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Introduction

The central theme of this course is the introduction of a mathematical model for
the description of an autonomous drone swarm, constituted of a large number
of drones which shall self-organize and cooperate in order to perform collective
tasks in real-world situations, such as assistance in emergency situations (forest
fire, avalanche, shipwreck, earthquake, etc), oil and gas pipelines surveys, geo-
magnetic surveys, protection of vulnerable sites etc. The model will be based
on simple mathematical rules describing the inter-drone interaction forces, like
repulsion and attraction for example and resulting in a global behaviour of the
whole swarm. A detailed mathematical analysis of the designed model as well
as numerical simulations shall be performed with the aim to remain as close as
possible to reality.

Understanding the essential characteristics of the emergent collective be-
haviour of a drone swarm, requires a deep understanding of the repercussion
of each (inter-drone) force on the overall collective behaviour, as well as of the
influence of several factors, such as the environment, time-delays in the reaction
times and inertial effects of the drones as well as inaccuracies of the on-board
sensors. Thus a lot of aspects enter into the modelling, rendering the design of
such autonomous drone swarms very challenging and interesting from a mathe-
matical point of view.

The present work is thus concerned with the mathematical modelling and
analysis of the autonomous dynamics of a drone swarm. Numerical simulations
will be also performed. The manuscript is composed of the following chapters:

* The introduction gives a general overview of the existing theory in this
domain;

* Chapter 1 explains briefly how to obtain the Fokker-Planck equation from
the underlying Langevin’s system, which corresponds to Newton’s laws
with an additional stochastic force field (noise term); this part is necessary
to understand the mesoscopic description of particle swarms;

* Chapter 2 introduces the entropy methods as a “standard” mathematical
tool for the investigation of the long-time behaviour of solutions to ODE
systems;

* Chapter 3 is the main part of this course and deals with the particular case
of drone swarm modelling and the mathematical as well as numerical
analysis of the proposed model;
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* Chapter 4 regroups some fundamental lemmas and inequalities necessary
in the whole manuscript.

0.1. Collective behaviour in nature

Collective motion or self-organization is an astonishing phenomenon, that can
be observed in various natural processes, such as fish schools, bird flocks, herds
of bulls or sheep, insect swarms, cellular dynamics, pedestrian behaviours etc
(see Fig. [T). Patterns appear due to the organized (cooperative) motion of a
large number of small constituents. Such natural systems composed of inter-
connected particles tend to self-organize into macroscopic structures with the
aim to form more intelligent or more adaptive large-scale dynamics. Self-
organization does not happen by chance, but rather due to the numerous, specific
interactions among the lower-level components of the system. The rules spec-
ifying these interactions among the components are local, without reference
to the global behaviour of the swarm, and decisions are made by the compo-
nents/particle themselves.

Figure 1: Examples of collective behaviours arising in nature [41-43].

The underlying forces leading to self-organization can be of various type, as for
example:

* physical mechanisms (gravity, electromagnetic forces, nuclear forces, ...);
* chemical mechanisms (pheromones, Van-der-Waals forces, ...);

* instinctive survival mechanisms (fear, feeding, ...).

Self-organized systems obey evolution equations which are generally highly
non-linear. Such models take the form of ODE systems or transport-type PDEs,
where the individuals are submitted to forces generated by their neighbours. De-
pending on the nature of the inter-particle interactions, the collective behaviour
of the swarm may differ, for instance individuals can aggregate, align their ve-
locities or disperse.

The systematic mathematical study of “flocking”’-models began with Viscek
and his collaborators [39]], with the introduction of a stochastic, time-discrete
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model. Later Cucker-Smale [[18,|19] proposed a deterministic, time-continuous
model. Other models have been then proposed for the description of the col-
lective fish behaviour [21} 36] and bacteria [11]. Among the numerous existing
models one is particularly appreciated, namely the three-zone model, based on
Reynold’s empirical rules, namely

* Flocking: the desire of individuals to stay together, for safety or social
reasons;

* Collision avoidance: individuals tend to repel, when coming too close
together;

* Velocity matching: attempt to keep similar velocities and flying direc-
tions as its neighbours.

0.2. Drones

To model mathematically the dynamics of a swarm of autonomous flying robots
like drones, the observation of natural emergent systems can offer lot of in-
spiration. By autonomous we mean that every agent uses on-board sensors to
measure its state as well as the states of its neighbours and performs all con-
trolling computations with an on-board computer, i.e. the control system is
decentralized (see Fig. [2| for some ex.). Important to underline is that the paths
of the agents are not predefined, but emergent from the underlying inter-particle
relations as well as from exteriour force-fields.

One essential question to be asked is: ”Which is the interaction between the
individuals at the microscopic level, which gives rise to the desired macroscopic
behaviour?” There is no need to assume sophisticated local inter-particle con-
nections to provoke a complex macroscopic pattern. Models describing clouds
or swarms of particles are essentially based on a delicate balance between long-
range attraction (to form a cloud) and short-range repulsion (to avoid collisions).
Only when the desired macroscopic dynamics is not obtained, more complex
rules have to be considered. Contrary to existing models for biological swarm
behaviours, in a drone model one should additionally take into account some
system-specific features, such as:

* Inertia: The drones are unable to change immediately their position and
velocity, due to their inherent inertia;

* Time delays: Each drone needs time to receive and process the informa-
tion got from its neighbours;

* Noise: Inaccuracy of the sensors measuring the position and velocity of
the drone itself as well as of its neighbours is a so-called “inner noise” to
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be taken into account, whereas “outer noise” are unpredictable environ-
mental effects, such as the wind for example;

* Autonomy: Small batteries due to weight restrictions lead to short life-
times for drones.

Other aspects which have to be taken into account, are for example the fact
that losing one or more drones has to have little impact on the overall swarm
dynamics. Without going too much into details, it is clear that an engineer has
also other criteria to consider, as flexibility and robustness of the drone swarm,
efficiency and cost constraints.

Figure 2: Examples of application of some drone swarms [44-46].

0.3. Mathematical problematic

Modelling is the art of taking a real-world situation and of trying to find an
accurate mathematical description for it. It is more than a science, because it in-
volves choices that can not really/rationally be justified. Intuition and personal
preferences for example play a major role (for ex. when deciding whether a
deterministic or a stochastic approach is better adapted for a specific situation).
To imagine how difficult such mathematical modelling can be in our particu-
lar situation, think of some questions which might be asked, like “Why do we
choose this type of a repulsion/attraction force between drones?” or “Why does
one model the environment in such a manner?” Furthermore, a mathematical
model should not only reproduce a specific natural phenomenon, but it has also
to be consistent with this phenomenon, meaning that the chosen parameters, as
for ex. the maximal velocity of the agents, have to be conceivable from a phys-
ical/natural point of view.

At the microscopic level, the dynamics of a cloud composed of N particles
is based on Newton’s classical laws of mechanics, describing the time-evolution
of the position of each individual x;(¢) as well as of its velocity v;(¢) via the
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equation
xi(t) = vi(t),
, Vi=1,....N,
V?([) = FEXt(t7xi)vi)+F;'mt(xlv"')xN)Vlu"'7VN)7
(1)

where F* represents an exterior force term, for example describing the wind,
obstacles or the target of the drones, and F;™ is the inter-particle force term ex-
erted on particle i by the other surrounding particles. We are thus concerned with
a coupled, non-linear ODE system, which cannot be solved explicitly, however
some qualitative study of the stability of particular solutions, such as equilib-
rium patterns, can be performed as well as the study of long-time asymptotic.

The delicate modelling part is now to choose adequate force terms, which
permit a realistic description of the collective behaviour one is observing or is
interested to generate. Depending on the specific choice of these force terms the
model can have rather different properties. The inter-drone interaction force is
directly responsible for the emergence of specific patterns, like milling, flocking,
clustering, etc.

0.3.1. ODE, Lyapunov functional, equilibrium

As we just saw, the mathematical modelling of collective behaviours in nature
leads to ODE systems of the following form

u'(t) = f(t,u(t)), vVt >0, @
u(0) =up € Q,

where the (non-linear) function f : R x @ — R?, with Q C R, is assumed

to satisfy the standard conditions for the existence and uniqueness of a global

solution u : R} — Q (Cauchy-Lipschitz theorem). Let us recall now rapidly the

mathematical tools of Lyapunov stability theory, permitting to analyse in more

details the long-time behaviour of such ODE:s.

Definition 0.1. (Equilibrium point)
A solution u* is called equilibrium corresponding to 2) if f(¢,u*) = 0 for all
t>0.

Remark that by translation one assumes often that the investigated equilib-
rium point is u* = 0. Moreover, if several equilibria exist, one usually investi-
gates the stability of each one separately.

Definition 0.2. (Stability in the sense of Lyapunov)
The equilibrium point u* is stable in the sense of Lyapunov if for each € > 0
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there exists a constant § > 0 such that one has the implication
[lu(0)—u*|| <& = ||lu(t)—u*||<e Vi>0.
An equilibrium point is said to be “unstable”, if it is not stable.

Lyapunov stability is a very mild requirement for equilibrium points, as it
does not require that trajectories starting near an equilibrium, tend towards this
equilibrium asymptotically in time, i.e. for t — oo.

Definition 0.3. (Asymptotic stability)
The equilibrium u* of (2) is asymptotically stable, if

* y* is stable (in the sense of Lyapunov);

* u* is locally attractive, meaning there exists 6 > 0 such that

*

[lu(0) —u*]|<d = [11_>n;10u(t):u

It is important to note that the definition of asymptotic stability does not
quantify the rate of convergence towards this equilibrium.

Definition 0.4. (Exponential stability)
The equilibrium «* of (2)) is exponentially stable if there exist some constants
C,x >0 and § > 0 such that

[lu(0) —u*|| <& = |ju(t)—u*||<Ce *||lug—u*||, Vt>O0.
The largest constant k¥ > 0 which may be used is called “rate of convergence”.

Exponential stability is a strong form of stability, which is very useful in ap-
plications. Indeed, exponentially stable equilibria are very robust with respect
to perturbations and are hence preferred configurations.

Very often it is possible to determine whether an equilibrium of a nonlinear
system is locally stable, by simply investigating the stability of the correspond-
ing linearized system, linearized around the equilibrium point. This approach
is the so-called Lyapunov’s linearized method, and is based on the following
theorem.

Let us consider the following linearized system, with A € R?*¢ a constant matrix
and ug € R?

'(t) =Au(t), V>0,
{u() u(r) .
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Lemma 0.5. (Stability of linear systems)
Let us assume that A is regular, such that u* = 0 is the only equilibrium of (3).

If

* A has at least one eigenvalue with strictly positive real part, then the
equilibrium u* is unstable;

* A has all eigenvalues with non-positive real parts, and those eigenvalues
having zero real-part are non-defective (algebraic multiplicity is equal to
geometric one), then the equilibrium u* is stable;

* A has all eigenvalues with negative real parts, then the equilibrium u* is
asymptotically stable.

Lyapunov’s direct method is different and allows to determine the stability
of a system without linearization and without explicitly integrating the differen-
tial equation. The method is based on some physical arguments, in particular on
the existence of some “energy” or “entropy” £ in the system and on the study
of the rate of change of this energy during the time evolution of the system.
Briefly, if £ is positive definite and its derivative along the trajectories u(t) of
the system is non-positive, then one can show that the equilibrium point is sta-
ble. By imposing additional conditions on £ and %5 (u(t)) one can even show
asymptotical or exponential stability, both locally and globally.

