtuse-angled at x3, case ii) of Proposition 4.1), the two circumfer-
ences dB(c;,R) containing x3 and another vertex of 7 cross each other in x3
and in a point exterior to 7. If T is right-angled at x3 the two circumferences
dB(q;,r) meet and are tangent to each other in x3, then again the circumfer-
ences dB(c;,R) cross each other in x3 and in a point exterior to 7. In both cases
dist (x3,B(c3,R)) >0 and T, given by (6), is a curvilinear triangle with a vertex
at x3. ]

4.2. Two dimensional R-bodies, equivalent definitions

Definition 4.3. Let a;,a, be two points in E?, with 0 < |a; —az| < 2R. Let
B(x1),B(xz) the two open circles with the boundaries through a;,a,. Let us
define

H(aj,a;) = B(x;) UB(x2),

and let h(aj,ay) be the intersection of all closed balls of radius R containing
ap,as.

Definition 4.4. Let A be a planar body. A satisfies the property Qg if :
Vaj,ap,az € A the R-hulloid of the set {a;,az,a3} is a subset of A.

When x,y are points on a circumference dB, let us denote with arcyp(x,y)
the shorter arc on dB from x to y.

Lemma 4.1. Let A be a planar body. If A satisfies the property g, then

{a1,ao} CA,0< a1 —az| <2R:bH(a1,a2) \{a1,a2} CA° = H(a1,az) C A“.
(N

Proof. Let H(a1,a2) = B(x1) UB(x2). Let us assume, by contradiction, that
there exist az € AN (B(x1) \ h(a1,a2)). Let T = co({a1,a2,a3}), then r(T) <R.
By Theorem 4.2 there exist y1,y2 € arcyp(y,)(a1,az2) satisfying

arcyp(x,)(v1,y2) C cor({ar,a2,a3}) C A.

As
arcyp(x,)(v1,y2) C hlar,az) \{a1,a2} C A,
this is impossible. The proof is similar if a3 € B(x2). O

Theorem 4.5. Let A be a planar body. A is an R-body if and only if A satisfies
the property Qg.
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Proof. Let A be an R-body then cor({a1,a2,a3}) C cor(A) = A and Qg holds
for A.

On the other hand let assume the property Qg holds for a body A. Let us
prove that A is an R-body, by showing:

if yp€A® then dB>yy, BCA". ()

Let yo € A, then there exists § > 0 such that dist (yg,A) = 6. If § > R, then
B(yo,R) C B(yo,0) and (8) holds. Let 6 < R. By definition of 3, there exists
a; € ANJB(yo,8) and B(yo,0) C A€. There are two cases:

i) there exists a point ap # aj, ay € ANIB(yp,0);

ii) ANJdB(yo,0) = {a1}.

In the case i), h(a1,a2) \ {ai,a2} C B(y0,0) C A°. Let H(ay,a) = B(x;)U
B(x); by Lemma 4.1 the following inclusion holds:

H(al,ag) C A°. )

As yo € B(x1) or yo € B(x2) and both balls B(x;),i = 1,2 have empty intersection
with A, then yy satisfies (8).

In the case ii) on dB(yp,d) let a, be the symmetric point of a; with respect
to the center yo. Fort > 2 let a(t) =a; + (t — 1)(a. —ay). Let tg > 2 be such
that |a; — a(tg)| = 2R. The set function t — h(ayj,a(r)) \ {a1}, for 2 <t < g,
is strictly increasing with respect to the inclusion. If for all 2 <t < tg the set
h(ai,a(t))\ {a1} C A then lim,_;,_ h(ay,a(t)) is a closed ball D > y of radius
R, A€ D Int(D) > yo and (8) holds. Otherwise, there exists 2 < T < tg satisfying

b(ar,a(t))\ {a1} NA # 0. Let
F=Inflr € 2] : (blar,a()\{a}) NA #0}
and let
2<t <t = F):= (Bana()\ {ar}) N(BO0.S).  (10)

By construction {F(¢)} is a continuous family of bodies, strictly monotone
with respect to the inclusion, with dist (F(¢),A) > 0 for¢ <7. Then F(f)NA # 0,
Int(F(f)) C A° and dist (a;,F(f)) > 0. Therefore there exists ax € dF(f) N JA
of minimum distance from a;. This implies that arcyp ) (a1,az) has no interior
points of the body A. Then, h(aj,a2) \ {a1,a2} C A; by arguing as in case i),
the inclusion (9) holds and yj satisfies (8). O

Theorem 4.6. Let A C E? be a body. If A is a p-body for every positive p < R
then A is an R-body.
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Proof. 1If A is p-body the property Q, holds for p < R. Let us show that it holds
for p =R. Letay,az,as € A, with r({a1,a2,a3}) > R, then cog({a1,a2,a3}) =
{a1,a2,a3} C A. Incase r({ay,az,a3}) <Rlet p > r({ay,az,a3}); by Theorem
4.2, with p instead of R and a;,ay,a3 in place of x1,x2,x3, it follows

cop({ar,az,a3}) = {ar,a2,a3} | J Tp-

fp a curvilinear triangle subset of A, bounded by arcs of radius p. As A is closed
and Tp — T, then T C A. Therefore Qg holds too and previous theorem proves
that A is an R-body. ]

From Theorem 4.6 and Theorem 3.9 it follows

Corollary 4.7. A limit of a sequence of planar R-bodies (in Hausdorff metric)
is an R-body too.