To be more precise, let us consider the autonomous system

' (t) = fu@), V>0, @
u(0) =up € Q,
with f: Q C R? — R being of class C' (could be rendered weaker), assuming
that a global solution u : Rj — Q exists, and let u* € Q be the unique equilibrium
solution.

Definition 0.6. (Positive definite function)
A continuous function & : Q C RY — R, satisfying

E(w)>0, VueQ\{u}, aswellas Eu*)=0,
is called positive definite (around u*). If these requirements are valid only lo-

cally, meaning for all u € Q with ||u — u*|| < R, then one says that £ is locally
positive definite.
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Theorem 0.7. (Stability/asymptotic stability)
Let us consider the autonomous ODE (@), with solution u : RJ — Q and equi-
librium point u* € Q. If there exists a continuously differentiable functional
E:QCRY R, such that
(i) € is positive definite around u* and
(ii) £E(u(t)) < 0 along all trajectories u(t) of @),
then the equilibrium u* is stable.
If in addition
(iii) —%E(M(l‘)) is positive definite around u*,
then u* is asymptotically stable.

Exponential stability is a special case of asymptotic stability, with a partic-
ular convergence rate.

Theorem 0.8. (Exponential stability)

Let us consider the autonomous ODE (@), with solution u : RS — Q and equi-
librium point u* € Q. If there exists a continuously differentiable functional
E:Q CRY - R, such that

(i) € is positive definite around u* and

(ii) LE(u(t)) < —x&(u(t)) along all trajectories of (@), with some constant
k>0,

then u* is exponentially stable.

In Chapter [2| we shall give some details about how to find such Lyapunov
functionals for specific ODE-systems and how to prove the asymptotic stability
of equilibrium solutions.

0.4. Some examples of flocking models

Let us consider in the following a particle system consisting of N identical
agents with positions and velocities denoted by (x;(¢),v;(t)) € RY x R4, and
masses m; = 1 for i = 1,...,N, where d =2 or d = 3. The particles are in-
teracting with each other via simple local rules, to be defined in the following.
The aim is to investigate, starting from a given initial configuration (x?, v?)i»\;l €
(R? x RY)N, the long time behaviour of the whole particle system. For this, let

us define what we mean with flocking.

Definition 0.9. A multi-particle system {(x;,v;)}Y ; is said to have an asymp-
totic flocking pattern, if the following two conditions are satisfied:

(i) (Aggregation) The spatial diameter D(r) of the particle cloud is uniformly
bounded in time, meaning

supD(1) <oo,  D(t) := max|x(r) —x;(1)].

t>0 LJ
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(ii) (Velocity alignment) The velocity diameter .A(¢) of the particle cloud tends
towards zero as ¢ — oo, namely

EmA®) =0,  A(t) = max|vi(t) —v;(1)].

t—oo 1]

Flocking requires thus the emergence of alignment, hence consensus in ve-
locity. Often the word swarming appears also in literature, usually in relation
with insect swarms. It is a less restrictive notion than flocking, requiring only
cohesion, namely

sup max [x;(1) —xc(1)] <o, sup max|vi(t) — ve(r)] < oo,
>0 ! >0 !

where
1 i 1 i N
==Y x(t), v(t):==2) vi(t), vteRT,
NS N =

are the average position and velocity of the particle cloud. Let us present now
two well-known mathematical models for the description of a particle flock dy-
namics and recall the results permitting to show flocking under certain condi-
tions.

0.4.1. Cucker-Smale model

The Cucker-Smale model is a very basic model describing the dynamics of a
cloud consisting of N particles submitted only to a velocity-alignment force,
permitting to obtain a certain self-organization (flocking), if the communication
function is sufficiently large as shall be seen in the following. The evolution of
each particle, with position and velocity (x;,v;) € R? x R? is governed for all
t > 0 by Newton’s laws

60 = ).
, N Vi=1,...,N, 5)
vi(t) = Z w(|xi _xj‘ = Vi)

where y;; := y/(|x; — x;|) represents the strength of the velocity-alignment (com-
munication strength) between individual i and j and depends on the relative dis-
tance between the particles. One often assumes that y is a positive, decreasing
function, i.e. satisfying

veCR), w(r)>0 and ¥ (r)<0  V¥r>0. (6)
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Two simple communication strengths can be found in literature, a bounded re-
spectively a singular one, namely
o

o
llfb(r)::m, Ws(r)::r?, OC>0,[320,I’ER+. (7)

The strength of the communication weight is often expressed in terms of inte-
grability conditions at short or long range, such as (for some fixed ry > 0)

y(r)dr = oo (long range condition, heavy tail),
o
o
y(r)dr = oo (short range condition).
0

These conditions guarantee unconditional flocking and collision avoidance re-
spectively and are not necessary conditions (see Theorems [0.10|and [0.TT)). Let
us observe furthermore that the symmetry of the communication weight (y;; =
y;;) implies immediately the conservation of the total momentum. Indeed, in-
troducing the center of mass couple (x.(¢),v.(t)) via

1 Y 1 Y
x(1) :== N in(t), ve(t) = N Zvi(t), vt eR",
i=1 i=1

one can show that v.(¢) = v.(0) and x.(¢) = x.(0) 4 1v.(0), such that by transla-
tion, one can assume in the following that
x:(1) =0, ve(t) =0, vVteRT.
Let us introduce furthermore the notation
N
X(1) = (u(e)iLy, XI5 = ; il?, (X = [oax [xi.
Then one has the following flocking theorem in the regular case:

Theorem 0.10. /30/(Flocking in the bounded case) Let (x;, vi)f.\’: | be the unique
global solution to (3)) with regular communication weight W, and initial condi-
tions which are non-collisional, namely x? % x?for all1 <i# j<N. Then:
(i) if B € [0,1] (long-range cond.), one has an unconditional flocking , meaning
there exist two constants d,,, dy; such that

0<dn <|X(N)l2<dy, V()2 <[[VO|le” "D, v e RT.

(ii) if B € (1,00), we are in the conditional flocking case, namely for initial
conditions satisfying ||V°||» < Jixoy, Wb (r) dr, there exist two constants d,dy
such that

0<dn <[IX(t)ll2<dp, IV(@)[l2 < |IV][2e” ", v e RF.

(iii) for any B > 0 if one has additionally ||V°||, < f(yx"uz Y, (r)dr, then d,, > 0.
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In the bounded case, the long-range condition (i) guarantees unconditional
flocking for the Cucker-Smale model, regardless the initial condition. If not, one
can still ensure flocking, however assuming an initial restriction on the velocity
VY9 (condition (ii)). This last theorem does after all not say anything about
the fact whether the particles collide or not, it only tells us that no finite-time
collapse to a one-point configuration can occur if d,, > 0.

In the strong singular case (§ > 1), one can show more, namely the absence
of collisions between agents, regardless the initial data. Let us denote the dis-
tance between the particles as r;;() := |x;(t) —x;(t)|, then we have the following
result.

Theorem 0.11. //6] (Flocking in the singular case)
Let us consider (3)) with singular communication weight y; satisfying (6) as well
as the strong singularity condition in r = 0 (short-range cond.), i.e.

o
/ Ys(r)dr=oco  foreach ry >0,
0

which is for ex. satisfied for ys(r) = r% with o > 0 and B > 1 and assume initial
.. . P 0 0 . .

conditions which are non-collisional, namely x; # x jforall 1 <i #j<N.

Then

(i) system (B) admits a unique global and smooth solution in time, with non-

collisional trajectories, namely

xi(t) #x;(t)  forall 1 <i# j<N andV¥t>0;

(ii) if furthermore the initial conditions satisfy the condition

1 oo
VOl < = r)dr,
V0l <5 ) 950

there exist positive functions resp. constants 0 < rp(t) < ry such that
0<rm(t) <rijt) <, |IV(O)]lo < [[VO]Jwe M) vt e R

Note that r,,(t) might go to zero as t — oo, such that collisions are possible in
the asymptotics of long time.

In the weak singularity case (B € (0, 1)) the particles can collide and stick
together, the existence of a unique (local) solution is however obtained thanks
to the weak singularity of y;, in particular to the integrability of y; at the origin
(37, 138].
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0.4.2. Three-zone model

The three-zone model describes the dynamics of the cloud of N particles via
three simple interaction rules, namely repulsion at short-range, alignment and
attraction at long-range. The evolution of each particle, with position and ve-
locity (x;,v;) € R? x RY, is governed by the following Newton’s laws

[ xi(1) = wi(t),
/ lN
i) = 5 L vlxi—x) v —w) Vi=1,....N, (@8
= s dVy
{ N
Z Vi [@(xi —x;))]
L ] L j#i

where the function y;; := y/(|x; —x;|) is the communication weight between the
particles, satisfying the assumptions of the Cucker-Smale model for example.
Concerning the potential @ it contains the repulsion and attraction part, and we
shall assume that

e cC'(RS), o(r)>0 Vr>0, lim @(r) = . )
r—0,00
Remark that
/ Xj—Xi
Vi @(riy) = =@ (rij) =,  ry(t) == luilr) —x; (1)}
ij

such that we have attraction for ¢’(r) > 0 and repulsion in the contrary case (see
Fig. [3).

Remark 0.12. Condition (9) is used in these lectures to simplify the proofs,
however it can be weakend, as one can observe on the figures we draw and in
the numerical simulations we shall present later. Indeed, for having a bounded
swarm, one finally only needs a smooth potential ¢ under the form of a poten-
tial well, however providing then extra hypothesis on the initial energy of the
particles, in order for them not to escape from the well.

Theorem 0.13. [[/2]/(Flocking for the 3-zone model)

Let us suppose the communication weight W, is bounded, and y, resp. @ are
satisfying (6) resp. Q). Then for any non-collisional initial condition (x?, V)N |
the three zone model (8) admits a unique global solution (x;,v;)Y i1» Which con-
verges asymptotically in time towards a flock, meaning there exist two constants

Fm, "M > 0 (dependent on N but not on t), such that forall i, j=1,--- N
O<rm§r,-.,-(t)§rM vVt >0, .A(t) — 100 0.

In particular no collisions occur during the dynamics of the system.
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——— Alignement (1)

——— Interaction ©(7)

:
0 \j/r‘ Alignement

Attraction Attraction

Repulsion

Figure 3: Illustration of the three zone model interaction potentials.

0.4.3. Other collective behaviour models

These lectures are not intended to cover the whole range of models proposed
in literature for self-organized systems. Our work concerns most specifically
the modelling of drone swarms, such that we shall focus on the Cucker-Smale
and the three zone model presented above. However, for completeness reasons,
let us mention in this subsection briefly some words about other well-known
models. All these models offer a number of mathematically interesting proper-
ties, such as flocking behaviour, (exponential) convergence towards equilibrium
states, phase-transitions efc, we refer the interested reader to take a look at the
papers cited below, for the mathematical results. A nice review is given in [14].

Continuous Vicsek model [22,[39]. A simple model widely used in litera-
ture to describe the dynamics of N point-like, self-propelled particles, evolving
with a constant speed ¢ > 0, is given by the following continuous Vicsek model

Xi(t) = cw(t),

WIeol (10)

w;(t) = (I — 0; @ o) @,
where x;(¢) € RY and ;(¢) € S9! are the positions respectively the orientations
of the particles and where

@;(t) = | J i)=Y, ),

M
)] Jolxi—x;|<R

with R > 0 being the interaction range of the particles. The Vicsek model has
been proposed to describe the interactions among animal groups, such as fish
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schools. The individuals move with a constant velocity, their orientation being
continuously (or discretely) updated by the direction of the average velocities
of the neighbouring individuals (sometimes with additional noise terms). The
matrix (I; — @; ® ®;) corresponds to the orthogonal projector on @;-. Its role
is to ensure that the orientation @; remains at all times in SY~!'. Remark that
this model considers only alignment without attraction and/or repulsion. It per-
mits also to investigate phase-transitions between ordered and disordered states,
whenever the noise strength or the particle number is varied. The link between
the Vicsek model and the Cucker-Smale model is investigated in [8]].

Kuramoto model [34}35]]. This model is an archetype model for synchroni-
sation behaviour in heterogeneous systems of coupled oscillators, introduced to
model the collective dynamics of biological and neural oscillator networks. The
model describes the dynamics of N coupled oscillators with natural frequencies
w; (1), via the evolution of the phase function 9;(t), solution of the coupled ODE
system

N
19i’(t):a),-+§ Zsin(ﬂj(t)—ﬁ,-(t)), Vi=1,---,N, (11)
j=1
where K > 0 is the coupling strength between the oscillators. Individuals are
hence influenced at the microscopic level through pairwise attractive interac-
tions, leading to an overall collective movement, such as the emergence of syn-
chronisation when all individuals oscillate in union. Synchrony seems to be
essential to the proper functioning of life processes, such that this model is in-
tensively used to describe several spontaneous synchronisation phenomena in
cardiac or nervous systems.

Aggregation models [17,33]. At cellular scale, the collective migration of
cohesive cell groups and their aggregation sets up the basis of the formation of
complex tissues (vascular and neural structures, cancer growth etc). A proper
description of the intercellular pairwise interactions is a challenging task, the
pattern formation being a combination of adhesive and repulsive mechanisms.
Cells have also the particularity to move in extremely viscous environments,
such that inertial terms can be neglected and first order models are usually em-
ployed, i.e.

N Xi —X; .
Nixi(t) =Fi(t), F(t)=— ;K(|x,-(t)—xj(t)|) M, Vi=1,---,N,

where A; > 0 are the cell-substrate friction coefficients and F; is the force acting
on cell i, given for example via a well chosen interaction kernel K.
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0.5. Different levels of mathematical description

Let us finish this introductory chapter by remarking that many choices have to
be made in order to work out a mathematical model for the description of a
specific phenomenon. For example one has to single out if a deterministic or
a stochastic model is better suited for the description, or to decide whether a
discrete or a continuous approach is more adequate. Furthermore in the context
of the dynamics of large systems of interacting particles, the level of description
has also its importance, in particular one can distinguish between:

* the particle description, based on the laws of motion of classical me-
chanics (Newton’s laws) for the description of each individual particle
trajectory (x;(¢),vi(¢))Y, (individual-based models);

— the particle dynamic model is the most intuitive and physically most
accurate one, but also the most inadequate/heavy from a numerical point
of view (6N degrees of freedom, where N is the number of particles).

* the Kkinetic description, based on a collective swarm description via the

particle distribution function f(z,x,v), solution of the Vlasov equation.
Here f(t,x,v)dvdx represents the number of particles to be found at time
t in the infinitesimal phase-space volume dvdx around (x,v);
— although the precise locations of the individual particles are lost in the
kinetic theory, sufficient knowledge of the particle motion is still incor-
porated and the numerical costs are still rather high, the system being 6
dimensional.

* the fluid description, describing the particle swarm in terms of averaged
macroscopic quantities, depending only on ¢ and x, as for example the
particle density n(z,x), the velocity u(z,x), the pressure p(z,x), solutions
of the well-known conservation laws of fluid mechanics;

— fluid models are numerically very attractive, but poor from a physical
point of view, based on some empirical assumptions for the closure.

These successive models differ in complexity and precision. They are increas-
ingly simplified, in the sense that they can be obtained from one another by
decreasing the number of degrees of freedom, hereby becoming less accurate.
Depending on the physical phenomenon one wants to investigate, one has to
choose within all these models the one which is the most accurate with respect
to the particular physical situation, paying attention at the same time to the nu-
merical costs.

Finally, let us also mention that when designing a collective dynamics model,
the mathematical description of the inter-particle interactions is not a simple
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task. It strongly depends on the specific nature of the examined population,
for example if one considers animals, humans or robots. The different internal
(microscopic) behaviours of these three populations can then be observed on the
emergent (macroscopic) overall behaviour. For example humans are much more
individualists than animals, thus it is more difficult for humans to be part of a
group and this originality has to be taken into account in the inter-particle de-
scription. For animals hierarchy and rules are very important. A real population
is a complex system, it involves plenty of physical, social, biological and cog-
nitive variables. Contrary to animals and humans, robots (drones for ex.) are
designed, such that the inter-particle rules are often imagined by the designer
and not given by a natural law. However these rules have to be realistic from a
practical point of view.

1. The Fokker-Planck equation

In this chapter we shall explain how one obtains the Fokker-Planck equa-
tion starting from Newton’s laws of classical mechanics, where some stochastic
noise has been introduced, to describe the interaction with an environment. The
concept of “stochastic process” is needed for this.

This chapter could seem somehow apart in this manuscript, however it shows
how one makes the link between the microscopic models (for ex. the individual-
based models) and the mesoscopic models, namely the kinetic approach.

1.1. The Langevin system

The botanist Robert Brown (1773-1858) investigated the chaotic mouvement of
pollen-particles in suspension in water. At that time the scientific world was
influenced by Newton’s mechanics and its determinism, such that the erratic dy-
namics of the pollen-particles generated rather hard interpretation problems.

The main idea of Paul Langevin (1872-1946) was that Newton’s equations
of classical mechanics remain valid in average for the Brownian, erratic particle
motion. Thus, for a particle evolving in a viscous environment with friction
coefficient ¥ > 0, the average dynamics is given by Newton’s laws

d d
ma<v(t)> =—my(v(t)), where (v(t))= E(x(t)), vVt e R.
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Figure 4: Example of the erratic dynamics of a particle.

The average (-) is taken over all possible trajectories of the particles submitted
to a random force field 71 (¢). The equation however which governs in detail the
dynamics of one particle submitted to this force field 1(¢) (noise term) is the
so-called Langevin equation given by

av(t) =—yv(t)+n(), vVt eR. (12)
It is a stochastic differential equation, which incorporates two force terms, the
viscous force —yv(¢) and a fluctuating force 7n(¢), which represents the inces-
sant impacts of the environmental molecules on our Brownian particle. The
choice of this last force field 1(¢) is done in such a manner to model in the most
realistic way the effects of the microscopic collisions on the particles. It is an
unknown force field, rather complicated, and which has to be treated stochasti-
cally. We shall suppose that 1(¢) has a Gaussian distribution (Gaussian white
noise), meaning that we assume zero average and zero correlation time, i.e.

n@)) =0, M@E)n))y =T —1), >0, Ve, t' >0. (13)

The constant I" > 0 measures somehow the strength of the fluctuating force-
field. Each solution of the Langevin equation represents a different tra-
jectory of the particle, depending on the initial condition vy as well as on the
random force field n(z), and is given by Duhamel’s formula

t
v(t) =voe V! —i—/ e 1= n(s)ds, Ve >0. (14)
0

As 1(t) is a Gaussian stochastic process and as the sum or the integral of Gaus-
sian variables are again Gaussian variables, we can deduce that v(r) is also a
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Gaussian stochastic process. Hence for its characterization it is enough to com-
pute the average u(¢) = (v(¢)) and the variance o (), averaging over all possible
outputs, and to define the corresponding velocity probability distribution func-
tion via

1 _ -ro?

= ¢ 20%0) | 15
fe.) chz(t)e (15)

In view of properties (I3), we get by averaging (14)) on one hand
() =voe " =, .0,
and on the other hand
V() = vie M 4 2vpe” 7”/ e =) n(s)ds
+/ / e V(1=9) oY= S)n(s)n(s/)ds'ds,
such that

<v2(t)> _ 2 727/1_‘_//6 y(t—s) e —y(t— s)r%(s_sl)dslds

= V% e_zw + 27}}/ (1 *6_2,)/1‘) o0

What can be observed about these two computations is that the initial conditions
are lost after some time, the mean velocity tends towards zero in the long-time
asymptotics, however the mean squared velocity has a non-zero, finite limit. In
the long-time limit # — oo the Brownian particle gets in equilibrium with the sur-
rounding medium. If this one is in thermodynamic equilibrium, characterized
by a temperature 7 (thermal bath), the equipartition theorem of thermodynam-
ics relates the temperature of the medium to the average kinetic energy of the

particle via

1 kT
%(ﬁ):ikﬂ -~ TI= ZB—)/, (16)

where kg is the so-called Boltzmann constant. In other words, in the long-time
limit (v?(¢)) approaches the squared of the thermal velocity given by vy, :=

kBTT. The identity (16)) relates a quantity associated with the fluctuations, i.e.
I, to the coefficient describing the dissipation, i.e. 7y (fluctuation-dissipation
relation). It expresses the balance between friction, which tends to drive the
system towards an inactive state , and noise which tends to keep the system in
mouvement.
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We are now able to characterize the solution to the Langevin equation (12))
as a Gaussian process with mean

u(t) = (1)) =voe ™, V>0, (17)

and variance function

kg T
N m

o2 (1) := ((r) — ()] (1—e27),  vr>0. (18)

In the long-time asymptotics we obtain the following equilibrium probability
distribution function for the velocities of our Brownian motion

1 _ 2 kg T
foolv) := e 22 with 02:="2— =12, He=0, (19)

which is the so-called Maxwell-Boltzmann distribution function.

1.2. The Fokker-Planck equation

The question is now how to obtain the probability distribution function of the
velocities for each time instant 7. In other words instead of focusing, as in the
previous subsection, on the solution v(¢) to the Langevin equation (12)), we shall
be rather interested in finding an equation governing the dynamics of the veloc-
ity probability distribution function f(z,v), where f(¢,v) dv represents the prob-
ability to find at instant ¢ the Brownian particle with velocity in the volume dv
around v. This equation will be found by making a sort of balance between the
gain and the loss terms in the velocity variable v, namely the time-fluctuations
of the quantity f(¢,v) are given by

)

o, f(t,v) :/ (B, V') f(tV) = B(V v) f(t,v)] V', V(t,v) ERT xR, (20)

—oo

where b(v,V') is the so-called cross-section and gives the probability per unit
time of a velocity transition from v’ towards v. We suppose here that this cross-
section is independent of time, so that memory-effects are neglected, and that
only small changes in velocity can occur.

In order to remodel a little bit more the balance equation (20), we shall
introduce the new velocity variable y := v — V' which shall be considered as
small when compared with v, and we shall define the new cross-section

b(u—w,w) :=b(u,w), Yu,wcR.
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Assuming the necessary regularity, we have thus
A = [ [V ) Fa) bl ) 1) v

N /_Z[b(yvv—y)f(hv—y)—b(—ym)f(t,v)]dy

- /_0; b0,y =) (t,v =) = b(y,v) f(t,)] dy,

where in the second term of the last line, we made the change of variable y —
—y. A Taylor expansion around v with |y| < |v| yields

2
b(y7v_y)f(tav_y) :b(y,v)f(t,v)—yav [b(yvv)f(t’v)]—i_y?avzv [b(yvv)f(tvv)}—f_"'

Recalling that b is concentrated around y ~ 0, we have thus altogether

n0O

2
1t = [~ {53600 Fe0)]+ 5 9 B00) 0] i

—-a{([ o) sen g { ([ romar) s}

This can be rewritten as
1
af(t,v) == [A(WV) f(t,v)] + ffv [B(v) f(t,v)],
where

AW = [ ypwidy. BOY= [ Phomdy. @D
One can use now the expression of the solution to the Langevin equation (I2)) in
order to compute A(v) respectively B(v) and to obtain
kg T
AV) ==y,  B()=2y——.