Remark 4.2. With arguments similar to the proof of Theorem 4.5, it can also
be proved that for a planar body A the property g is equivalent to the property
(.

4.3. Connected and disconnected R-bodies in .2

Theorem 4.8. Let E be a connected body in E?, contained in an open ball B of
radius R; then cog(E) is connected.

Proof. As E is connected, by Proposition 2.6, E admits R-hull A of reach > R;
then, by Remark 3.2, A = cog(E). By Proposition 2.4 the set A is connected. [

In the previous theorem the assumption that E is contained in an open ball
of radius R is needed as the following example shows.

Example 1. In E? let £y := dB(0,Ry), with

R
— <R, <R.

V3

Letk; € Xo,i=1,2,3 be the vertices of an equilateral triangle 7" and let d B(o}, R)
the circumference, through the two points k;,i # j, with k; & B(o;,R). Let D :=
(B(0,4R))™ and

E:=Dn <B(O,Ro) OB(o,-,R)) :
j=1

Then E is a planar connected body with disconnected R-hulloid.
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Proof. 1t is obvious that E is connected since it is homotopic to a ring. E°
is an open set since E° is the union of D¢ and open balls. As Ry < R and
Vi# j,ki € dB(0)),k; & B(o;) the set E€ does not contain the set of the vertices
k;. Let

3 3
T:= (U B(O./,R)UB(O,R0)> \ (U B(Oj,R)> .
j=1 j=1

T is a curvilinear triangle and it is a closed connected set disjoint from E; more-
over any point of 7 can not lie in an open circle of radius R avoiding all the
vertices k; of the equilateral triangle 7. Then, by Lemma 3.5, EUT C cog (E);
as the complementary of EUT is DU jB(0j,R), union of open balls of radius
R, then EUT is an R-body, that is

cop(E)=EUT
which is a disconnected R-body. O

The previous example can be modified to get a simply connected set E, such
that cog(E.) is disconnected. Let us consider E, = ENW¢, where W is a small
strip from dB(o1,R) to dD(4,R). Clearly cor(E,) = cor(E) is disconnected
and E, is a simply connected set.

5. R-hulloid of the vertices of a simplex in R?

Definition 5.1. Let d > 2, 1 <n <d. Let {vi,...,v,:1} C R? be a family of
affinely indipendent points and let V = {vy,...,v,:1} C R, An n-simplex is
the set 7 = co(V).

Let T =co(V); the (d — 1)-simplexes T; = co(V\ {v;}),(i=1,...,d+ 1) are
called the facets of 7. If V lies on a sphere, centered in Lin(T'), and its points
are equidistant, then T will be called a regular simplex.

It is well known the following fact: let V the set of the vertices of a d-
simplex T in [E¢. There exists a unique open ball B(V') such that all the vertices
in V belong to dB(V), called the circumball to co(V). Let us notice that D(V') =
(B(V))~ does not coincide (in general) with the closed ball of minimum radius
containing V, as an obtuse isosceles triangle shows.

Definition 5.2. Let | <n <d; if T is a n-simplex, the circumcenter ¢(7T') and
the circumradius r(7') are the center and the radius respectively, of the unique
open ball B(¢(T),r(T)), called circumball of T, such that: i) ¢(T) € Lin(T)j; ii)
dB(c(T),r(T))DV.
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Let us denote
r(V):=r(co(V)),c(V):=c(co(V)),B(V):=B(c(V),r(V)).
From Theorem 3.10 it follows that

Corollary 5.3. If 7(V) > R then
cop(V)=V. (11)

Definition 5.4. Let R > 0. The R-hulloid of V will be called full if its interior is
not empty.

If d =2, let V be the set of the vertices of a triangle with circumradius less
than R; by Theorem 4.2, cog (V) is full.

5.1. Examples of R-hulloid of the vertices of a simplex in E¢

Convex sets on S¢~! have been studied in [14]. Here properties of regular sim-
plexes on S?~! are recalled and used. If S is a regular simplex, centroid and
circumcenter coincide.