Indeed, replacing y = v/ — v in (21)), thus dy = dV/, reminding that 5(V',v) is the
probability per unit time of a velocity transition from v towards v/, and denoting
by V' := v(Ar) the solution of the Langevin equation with initial condition
v, then one has

e A 1

A(v) = Tim (v(Ar) —v) - = Tim v

_— = —YYV
Ar—0 At A—0 At v,

where the mean (-) is taken over all realizations of the random force field n(z).
Similar computations give rise to the B(v) expression. This leads finally to the
Fokker-Planck equation

Af(tv) = yo |v f(z,v)+k37Tavf . 22)
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This is a deterministic partial differential equation on the probability distribution
function f, which has the form of a drift-diffusion equation in the velocity vari-
able. Let us underline here the interpretation of kT 45 a diffusion coefficient in
v. The right hand side of (22)) can be rewritten in the form yd, {% feq O (%q)} ,
where f,, is defined in (23). These reformulation permits to obtain in a simple
manner the stationary solutions to the Fokker-Planck equation.

It is sometimes interesting to write the Fokker-Planck equation as a conti-
nuity equation

atf(tav) +avj(t>v) :07
with the probability current given by

k
Tv) = = ()~ 7 0uf ().

Integrating the continuity equation over the velocity-interval [v_,v, ] yields
V4
o[ femdv =)= T,
V_

which means that a change in the probability density distribution in the interval
[v_,v] comes from changes in the current-fluxes through the boundaries.

1.3. Properties and remarks

The Fokker-Planck equation is a basic equation in many areas of physics and
biology. It models a set of particles experiencing both, diffusion and drift. The
interplay between these two effects is at the basis of most of its properties, which
shall be briefly summarized here in a multi-dimensional framework.

Stationary solutions
If the environment of our Brownian particle is in thermal equilibrium at temper-
ature 7', then the Brownian particle is thermalized, and the stationary solutions
of (22) are given by the Maxwell-Boltzmann distribution function

m d/2 7111\\/\2
fog(v) := <2kaT) e T, YyeRe. (23)

We recognize the equilibrium probability function f.. found in (19) for d = 1.

Fundamental solutions
Another important question is to find the fundamental solutions of (22)) if possi-
ble, the so-called Green’s functions. In other words, we are searching for the so-
lutions of the Fokker-Planck equation with initial condition given by g(0,v;vg) :=
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8 (v —vp) for an arbitrary vo € RY. These are given by

1 d/2  p?
g(t,vivg) == (27[620)) e 2000 Vi >0,

which is nothing but a Gaussian distribution with mean velocity p(¢) and spread/
deviation o(¢) given in (I7)-(I8). The fundamental solutions enable now to
obtain the solutions of the Fokker-Planck equation for any initial condition
fo, namely via

ft,w) = /Rdg(t,v;vo)f(vo)dvo.

Physical properties
Let us now consider the following linear Fokker-Planck equation

QL) = Vo W f(E) +Vuf], V() €RT xR,
and observe that it has the following characteristics:

¢ One conservation law
ap=0,  p)= [ ftvav.
Rd

* A natural Lyapunov functional, the free-energy, composed of the sum of
the entropy and the kinetic energy, namely

2
E(f):= /Rdflog(f)dv—F/Rd";fdv.

¢ The dissipation-term

d

D)= =G W) = [, 7 uf +usPdv=0, WreR",

which can be rewritten as the so-called Fisher information of f with re-
w2
spect to the equilibrium distribution f,(v) = *%, namely D(f) =

T(f|fug). where

1
(2 71:)[1/2 e

2(rle) = [, s|vrtog (1)

It is now possible to make use of the Sobolev inequalities, to get an estimate on
the speed of return of the distribution function f towards the equilibrium f,,.

2
dv.
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Force field from a potential
Finally let us remark that if the particle is immersed in an exteriour potential-
field ¢ (x), yielding an additional force F,y (f,x) := —V,¢(¢,x), then the Fokker-
Planck equations becomes space-dependent and writes

A (13 + vV = Va9 (0,0 Vof = Vo v o)+ ELV, 7| 24)

Boundary conditions
When one is considering the Fokker-Planck equation in a bounded domain  C
RY, with boundary dQ and outward unit normal vector n(x), then boundary
conditions have to be specified. Different boundary conditions can be imagined,
as for example reflecting boundary conditions (impenetrable wall)

ft,x,Rev) = f(t,x,v), Vxe€dQ, Ry :=v—=2(v-n(x))n(x),

or absorbing boundary conditions (absorbing wall), meaning f(¢,x,v) = 0 for
all incoming velocities v at x € dQ.

In contrast with this, if Q = R¢ natural boundary conditions are imposed, which
require that the distribution function is vanishing as |x| — eo.

1.4. Variational framework for the Fokker-Planck equation

The linear Fokker-Planck equation

{ Af(tv) =V, -[vf+V,f]=0,  VY(,v)eR"xR?,
(25)

f(07‘):fin7

is of parabolic type and has a very nice variational framework. Introducing the
weighted Hilbert-spaces

Ly = {fGLz(Rd)//Rdlflzdu<°°}, (f:8)u :=/Rdfgdu, (26)

Hlll = {f € L;21 / V.f € (Li)d} ) (fag)Hlll = (f7g)l-l+(vvfavvg).u7
(27
with measure dy := M~'dv and M(v) := We‘ , one can show that
Q(f):=V,-[vf+V,f]is alinear, bounded operator defined as

vP/2

Q:H;ll 4)H/,1_1? <Q(f)’g>Hﬁl~Hﬁ = *(Vf+va,vg+va)u,
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where H ! denotes the dual space of H ‘11 It is also important to remark that for

feH ﬁ one hasvf e Lﬁ. This can be shown in 1D via a Hermite decomposition.
Indeed, defining the Hermite functions { y; }ren recursively as

VE+ Ty (V) =vu) —Viyicr, v =0, =M, yi=vM,

these one form a complete, orthogonal basis of Lﬁ and satisfy moreover

Vi) = Vi T ), [ wO)we) M =6,

The solution to (23) can thus be uniquely decomposed as
f(l,V) = Z ak(t) Wk(v) ) (28)
k=0

decomposition which permits to show the desired property.

A more common mathematical framework is obtained if one rescales the

distribution function f via the equilibrium distribution M (v) := Wf‘vw 2,

in particular by introducing g := f/M, which satisfies the equation

98—Ag+v-V,g=0, Y(t,v) e RT x R?,

(29)
g(oa ) = 8in -

Denoting the new collision operator by £(g) := A,g —v- V,g and introducing
the corresponding Hilbert-spaces with measure dy := M dv

H=L;, V:i=H,, (30)
one can show that £ : V — V* is a linear, bounded operator defined as
(LU &yt = = (Vo Vig)y
for all f,g € H;. Introducing the adjoint operator V7 of the gradient via
Viily —H' ViE=vE-V,E.
one can rewrite the collision operator in a simpler form as £ = -V} -V,.

Proposition 1.1. Reducing the collision operator L to an L*>-operator, namely
toL:D(L)C L,z, — L%,, this one satisfies the following properties :
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(i) The linear operator L : D(L) C H — H is symmetric and non-positive.
(ii) The kernel of L is given by

Ker(L) :={p € R}.

(iii) The sz,-orthogonal to the kernel of L is

(Ker(£))" := {f e/ /Rdf(v)/\/ldv - o} ,

and we have Ly, = Ker(L) ® (Ker(L))*, where f = I1f + (Id —I1) f with I1 the
orthogonal projection on the kernel of L, given by

IT: 12 - Ker(L) f'—>/ F(v) Mav.
R4

(iv) —L is coercive on D(L) N (Ker(£))4, i.e.
—(LU)F)y ==L oy = ClS e VS € D(L) N (Ker(£))*

(v) The range 3(L) of L is closed in L72, and coincides with (Ker(L))*. We have
moreover the one-to-one mapping

L:D(L)N(Ker(£))* — (Ker(£))™*.
Introducing the bilinear form associated to £ : V — V*, namely
Z:VXV%Rv l(fag) = (va7vvg)’1/a

one enters into the mathematical framework of the Lax-Milgram or Lions theo-
rem, such that the well-posedness of a solution to (29)) is a natural consequence.
In more details for each T > 0 there exists a unique weak solution g of (29)
satisfying

gEWL(0,T;V,H) C C([0,T];H).

For this theory one has to consider the evolution triplet V C ‘H = H* C V*.

/

2. Entropy methods

In this chapter we shall consider the following autonomous evolution equation

{8,M(Z)ZF(M(I))7 vi >0, 31)
M(O):u07
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that describes for example the dynamics of some particle swarm. Here F :
D(F) C X — X is some possible nonlinear operator on the functional Banach-
space X'. The questions we are asking concern, apart the obvious existence and
uniqueness investigations, the asymptotic long-time behaviour of the solution to
this problem towards an equilibrium state u.. € ker F’, to be identified. Entropy
dissipation methods have been developed to investigate this qualitative long-
time behaviour of the solutions, and are based as much as possible on physical
arguments, such as dissipation processes, giving the direction of the time flow.

The notion of Lyapunov functional and entropy play a fundamental role in
ODE resp. PDE theory. For example, in hyperbolic theory the entropy allows
to pick up a unique (physical) weak solution within all the existent weak solu-
tions of the considered nonlinear hyperbolic equations. In kinetic theory, the
entropy is a useful tool to derive hydrodynamic equations from the underlying
kinetic equations (as for ex. Boltzmann, Fokker-Planck or Landau equations)
and this via the so-called H-theorem. The entropy plays also a fundamental
role in the global-in-time existence proof as well as regularity proof for cross-
diffusion systems, which are strongly coupled “parabolic-type” equations, with
a diffusion matrix which is neither symmetric nor positive-definite, such that
standard elliptic/parabolic theories does not apply any more.

Definition 2.1. (Lyapunov functional) Let £ : D(F) C X — R be a functional
decreasing along the trajectories u(z) of (31)), namely satisfying

%5@1(2‘)) <0, Vt>0.

Such a functional £ is then called a Lyapunov functional for (31).
An entropy is a specific Lyapunov functional, as stated in the next definition.

Definition 2.2. (Entropy) We call £ : D(F) C X — R an entropy corresponding
to (31), if the following properties are satisfied

* £ is a Lyapunov functional corresponding to (31));
e £ is convex.

The entropy is a physical quantity which has several interpretations, depend-
ing on the problem one is investigating. The entropy measures the disorder in a
system (entropy of mixing), it can be identified with a measure of the ignorance
about a system (information theory) or finally it can measure the irreversible
changes in a system (thermodynamics).
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Definition 2.3. (Entropy dissipation) Let £ be an entropy corresponding to
(31). Then the entropy dissipation or entropy production is a functional D :
D(F) C X — R satisfying

d

D(u(t)) = —-E(u(r), Ve >0,

along the trajectories u(t) of (31)).

In order to be able to use entropies to prove asymptotic convergence results
of a solution towards an equilibrium, we need a further concept, namely the
relative entropy.

Definition 2.4. (Relative entropy) For a given entropy £ and a given function
U, we define the relative entropy (Bregman divergence) as follows

E(Ulu) :=E(u) — E(Uoo) —dE (Ueo) (U — o) > 0,

which is nothing but the first Taylor expansion of £ around u.. The last term
represents the directional derivative of £ (d €(u«) being the Fréchet derivative
in u.).