Lemma5.1. Letd > 1,Ry > 0,X0:= dB(0,Rg) in E%. Let W = {ky,...,kg1} C
Yo be the set of the vertices of a regular d-simplex S on ¥y. Then

<kikj>=—Ri/d, i#] (12)

d+1
k=K = /2R, (13)

Let Wy =W\ {k;} and let £; C Xy be the (d — 1)-dimensional sphere through the
points of W;. Then ¥; has center —k;/d; moreover ¥p € ¥

and

the spherical distance on Xy from p to W is less or equal to Rparccos1/d.
(14)

Proof. As the centroid of S is 0, then

d+1
Y k=0, |kI>?=R;, <kikj>=Rjcos¢ (i,j=1,....d+1),i#j

d+1
0=<kj, Y ki>=(Ro)*+d(Ro)*cos¢ (j=1,....d+]1).

i=1
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Therefore cos ¢ = —é; so (12) and (13) hold.

As S; = co(W;) is an equilateral (d — 1)-simplex, the centroid of S; will be
Iy j+ikj = —ki/d and coincides with the center of ¥;. Let F; the spherical (d —
1)-dimensional ball on Xy of center —k; bounded by X ;. Then F ; has spherical

radius
(—ki,k;)
R}

As U?;’IIF i = X the thesis follows. O

Rparccos = Rparccos 1/d.

Theorem 5.5. Let d > 2 and let S be the regular simplex introduced in Lemma
51;letR = %RO. Then the set W of its vertices is not an R-body and cog(W) =
WU {0} is not full.

Proof. Let B(oj, p;j) with the property that
aB(Ojupj) 2 {07k17'"7kj—17kj+17"'7kd+1}'
Clearly 0; = —Akj, (A > 0). As |o; — 0> = |o; — k;|?,i # j then

(AR0)*> = (ARo)* + (Ro)* +24(Ro)* cos ¢,

therefore A = 4, 0; = —4k; and p; = |0; — 0| = d%:R.
From (13) it follows
1 s
loi—oj| = 2+2d JF#i (15)

Claim Q: Let R— Ry < |z| <R, Q,:= B(0,Ry) NB(z,R). Then dQ,NXy is
a spherical (d — 1) dimensional ball on ¥ of radius r. If |z| < R then

r > Rparccos 1/d.

Proof: let v = z/|z|, the family of Q,, is ordered by inclusion for R — Ry <
A <R, with minimum set for A = R; for A = R the spherical (d — 1) dimensional
ball dQp, /|| has radius Ryarccos 1/d.

If R— Ry < |z| <R, then from Claim Q and (14), any open ball B(z,R),
which contains the point O contains at least one of the vertices k;, i =1,...,d+1.
As 0 € W the set W is not an R-body. Moreover since

d+1

(Wu{0})* UBOJ> ) J(coW))e,

then W U {0} is an R-body containing W; then W U {0} is the R-hulloid of W
and it has empty interior. O



18 M. LONGINETTI - P. MANSELLI - A. VENTURI

Theorem 5.6. In [E3 there exist sequences of R-bodies with limit, in the Haus-
dorff metric, a body that is not an R-body.

Proof. Let us use the notations of Lemma 5.1 in the special case d = 3.
Letk;,i=1,...,4 the vertices of a regular simplex in [E* on the sphere X :=
dB(0,Ry), Ry = 2.
For any fixed i = 1,...4 the vertices k;, j # i belong to the boundary of the
ball B(O,',R), with 0; = —%ki.

From (12) it follows that
2.0 ., ..
<0j,k,~>:§R, i£j, i,j=1,...,4

Let € — 0" and let xl(") =ki+ 8n|],§—f|,i =1,...,4. The points xl(n) are the
vertices of a regular simplex 7" in E3. For i # j let R, = |o; —xﬁ.") |, then

2
RE=R*+el+2<ki—ojki/|ki| > en=R2+e,$+§Re,, > R%.

For all n € N let
W = Y = T A (UL B(or, Ry

As the complementary of the union of open balls of radius greater than R is
an R-body and 7 is convex then V) is an R-body too. The limit of W is
W = {xi,...,x4} which is not an R-body as proved in Theorem 5.5. O

Theorem 5.7. Let d > 3; in B¢ there exist connected bodies in a ball of radius
/2R with disconnected R-hulloid.

Proof. Let us consider the regular simplex S in E¢, defined in Theorem 5.5,
with vertices on Xy := dB(0,Ry), Ry := %R.

The (d —2) spherical surface L; ; := dB(0;,R)NdB(0;,R), i # j, has center
219 and contains 0. Then, by (15), L; ; has radius

2
1 1 1 1
. _ 2 pa(l _ 1
|(0i+0j)/2] \/R R(2+2d) R\/2 57

Then, the maximum distance of L; ; from 0 is

at

1 1
2Ry = — — 2R.
2 2d<\f
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Let D := (B(0,+/2R))™ and let

d+1 ¢
E:=Dn (U B(oj,R)U{0}> . (16)

j=1

Claim 1: E is connected.