The Bregman relative entropy measures somehow the distance between two
probability distributions, even if it is not a metric, as it is not symmetric, nor
does it satisfy the triangle inequality. Remark that one has & (e |tie) = 0 as well
as the simple expression &€ (u|ue) = E(u) — E(Uoo), if U is @ minimizer of &,
meaning for u.. satisfying d€ (u.) = 0.

Very often, in kinetic theory, one defines a special kind of entropy, the phi-
entropy, given by

&) = [ ou())r, (2

where the entropy generating function ¢ : R™ — R™ is a continuous, convex
function, satisfying ¢(1) = 0. In this case, the relative entropy is often defined

as
Ep (ulteo) = /Rd¢ (Mu> Uoo dX . (33)

To give an example, the generalized Kullback-Leibler entropy is based on the
function @ (x) := x log(x) —x+ 1, yielding the Kullback-Leibler divergence

Eo (i) = /R d [u(x) log <”> —u(x) +u°o(x)] dx.

U

As a second example, we mention a Bregman-divergence which cannot be writ-
ten under the form (32), namely taking &(u) := [[ul|Z, yielding &(u|us) =
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||t — ueo| |7, which is a standard distance.

What can be mentioned here is that there are many situations in which it is
meaningful to measure the distance between two probability distributions, but
the appropriate metric may depend on the field of application and has to be iden-
tified.

The problem we shall be concerned with now is not the existence/uniqueness
theory of the Cauchy-problem (31)), but rather the asymptotic behaviour of its
solutions as t — co. One may ask,

* if there is a unique equilibrium ., of (minimizer of entropy &£, zero
of F);

o if u(t) converges towards u. ast — oo;
* what is the rate of convergence of u(r) towards ue.

Naturally, these questions require the definition of a measure, permitting to
quantify the distance between u(z) and u... For example this can be done in
the entropy sense, by evaluating the relative entropy &£ (u|u.. ), or in the L!-sense
by evaluating |[u(f) — tte|| 1.

The main strategy behind entropy methods is now the following:

* Identify the equilibrium state u.. and an entropy functional £, associated
with the problem to be treated (31)). Define a relative entropy & (u|ucw);

* Given the entropy functional, which attains its minimum at the equilib-
rium state, the distance between the solution u(z) and the equilibrium
U can be measured by the relative entropy, namely & (u|u«). To do this,
one investigates generally the entropy dissipation or production functional
D(u(t)) = —%E(u(t)). Indeed, the main idea is that the entropy produc-
tion controls the relative entropy, via some entropy-entropy production
inequality of the type

d
D(u(r)) = ——E(u(t)) = (& (ulu=.)),
where @ is a positive, continuous, strictly increasing function, satisfying
®(0) = 0. Gronwall’s inequality implies then the convergence towards
the equilibrium in the entropy sense, with explicit convergence rate if ®
has a simple form (exponential convergence rate for linear P);
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* Finally, a Csiszar-Kullback inequality of the type

ua(t) = oo 1 < 2 (E(ut|ut))

with y a positive, continuous, strictly increasing function, satisfying x (0) =
0, permits then to show that the distance between the solution u(¢) and the
equilibrium u., is controlled by the relative entropy & (u|u. ), implying the
convergence in the L' sense (with explicit convergence rate, if ® and ¥
are simple functions).

2.1. Coercivity versus Hypo-coercivity

Let us start by introducing the concepts of coercivity and hypocoercivity of the
operator L: D(L) C H — H, where H is a Hilbert-space endowed with the scalar
product (-, -)z. We shall assume in this subsection that L is a linear, unbounded
operator with closed range, and let us consider the following problem

du=—Lu, Vt>0,
(34)

u(0) =uyp.

Definition 2.5. (Coercivity) The operator L is said to be A-coercive (on (kerL)")
for some A > 0, if

(Lh,h)y > A||h|[3;, VheD(L)N (kerL)*. (35)

If we denote by IT: D(L) C ‘H — kerL the orthogonal projection on the
kernel of L, inequality (35]) can be rewritten as

(Lh,h)3 > A ||(I1d =) A||3,, VheD(L).

By Gronwall’s lemma, A-coercivity implies exponential convergence of the so-
lution u of (31) towards the equilibrium u., = I1(ug) € kerL. Indeed, defining
the entropy

1
Eu) := =||ul|3,,
() = 2l
one gets immediately for a solution u of (34) with ug € D(L) N (kerL)* that

d

ag(u([)) = —(Luyu)y < —A||ull%,,

leading hence to exponential convergence towards zero, namely

u(@)]|2 < e |juo||ln, Vuo € D(L)N (kerL)™* .
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Let us mention one simple example of a coercive operator, namely the spatially
homogeneous Fokker-Planck equation

atf: 7L1f7 Llf = *avvf+vavfa

where the evolution equation lives in (¢,v) € R™ x R, the operator L; is acting
only on the velocity variable v € R and the corresponding Hilbert-space is given
by H := L*(du..) with dio. := Mdv and M := \/% e~/2. Considering t € R*
as a parameter, one has in this case

(Lif, P =10uf11 = CellfI,  Vf € D(Li) N (kerLy)*,

where we used the weighted Poincaré’s inequality as well as

kerL; := {c € R}, (kerLy)* = {fe?—[//RfMdv:O}.

However in many cases, despite the fact that coercivity does not hold, the
exponential decay still happens to exist. The notion of hypocoercivity is in-
troduced for describing such exponential decay of a solution in the absence of
coercivity.

Definition 2.6. (Hypocoercivity) The operator L is said to be A-hypocoercive
(on (kerL)') for some A > 0, if there exist a constant C > 0 such that

u(®)|]3 < Ce ™ ||uol|3,, Vuo € D(L)N (kerL)*.

The non-homogeneous Fokker-Planck equation is a typical example of a
hypocoercive operator, namely

atf =-Lf, L f:= Vaxf+ (—avvf+Vavf)a (36)

the evolution equation living in (¢,x,v) € RT x T x R, with T the periodic torus
and H := [?(dV..) the Hilbert-space with dV.. := Mdxdvand M := -5 eV /2,
Let us observe also that we have

kerL, := {c € R}, (kerLy)t := {fE’H/ //fdedv:O} .
RJT
In this case we have to modify the entropy, in order to get an estimate of the

rate of convergence. Indeed, with the standard entropy £(f) := 3||f||3, one can
only get

d (1
= <2Hf||%) ——l0uf1Be < ~Collf =N (0= [ Flexv) Mav,
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and we do not recover the whole entropy on the right, which would permit to
get the desired exponential decay. A better choice would be to consider the
modified entropy

G(f) = allf1+ BlIowfI5 + 110x 15, + 8 (O f, 0uf )2

with a, 8,0 positive constants to be chosen such that G is decreasing along
the trajectories f of (36). The introduction of the additional term (9, f,dxf)x
proves to be helpful to prove the exponential decay, as it introduces some mix-
ing between the two space and velocity variables x and v. It is important to
understand here that it is the combination of both, on one hand the transport
term vd, f, which mixes the space and the velocity variable, and on the other
hand the Fokker-Planck term —d,, f + vd, f which regularizes and dissipates in
the velocity variable, which leads finally to the decay and regularity in both
variables, and these two effects are now somehow taken into account with the
additional “mixing term”.

Let us first prove that G is equivalent to the H'(dV..) norm, defined by
¥ |%—U = |13, +110xf|13,+1|0vf|[%,, for some well-chosen constants o, 3, >

Lemma 2.7. If 5> < B then there exist two constants c1,c; > 0 such that

cillf1Ba <G < eIl -

Proof. The Cauchy-Schwarz inequality permits to show that

|6 (0, 0uf )l < Havfl\qfr 1021115

thus
allflf+(B— )||afoH+ 19:/113 < G(F)

and

G(r) < ol fI[3,+ (13+ )HafoHJr 10113,

Let us now prove the exponential decay in the modified entropy sense.

Theorem 2.8. [31|] There exist positive constants o, 3,0 as well as kK > 0 such
that the entropy G decreases along the trajectories of the Fokker-Planck equa-
tion, for all fy € H! satisfying [ [z fo Mdvdx = 0, namely one has

G(f() <e ™ G(fo), Vi>0.
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As a consequence, there exists a constant v > 0 such that the solution to (36))
satisfies

()]l < Ve 2!, Vi>0.

Proof. The proof is based on the evaluation of %g (f(r)), in particular one can
show that

d

Eg(f(t)) < -

|

(10uf1Fc +10xf13) < =k G(f(2)),

assuming that 1 < 8 < B < a, 8> < B and (28 + 8)* < « as well as using the
inhomogeneous Poincaré’s inequality (62). Gronwall’s lemma and the equiva-
lence of the norms permit to conclude the proof. O

Remark 2.9. Let us underline here the L2-framework of the first, coercive
example, and the H'-framework of the second, hypocoercive example. It is
also possible (but more complicated) to remain in the L2-framework even for
the hypocoercive Lj-operator, by considering the different modified entropy
G(f(t)) == 3 |flI3, + (Af, f)3, with an operator A : H — H which has been
defined in [3].

Let us conclude this section by giving some references in the domain of en-
tropy methods. One can cite for instance the very complete work [6]], which re-
lates entropy methods with the Bakry-Emery calculus, and discusses the sharp-
ness of convex Sobolev inequalities associated with general Fokker-Planck type
equations. This latter discussion is very relevant when one is interested in get-
ting optimal rates of convergence.

About the entropies constructed in the context of hypocoercive models, one
can cite the review [40]], which addresses many aspects of hypocoercivity in
details, and in a very general setting. Therein are discussed the construction of
entropies equivalent to a H'-norm, as we discussed in this document. However
in [40], the author also discusses methods working in an L2-setting, as well as
in a weaker, free-energy setting. The theory for hypocoercivity in a H~!-setting
is a very recent development, started in [3]].

For specific references in hypocoercive entropy construction in the L2-setting,
a very important reference is [27], giving a general method for the construction
of entropies in abstract settings. This analysis is however limited to the case
of equations with only one conservation law (such as the linear Fokker-Planck
equation discussed above). This limitation is however partially removed in the
more recent works [2, [13]].
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2.2. Two simple, linear algebraic examples

Let us illustrate with two simple toy models the essential features of the coercive
resp. hypocoercive entropy-method. We consider the system

U'(t)=—-AUt), U(t) := (x(2),y(t)), t R,

with the initial condition U (0) = Up and the coercive resp. hypocoercive matri-
ces (on (kerA)t)

1 -1 00 0 %

where Q corresponds to a type of collision operator (degenerate diffusion oper-
ator), whereas T corresponds to a skew-adjoint transport operator.

Coercive case: The matrix A. admits two eigenvalues A; =0 and A, =2
with corresponding eigenvectors v; = (1,1)" and v; = (1,—1)". Furthermore
one has

kerA. :=span(vi), (kerA.)t = span(v,).

Taking as entropy the functional £(U) := 1 ||U||> we get immediately

%E(U(t)) = 2||U@)||* = —4EU(1), YUy € (kerA.)*,

thus, we are in a typical coercive case, which yields immediately
EUM)=eYEWn),  UM)I=e|Upll, YUoe€ (kerAc)",
which is finally in accordance with the exact solution, which is
U(t) = av +B€72IV2, where av) + Bva =Up.

Hypocoercive case: Let us assume that |k| > 1. Then, the matrix Ay, admits
the two complex conjugate eigenvalues and corresponding eigenvectors given
by

1 4k? — 1
Mp==-xi—
12= 5 1 > )

Furthermore one has kerAj. = {0} and (kerA,.)" = R2. Choosing as entropy

functional £(U) := 1 ||U||*> would be not enough, as

Vij2 = (ky—ll/z)t-

CEWm) =0, U =600,
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and we have no coercivity on R? = (kerAy.)*. However, if one takes a look at
the exact solution in this case, which reads

U(t) = oee " [sin(bt + B)u+cos(bt + ) v] , Up = o [sin(B)u+cos(B)v],

with A; » = a=£ib and v| » = u£iv, we observe an exponential decay. Thus, let
us modify the entropy, adding a corrector term as

1 k
G(U) =5 IUIP + & 1 x(O¥().

with the parameter € € (0,1) to be adequately chosen, and try to show the ex-
ponential decay in this new modified entropy sense.

Firstly, one can show that G(U) is equivalent to the standard || - || norm, in
particular one has

1

—€ 1+8
THUWSQ(W ——|lU].

Indeed, for k£ > 1 one can show that

;<1_81fk2)|U OIF < ;<1_81+k2>| OIF + 1fk22‘x()+y(t)’2’

the right hand side being nothing else than G(U ), which can be rewritten as

3 (1o ) vt >r\2—1fk2§rx<r>—y<r>\2s; (1+e11 ) IVOIF.

where one observes that sup; ; sz 1 <'1. Similar arguments for k < —1

7 S
yield the desired result.

Secondly, one can show the existence of some k > 0, such that one has

%Q(U(f))S—KQ(U(f)) = G(U@) <e™G(lo),

using Gronwall’s lemma. To see this, remark that <7 +k2 <1and
d K, k2 ) k
ZG6(U) = —e—¥_[1= —
%Y Tt ( 81+k2>y Tre™
€ 2 € 2y.2 € .2
< IR (e bl S-S (-2 - (1—e— 5500,

forany A € (0,1). For sufficiently small € € (0, 1) one finds the desired constant
K> 0.

Altogether, one has the exponential decay of ||U(¢)|| by equivalence of the
norms.
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2.3. The heat equation (coercive case)

Let us give here an example of the use of the entropy method for investigating
the long-time asymptotics of the heat equation

ou(t,x) = Au, V(r,x) €ERT x T,
(37)

u(0,-) =up,

where T is the d-dimensional torus with d € {1,2,3}. Let us suppose that
ug € L*(T?) is non-negative and define i := [1suo(x)dx. Then problem
admits a unique smooth, global, non-negative solution, conserving the mass,
namely satistying [ u(f,x)dx = [1a uo(x)dx = u for all t > 0. Furthermore we
observe that u., := ii/meas(T¢) is the unique stationary solution of (37). The
questions one asks now are:

* Does u —;_,e Uss? In which norm?
* What is the convergence rate towards the equilibrium?
To answer these questions, we introduce now the two functionals

H[u] == /Tdulog (u) dx, Hy[u] := % Td(u—um)zdx. (38)

U

Firstly one observes that both are non-negative functionals. Indeed, the fact that
for all z > 0 one has zlog(z) + 1 — z > 0 implies that

0 < / <ulog<u>+um—u> dx
T¢ Uoo
= / u10g<u> dx+/ umdx—/ udx =H[u].
Td Uoo Td Td

Secondly both functionals are Lyapunov functionals along the solutions of the
heat equation (37). Indeed, let us start with H[u]. One has

dH;

= — . — . =— | |Vuldx<
7 [u(1)] /11‘d(u Uso) QiU dx /Ed(u Uoo) Audx /Jl‘d| ul~dx <0,

showing that H;|u] is indeed decreasing along the trajectories of (37). The next
step is to study if and how the solution to (37) converges in the long-time to-
wards an equilibrium solution, which is u.. For this asymptotic study we shall
make use of the Poincaré inequality

Hu—— QudxH%z(Q) SCPHvu”iZ(Q) \V/MEHI(Q)’
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with @ ¢ R? a bounded smooth domain. This Poincaré inequality shall in-

deed permit to relate the entropy H,[u] with the entropy-dissipation D, [u(t)] :=

—% [u(1)], as follows

aH,
dt

Gronwall’s inequality yields then

()] = ~1Vul B2y < ~Cp = sty = ~2C5" Holu(1)).

1
2 |10 = tee] | 72y = Halu(1)] < &2/ Halug] Vi >0,

which means that we have indeed the exponential decay of u(r) towards the
equilibrium u.. := it/meas(T?) in the L>-sense, with rate 1/Cp.

Let us remark here that in this L?-periodic framework we know the exact
solution of (37)), which reads

u(t,) =Y e M (up,ve) v, V>0,
fa

where { A, vk hren are the eigenvalues resp. associated eigenvectors of the op-
erator —A, associated with periodic boundary conditions. The eigenvalues form
a positive, increasing sequence of real numbers, satisfying Ay —;_,.. > whereas
{vi }ren form an orthonormal basis of L*(T¢).

Remarking that A; =0, v; = cst. and v = [y vedx = 0 for k # 1, we have
Uso = (g, V1 )2 V1, such that

oo

= el By = X €2 (0,3 < €2 Lol gy
k=2

which gives also the desired exponential decay, with rate A,. To compare the
two convergence rates, observe that in the 1D case Cp = 1, !, with pp = 72 /|T|?
the smallest possible positive eigenvalue of the Laplacian with Neumann bound-
ary conditions, and A, = 7% /|T|?.

Let us now change the functional and try to show the same, however con-
sidering H| [u]. Firstly we have

Do) = [, (g (1) +1) duas
_ —/TdV[log<lZo>]Vudx

= 4/ vVaPdx,
Td
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showing that H, [u] is decreasing along the trajectories of (37). To relate now
the entropy with the entropy-dissipation, we shall need no more the Poincaré
inequality, but this time the logarithmic Sobolev inequality

/ ulog (”) dx < CL/ \VVul?dx Y\ue H(Q), u>0,

Q Uoo Q

with Q € R? a bounded domain. This inequality permits indeed to get the fol-

lowing estimates for all # > 0

dH;
dt

which shows that in the limit of large times H, [u(t)] — 0 Hi[te] = 0. To show

the exponential decay of u(t) in the Lebesgue measure sense, we shall need now
the Csiszar-Kullback inequality

u(t)] = 41Vl Bapay < —4C; Ha[u(®)] = Hyfu(t)] < e /% Hyfug),

[l = tes| 71y < € (Hi[u(t)] — Hi[ue.]) ,

which yields an exponential decay in the L'-sense.

Remark 2.10. Let us underline at this point the two strategies used for the
heat equation and leading both to an exponential decay of the solution towards
the equilibrium solution, however in different norms. The “energy-strategy”
based on the Hj[u] Lyapunov functional, leads via Poincaré’s and Gronwall’s
inequalities to an L?-exponential decay, and the “’entropy-method” based on the
H,[u] Lyapunov functional, which needs the Csiszar-Kullback inequality to get
an L'-exponential decay.

2.4. Fokker-Planck equation

In this section we shall come back towards the examples proposed in section[2.]
and shall treat them via an “entropy-strategy” rather then the “energy-strategies”
proposed there.

2.4.1. The homogeneous Fokker-Planck equation (coercive case)

As a second example, let us consider the following linear Fokker-Planck equa-
tion

of = V,-(vf+V,f), V(t,v) eRT xR,
(39)
f(07 ) = fO .
The unique stationary state of this equation is given by the Maxwellian
c _
Jfo(v) = C*M(v):(zT;d/Ze vP/2 WweR?, Cx ::/Rfodv.
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Defining the entropy

H[f]:= /Rdflog (/&) dv,

we have the following theorem

Theorem 2.11. /32| (Exponential decay of the Fokker-Planck equation)
Let fy € L'(R?) be a non-negative function satisfying the condition Ja fodv =
1, and let us denote by f the corresponding unique solution to (39). Then the
functional H,[f] is an entropy for the Fokker-Planck equation and we have

0<H|[f(t)) <e *Hilfo], Vt>0.

Furthermore f(t,-) converges in the L'-sense exponentially fast in the long-time
limit towards the equilibrium M, as

1f(t,) = M|y ey < e /8Hi[fo], Vt>0.

Proof. Let us firstly show that H,[f] is a Lyapunov functional along the trajec-
tories of (39). For this, we observe that

dH, B f B ¥
i) = [ar og( L) +1]av= [ arioe(L)a
- S S
= /R[IVV.[MVV<M>:| ]0g<M>dv
_ M? AV f
_ _/Rdf VV<M> dv_—/Rdf’vvlog(M)

We used for this the fact that the collision operator can be rewritten as V,, -
wf+V,f)=V,- [M v, (%)} Finally, the following logarithmic Sobolev
inequality (see Section {.3)

£\ f
/Rdf’Vvlog<M> dv22/Rdflog<M> dv,

permits to relate the entropy H;[f(¢)] with the entropy dissipation D; [f(z,-)] :=
— 4,1 £(¢,.)]. Indeed, we obtain thus

dt
) < 2817,

Gronwall’s inequality yields then the exponential decay of the solution to in
the entropy sense. Finally the Csiszar-Kullback inequality permits to show the
corresponding exponential decay in the L'-sense, and we conclude the proof.

O

2
dv <0.
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2.4.2. The inhomogeneous Fokker-Planck equation (hypocoercive case)

To compare, let us consider now the inhomogeneous Fokker-Planck equation,
for any (¢,x,v) € R* x RY x R?

{ If+v-Vof =Vid(x)-Vof = V,-(vf+V,f),
f(O,x,v) = fO(xav)v

where ¥ is supposed to be a known smooth potential, which is strictly convexe
at infinity, for ex. let us assume here that ¥ has the form

(40)

2
B3 (x) == @f xz\ +P(x)+ %, with %HeR, Px) —+r500 smooth.

The unique steady-state of this equation is given now by

~o(0)
¢ i

Jool(x,v) = e_ﬂ(x)M(V) = (2m)4/2 ;

V(x,v) € RY x RY.

The asymptotic long-time behaviour of the unique solution to towards this
equilibrium is given by the next theorem. The fact that the Fokker-Planck col-
lision operator (right hand side of (@0))) acts only on the velocity variable leads
to a degeneracy in the x-variable, making it very hard to estimate the speed
of spatial homogenization. There will be a huge family of local Maxwellians,
making the entropy vanish, such that the usual H-theorem will no more give the
necessary information about the long-time asymptotics, in particular it gives no
indication about how to pass from a local towards the global equilibrium. Both
effects, collisions and transport have to be considered in a combined manner.

Theorem 2.12. [25] Let the initial distribution function fy be such that there
exist some constants y,1I" > 0 so that we have

Y foolx,v) < fo(x,v) <T fwolx,v), V(x,v)e R x RY,

and let f be the unique solution to [@0). Then for every € > 0 there exists a
constant C¢(fo) depending on &€, fy and © such that

1) = fol | mo ey < Ce(fo)t ™75, W >0,

Proof. The starting point of our proof will be the H-theorem. For this, let us
define the relative entropy

Hifledi= [ o (L) avav,
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and show that it is indeed a Lyapunov functional along the trajectories of (40).
Indeed, we remark that

el = = [, o]vee(£)

_ St
a /szmf‘vvlog <M>

< 0.