First let us consider the (d — 1) spherical balls U; = B(0;) N dB(0,/2R) cen-
tered at ¢; = v/20;. As 0 € dB(0;,R), then by elementary geometric arguments,
the spherical radius of U; is %ﬁR. By (15), the spherical distance between o;

and o on dB(0,R) is
.1 1 T
2R arcsin 3 + 2 > ER'

Then, the spherical distance between ¢; and c; is greater than %ﬂR Since the
(d — 1) spherical balls U; have radius Z+/2R, they are disjoints and

€ = 9B(0,v2R) \UL]'S;

is a connected subset of dE. Let us consider now x € E, then x & B(o;,R); since
0 € dB(0,R), then Ax ¢ B(o;) for A > 1. Therefore the segment connecting x
to ﬂﬁR € £ is a subset of E. Claim 1 follows.

Claim 2: E€ is an open set.

As

d+1
ES — D° U (U B(oj,R)U{O}> s
j=1

it is enough to show that {0} C Int(E€). This follows from the fact that {0} is
in the interior of the simplex S, and Int(S) C E°.

Claim 3: The set of the vertices of S is contained in E .

For each i the vertex k; € dB(0;,R), j # i and k; & B(0;,R) ™.

E is a closed set from Claim 2; from Claim 3 and (16) it follows that E is
not an R-body, since any open ball of radius R, containing 0 € E¢, cannot be
contained in E°.

Claim 4: The point 0 has a positive distance from E.

Let us consider fori =1,...,d + 1 the simplexes

Si =co({0,ki,....ki—1,kiy1,kqt1}).

Then S = U;S;. Let 0 < € < dist (0, S;), where S; are the facets of S; as B(0,¢&) C
U;B(0,€) N S;, then
dist (0,E) > €.
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Let us consider now the body E U {0}. Since

(EU{0})° (dLJjB (cj,R >7

then E U {0} is by definition an R-body and is the minimal R-body containing
E. Then cogr(E) = EU{0} which is a not connected set, since is the union of
two closed disjoint sets. O

6. R-bodies and other classes of bodies

In Remark 3.3 it is noticed that the class of R-bodies contains the class of bodies
which have reach greater or equal than R.

The following class has been introduced in [7]: the class ICé/ R of bodies A
satisfying the following property:

Vx € A there exists a closed ball D(R) > x: D(R)NInt(A) = 0. (17)
Theorem 6.1. The following strict inclusion holds:

R-bodies C K3/, (18)
Moreover let A € ICl/R and A = (Int(A))~, then:
1)if d = 2, then A is an R-body;
ii) if d > 2, then A can be not an R-body.

Proof. The inclusion (18) is obvious: since if A is an R-body and x € A€, then
x € B(R) and B(R) NA = 0; therefore dB(R) NInt(A) = 0. Then, if x € D(R) =
dB(R) UB(R) thus D(R) N Int(A) = 0. The inclusion is strict: let E = D(0,r) N
B(0,R)“UdB(0,r1), with r; <R < r. Then E is not an R-body as if x € B(0,R) \
dB(0,r;) there is no ball B C E€ containing x; on the other hand E € C, IR

Letd =2and A € ICI/R = (Int(A))~. By contradiction, if A is not an
R-body, then, by Theorem 4.5, there exist aj,as,a3; € A such that there ex-
ists z € cor({ai,az,az}) NA°. Since z # a;,i = 1,2,3, then cog({ai,a2,as})
strictly contains {aj,az,as}; by Corollary 5.3 with V = {a;,az,a3}, it follows
that (V) < R. Thus by Theorem 4.2, it follows that

cor(V)=VUT.

T is a curvilinear triangle with (int(7))~ = T. Since z € T N A€ and A is open,
then there exists Z € Int(T) NA°. As

z€Int(T) Cint(cor(V),
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every ball D(R) > Z contains at least one of the vertices g; in its interior, let a;.
Then D(R) contains a neighborhood U of a; € A. Since A = (Int(A))~, a; can
not be an isolated point of A, and in U there are points of int(A). Therefore
property (17) does not hold for 7 € A and A ¢ ICé/ R, contradiction.

In case ii), let us consider the set E defined by (16) of Theorem 5.7. E is
not an R-body but £ U {0} is it. Then any point of E¢, different from 0 satisfies
property (17); moreover

Int(E) = Int(D) N9Z{ D(0j,R) N{0}°,

then O satisfies property (17) too, since the closed ball D(01, R) does not intersect

Int(E). Then E € /Cé/ R and E is not an R-body. Moreover it easy to see that
E=(Int(E))". O
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