2
dxdv

2
dxdv

aH,
dt

The entropy-dissipation vanishes only for functions of the form f = p(¢,x) M,
with p(z,x) arbitrary, satisfying only

p(t,x)= /df(t,x,v)dv, Vx e RY.
Rd
In other words, p(t,x) is the macroscopic density associated to the distribution
function f. The functions p(¢,x)M are the so-called local equilibria of {0,
which make the right-hand side (the collision operator) of the Fokker-Planck
equation vanish.

The logarithmic/convex Sobolev inequality (63) permits now to relate the
entropy dissipation D(t) := —@—7 to the entropy H. Indeed, one has for the
so-called Fisher information I,[f|p M|

2
L{flpM] = /Rdedf V,log (pf\/l> dxdv
_ f £\
- /Rff (X)</R$1P(x) Vleg(pj\/l) dv | dx
f f _

Thus, we have p
H
=~ CR I\ 2 2H M), V20,

The crucial point is that we have on the right hand side H[f|p.M] and not
H|[f|f~] as in the coercive case, which would conclude the proof via Gronwall’s
inequality. In the present case, the last inequality permits only to show that in
the long-time limit # — oo the distribution function f will look more and more
like a local Maxwellian p...M, however nothing is known on the shape of pe(x).
The difference between the two relative entropies, corresponding to the global
as well as the local equilibria is given by

HIA\f) - HIfpM] = Hilple ), Hilple ?):= | plog (P5) ax,



66 C.NEGULESCU - A. MAUPOUX - E. LEHMAN

which is nothing but the relative entropy of p with respect to e~ ?.

To prove the convergence of f towards the global equilibrium f., one has
to use more information coming from f, namely that f is the unique solution
to the Fokker-Planck equation (40), and that f does not get stuck too close to a
local Maxwellian. Let us remark here that among all local equilibria p M, only
one satisfies equation (40). Indeed, a solution p (¢,x) M (v) must verify

ap+v-[Vip+pV,3] =0,

so that separately d;p =0 and V,p = —p V9, which finally yields f = f.. in the
long-time limit. The trend towards the global equilibrium is a struggle between
the collision operator (dissipation) and the anti-symmetric transport operator.
The collisions push the system towards a local equilibrium p(¢,x) M (v), the
transport part will drive it out of this local equilibrium, if it is not the “right”
one, namely the global Maxwellian.

To finish the proof, let us define now the quantities
x(t) =HfO)lf=],  y(0) = H[f(O)|p()M],  vi=>0.
One can show (rather lengthy and tricky computations) that for some € € (0, 1)

these positive quantities are solutions of the following system of differential
equations, with some constants Aj,A»,A3 > 0 dependent only on €, fy and ¢

—x(1) Ary(1)

Y () + Ay E () > Asx(r)

v

, Vvt > 0.

Then, it can be shown that there exists a constant C¢(fp) such that
x(t) = H[f(t)| f] < Celfo)t Ve, vt >0.

The Csiszar-Kullback inequality permits finally the conclude the proof. O

Remark 2.13. This entropy method seems to fail to give the optimal rate of
convergence, in particular to give exponential rate of convergence towards the
equilibrium. Its advantage however, as compared to the energy-methods, is that
it is rather robust and the best approach to treat non-linear problems.
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2.5. The three-zone model (hypocoercive case)

In this last part of the chapter, we shall prove Theorem which gives the
asymptotic flocking result for the three-zone model

x(t) = i),
/ 1 u
vi(l‘) = N;‘/fﬂxt xj‘ Vi) Vi=1,...,N, 41)
1 N
LY Valo(s-xl.
J L,j#i

and we shall discuss in a second time the property of the exponential decay rate
of the solution towards the equilibrium configuration.

Proof. To prove Theorem [0.13] we recall firstly that we consider a bounded
alignment potential y;, of type (7), an unbounded attraction/repulsion potential
¢ satisfying (9) and that we translated the system, such that

x:(t) =0, ve(t) =0, vt eRT.

The existence and uniqueness of a maximal solution of (41) is then a simple
consequence of the local Cauchy-Lipschitz theorem. To obtain a global solu-
tion, we need to show that the solution is not “exploding” in finite time, which
shall be done next.

The main quantity permitting to investigate the long-time behaviour of the
particle cloud is the total energy of the system, given by

N
zégm( Z Y o) =KO+PW), @)

ll] 1,j#i

where k(1) represents the kinetic energy and P(r) the potential energy of the
whole particle system. Simple computations permit to show that £(¢) is a Lya-
punov functional along the trajectories of (#1I)). Indeed, one gets

dE

' Z Z Wi (rij) [v;(0) = vi(e)[* <0, 43)

11] 1,j#i

thus £ is decaying along the solutions of (@I)). The attraction-repulsion term
describes a Hamiltonian dynamics and therefore preserves the total energy. The
alignment term causes the decay of the total energy with respect to time. It plays
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the role of friction, making the system dissipative.

Hence, the total energy is bounded by the initial energy of the system 0 <
E(t) < & forall r > 0. This fact together with the property that lim, .. ¢(r) =
o implies via (@2)) the existence of two constants r,, > 0 and 0 < ry < oo, de-
pendent on N, such that

0 < rm < |xi(t) —xj(t)| < rum, Vi,je{l,...,N}, vt >0, (44)

which means we have aggregation and absence of collisions. The globality of
the solution is then a simple consequence.

Finally, what remains to show is that lim; ,...A(f) = 0. This shall be done
by showing that the kinetic energy satisfies () —— 0, hence leading to
vi(t) = 0 for each i = 1,--- /N and thus lim,_,..A(f) = 0. The fact that
Y, (r) > 0 and y;(r) <0 for all » > 0 leads to

d& Wi (rm
< —
dt ()= 2N

[V]z

N
Z ‘Vj —vi(t)]* = =y (ru Z|Vt P =—c. K1),
=1

i=1

1j
with ¢, := 2y, (ry), thus

C /OOQIC(S) ds < &. (45)
This means the kinetic energy C(¢) is integrable. To show that it converges

towards zero at infinity, one shows that it is uniformly continuous. Indeed,
remark that

N N
2 - WL L el )~
N 1\77] l "y
% B ) ), vy 0).
i=1j=1 i i

with the first term on the right hand side being integrable (see (@3))) and the last
term bounded in time (see and (42)). This permits via integration to show
that /C(7) is uniformly continuous and we finished the proof. O

We would like to conclude this chapter with some comments about the ex-
ponential decay rate of the solution towards the equilibrium configuration. This
property is very useful in practical applications, as it permits to estimate (if the
constants are known) how far one is from the equilibrium, and in particular to
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estimate the convergence rate.

To investigate the exponential decay rate of the velocities towards zero, we
need to introduce some notation. The equilibrium solutions are denoted by

(x4, v{)Y | and satisfy v{? = 0 as well as ley:l’j# Vi, [(p(|qu —qu|)} =0 for

all i =1,...,N; the equilibrium distances between the particles will be denoted
by rif := [x{? —xi7], the equilibrium energy &, is then given by

1 y )
eq::ﬁz Z (P(ri;])v Ogé'qué’o,

i=1j=1,j#i

and finally let us introduce the quantity £ := £ — Eeq» which shall decrease to-
wards zero, when the equilibrium is approached. Furthermore, one needs to
introduce a more adequate Lyapunov functional, as for the standard energy one
only has

dé :ﬁ(t) <  W(rm
dt dt 2N

Mz

N
Z |vj(#) —vilt |2
1

J=1j#i
v = —c.K(1).

I
—_
~.

= —Wy(rm)

™M=

—

i

This inequality shows that the total energy stops decreasing for K(7) = 0, how-
ever it does not show that the total energy tends towards zero. Ideally, in order
to conclude via Gronwall’s inequality, we would need an inequality of the type
%(z‘) < —c&(t), with some ¢ > 0, however in our case the potential energy is
missing on the right hand side. We shall thus proceed with hypocoercivity ar-
guments to restore the full Lyapunov functional on the right hand side. For this
one can consider the following new functional G with corrector term )

SNy

i=1j

@'(ri ) xi(t) —x;(t),vi(t) —v;(r)),

Fij

M=

2\~

G@t):=E(t)+ay(r),

~.
*

with a constant o > 0 to be chosen such that G is indeed a Lyapunov func-
tional corresponding to the system (41)). The procedure is the following: show
first that there exist some constants ¢,,;,cy > 0 such that along the trajectories
of system (1)) one has a sort of equivalence such as ¢, £(t) < G(t) < ey E(2),
and then show that %( ) < —c§(t). This would allow to prove the exponential
decay rate in the G-entropy sense, the full proof is however for the moment still
an unsolved problem in the general framework.
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In the simplified case of two drones however, we were able to perform the
above mentioned steps, and to conclude the exponential decay rate proof. The
following lemma states this result.

Lemma 2.14. Let us consider the situation of 2 drones (N = 2) with position
and velocity (x;(t),vi(t))2; € R x R? and denote the differences by x(t) :=
x1(t) — x2(t) and v(t) :=vi(t) — va(t). The three zone model describing the
dynamics of these two drones writes under the form of the following ODE system

{ * (0 =vl) , vt e R, (46)

V() = —yv(t) = O(|x(6) ) x(r)

where we denoted 0(r) := @ for r > 0. To simplify we assumed that the
alignment strength W > 0 is a constant and the unbounded attraction/repulsion
potential ¢ satisfies besides (9) also the property

0<cio(n) <@ <ca0(r), Vr=>r,>0, 47)

for some cy,cp > 0, and where r,, > 0 is the minimal distance between the par-
ticles during the dynamics (see Thm. [0.13)). Under these conditions the velocity
v(t) decays in the long time limit t — oo exponentially fast towards v, = 0.

Let us remark here that a potential ¢ satisfying is for example

21 3
=== 0.
o(r) 5 + i Vr >

’
Proof. Firstly we observe that we are in the framework of Theorem|[0.13] hence
there exist a unique global solution for our problem (46)), with a flocking be-
haviour in the long-time limit. The total energy of the system as well as the
modified Lyapunov functional are given by

X0vl)
e =),

with the constant o > 0 to be adequately fixed. The equilibrium solutions to
are given by (x°?,v°?) such that v¢¢ = 0 and 0(r°?) = 0, with r*7 := |x*1|,
hence &, = 0 in this case (¢'(r*?) = @(r*?) = 0).

We observe then that

E(t):= %!V(l)\er(P(r(t)), G(t):=£E(t)+ae'(r(t))

d&€
— (O =-whP <0, (48)

but this is not enough to get the exponential decay of £(¢). However for the
modified functional G we have

g
dt

(1) = —‘I/|v(t)|2+0‘9r/((tr)) (x(r) - v(1))* + @ (r(D) v ()]

—a0?(r) |x(1)]? — aw O x(t) - v(t).
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The equivalence between G(¢) and £(¢), meaning the existence of two constants
cmycym > 0 such that ¢, (1) < G(¢) < e E(2), is a simple consequence of the
assumption (7). The second inequality to be shown, namely j—?(r) < = G(1),
is a consequence of the flocking, meaning the swarm evolves in a bounded re-
gion and in particular that one has 0 < r,,, < r(t) < ry, as well as of the fact
that the velocities tend towards v, in the long-time limit. However, to get this
last inequality of strictly decreasing entropy, the obtained constant ¢, > 0 can
be very small, which yields a slow (pessimistic) exponential decay rate. O

On Figurewe plotted, as an example, the corresponding evolutions of £(t)
as well as of G(¢). One observes firstly that the energy £(¢) is slightly oscillat-
ing, with &'(r) = 0 where the velocity v(z) is vanishing (see (@8)), and £(r)
seems to have in “average” an exponential decay. To compare, we plotted in ad-
dition to this curve the modified Lyapunov functional G(z), which shows a nicer
exponential decay, however still not a perfect one. Indeed, the oscillations are
somehow damped a little bit, and more importantly one can observe that G(t) is
now strictly decreasing, its slope remaining far from zero (in finite time), while
&'(t) vanishes. This is due to the additional correction term, which continues to
dissipate (the entropy) even if v(¢) = 0.

1.0 — &)
G(t)

0.8

0.6

o\

0.2 o

0.0 - S

Time (s)

Figure 5: Time evolution of £(¢) as well as of G(¢) corresponding to system

@5).
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3. Drone swarm modelling and simulation

The aim of this chapter is to expose the first insights of the drone swarm mod-
elling and its specificities, as well as to present some first numerical simulations.
Remark that we are particularly interested in the long-time behaviour of a large
swarm of drones (N > 1).

Let us fix now our three-zone model for the description of the dynamics of
a swarm of N drones. The evolution of each agent, with position and velocity
(x;,v;) € R?x R4, is governed as usual by Newton’s laws of classical mechanics,
which read for all > 0

() = o),

i) = v Y, wllxi—x;]) (vi—v) Vi=1,...,N,  (49)

™=

j=1

N
-7 Y, Vile(x—x)],

\ J=1,j#i

where 7 is either 1 or 1/N. The scaling y = 1/N of the force is only needed
for the large-swarm limit N — oo, for getting a mesoscopic (kinetic) description.
Otherwise one can take y = 1. The communication weight y;; := y(|x; —x;j|)
shall satisfy the following assumptions

veC(R), w(r)>0and V' (r)<0  Vr>0.
In particular we shall choose a singular communication weight in zero, namely
o
q/(r)::—ﬁ,, a>0,B>0,VreR".
r

Concerning the potential ¢, it contains the repulsion and attraction part, and we
shall assume that ¢ € C'(R}) is of potential-well type, bounded from below.
For instance, one may take a quadratic potential (bounded repulsion)

1
o(r):= E(r—n)z, n>0,vreR",

or a potential with singular repulsion as for example
1 3
(p(r) ::7+;_§, VFER+,
or even decouple the attraction and repulsion forces as in the more general form

F, F
o(r)i=" (r=m)? + = (r=ma)t
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with positive constants p,q, Fy, Fg, N4, Nr to be chosen in such a manner to get
the desired swarm configuration. To give only an example, we plotted in Fig. [6]
a possible potential choice.

One delicate task in drone swarm modelling is now the exploration of the
different stationary configurations one may obtain in the long-time limit ¢+ —
oo for large drone populations N > 1, and this by varying the shapes of the
attraction/repulsion potentials. These investigations are of particular interest for
the obtention of stable and realistic swarm configurations. Later on we shall
also introduce some other specific physical effects, such as obstacles, a target,
time-delays and self-propulsion.

repulsion | alignment i attraction
zone : zone | zone
@r(r) ; |
TR | |
M S : Palr)

Figure 6: Example of attraction, alignment and repulsion potentials (bounded
in r = 0) for the 3zone model.

3.1. Some equilibrium configurations

The main objective is now to understand which choice of the attraction/repulsion
and alignment kernels give rise to the desired drone configuration (for large
N > 1) in terms of inter-drone spacings, realistic drone velocities and stable
steady states. Let us remark, that once the drones move with constant velocities,
the shape of the pattern is given by the balance of the repulsive resp. attractive
forces acting on each drone, namely by the formula

N
Y Vilo(k—x]=0, Vi=1l,...,N.
j=Lj#i

Note that these particular solutions are not equilibria in the classical sense,
meaning we do not necessarily have x(¢) = vi(¢) = 0 for all i. Here, we are deal-
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ing with solutions with particular properties. For instance, flocking solutions
describe configurations with particles moving with uniform speeds v;(f) = v,
and corresponding positions x;(#) = x¥ + v, 1.

Many different types of pattern (asymptotic configurations) emerge in the long-
time limit + — oo, regulated by the relative strength of the repulsion/attraction
potentials, some of them are stable, other unstable, and not all of them are of
interest in our case. To give only some examples, we plotted in Figures [7H9)
annular formations, uniform discs or ring-formations, and their corresponding
potentials @y, (r) := (r—5) as well as

10(r—5)%,0<r<5 L(r=5)?,0<r<5
Peris (1) 1= %(F—S)z, 5<r<6 (Pring(r) = %(r_s)zv 5<5r<6
2 2
l =335, r26 l=33=5, 126
[ etr)
\ e '.

Figure 7: Annular formation for a potential @, (r) := (r —5)2.

Properties like radius of the cloud, particle density and accumulation to the
border change with increasing N. What can be observed is that if one chooses
stronger and stronger repulsive potentials at the origin, the cloud of the particles
gets larger and larger with increasing N, whereas milder repulsive potentials
lead to clustering when increasing the number of drones N. The effect of strong
attraction potentials is the formation of a bounded cloud, leading to a ring with
increasing number of particles.

To illustrate some effects, let us investigate what happens with the cloud

when taking the quadratic potential ¢(r) = }(r—n)?, with n > 0. At equilib-
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o wlr)

Figure 8: Uniform disc formation for the potential @.;s(r).

wir]

Figure 9: Ring formation for a potential @;,g(r).

rium one has

rij — Al Nooxi—x
0= ( 12 n)(xj_xt):Z(xj_xt)_n Z ] 1
j=tj#i T = ety i
N
Xi— X
:N(xmean_xi) -1 Z <=,
=tz i
This yields
N
Xi—xi
N|xi_xmean‘:n Z o SNT[,
j=tj#i i
implying

sup ‘xi _xmean‘ S n .
i€[[1,N]

This means that at equilibrium all drones are contained in a sphere of radius
n centered in the center of mass of the fleet. Furthermore observe that this
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inequality does not depend on the amount of drones N. As a consequence, if
one adds more and more drones with the same parameters, the drone swarm will
not blow up, but the drones will rather concentrate in that sphere, as illustrated

on Fig. [0}

Positions at time 100.00 1o Positions at time 100.00 - Positions at time 100.00
5 R 5 5
i % '_' " . 5
-5 =5H -5
-10 -10 -10
-9 -4 0 5 0 -10 -5 0 5 10 -10 -5 0 5 10

Figure 10: Examples of swarm configurations for a quadratic potential
@(r) = 1(r—5)* and different drone numbers N = 50, 100, 500.
To study these different pattern formations, some characteristic properties
to look for are the time-evolution of the minimal resp. maximal inter-drones
distances, and their dependence on N, i.e.

n(t) = min () ()] () 1= max o) ;0]

3.2. Specificities of drone swarms and other physical effects

When dealing with the modelling of drone swarms, one has to face particular
problems, as for example:

* Force/power constraints: Drones are powered by motors, which have
their own, particular characteristics, yielding a maximal force strength
and a maximal power, which cannot be surpassed;

* Reactivity constraints: Drones need time to receive and process the in-
formation (like positions and velocities) from other drones, and to trans-
mit their own information. This necessarily leads to time delays in the
reactivity of the drones;

* Energy constraints: Energy is a substantial and rare resource and thus
its wise employment is of paramount importance for the drone swarm
lifetime and the desired mission success;
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* Connectivity: Maintaining stable connectivity within the drones while
achieving at the same time the best area-coverage is an essential request.

Furthermore, the main goal of drone studies is to provide a model of au-
tonomously evolving drones in a realistic setting. Thus, the model should con-
tain as many as possible system-specific features as can be taken into account,
for example in addition to the above mentioned constraints, we shall consider:

* Obstacle avoidance can be modelled via repulsive artificial forces, which
push the drone back and prevent it from colliding with the occurring ob-
stacles, i.e.

1
F;'Obs = _Vx,' [(pobs(‘xi _xobs(t)H y (pobs(r> = VTX’ o> 0;

* Destination point (target) can be modelled by an attraction force, which
helps the drone to reach the goal. Moving targets or leaders can be also
modelled via attraction fields, i.e.

o

F;tar = _Vx,- [(Ptar(|xi _xtar(t)H 5 (Ptar(r) =rv, o> 0;

« Friction with the environment is usually modelled by a force F/™ =
— 1 (v;) v;. One can choose either a simple linear drag force, i.e. u(v):=v
with constant v > 0, or a nonlinear Rayleigh-Helmholtz drag, i.e. p(v) :=

B |v|? with B > 0.

* Self-propulsion of the agents can be modelled by adding a force of the
form F"°" = atv;, with o0 > 0 describing a constant acceleration of the
particles. Normally self-propulsion and friction are modelled together via
aforce term F/7(v;) = — (B |vi|* — &) v;, leading to an asymptotic velocity

of magnitude /o /B.

* Environmental disturbances, like for example unpredictable fluctua-
tions in the wind, can be modelled by introducing some random force
field in the model Fif fue meaning noise terms representing the incessant
impact of the environment on the drones;

* Inner noise, meaning the inaccuracy of the sensors that measure the po-
sitions and velocities of the drones, can also be characterized by the in-
troduction of stochastic force fields.
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So far we have treated the drones as responding to the environment they per-
ceive, via some simple mathematical rules, yielding thus an alternating sequence
of perception and action. However one can go one step further and treat the
drone additionally as “learning agents”, meaning between the perception of its
surroundings and the action step, the drone can study in detail the situation (de-
liberation step) and adapt its response by considering the personal history of
interactions and the feedback he got.

Combining several of the previously discussed effects leads to rich mathe-
matical behaviours. For instance the competition between the Rayleigh-Helmbholtz
friction and the self-propulsion leads to an asymptotic velocity of magnitude
\/o /B in the long-time limit. The nonlinearity leads also to very nice math-
ematical questions, as for example the occurrence of phase-transitions if noise
is added to the system. In some words, phase-transition is a process during
which a system, constituted of a large number of particles, undergoes a transi-
tion between two different “phases” of the system, for example from an ordered
towards a disordered phase, defined by a specific parameter, as for ex. an or-
der parameter. Such phase-transitions are frequently observed for example in
bird-swarm dynamics, see Fig. [T1]

T e Yo LN, L g s :
P S TR AR

Disordered Phase - Randomly Ordered Phase - Obvious
distributed birds pattern formation

Figure 11: Examples of phase-transition in a bird swarm [47]].

The study of phase transitions is a very active research area. Let us cite a
few examples of phase transition phenomena, occurring in collective models for
various reasons.

Firstly, in continuous versions of the Vicsek model with noise, the behaviour
of the system is locally related to the density of the agents. More specifically,
in regions where the spatial density of the agents is high enough (higher than a
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given explicit threshold), meaning the agents are able to communicate, their ve-
locity align and the dynamics of their spatial density is accurately described by
a fluid system of equations. In regions where the distribution of agents is lower
than that threshold, however, these agents are unable to efficiently communi-
cate, their velocity becomes uniformly distributed on the sphere, and their spa-
tial density follows a diffusion-type equation. Such a discussion can be found
in [20].

Another example of phase-transition occurs in the Kuramoto model, given
in (TI]), whose solutions change their behaviour when varying the strength of
the communication rate K. There exists a threshold K, such that, if K < K. one
gets in the long-time asymptotics a uniform distribution of oscillators. However,
when K > K, the oscillators begin to automatically synchronise over time. This
is called phase-locking”. One can refer to [26] for more detailed discussions
on the subject.

Let us finish this discussion by presenting some simulations in Figure
corresponding to a swarm of N = 20 drones, whose dynamics is governed by
a three-zone model with additional terms representing noise, friction, some ob-
stacles and a target (see model (51))). The parameters and functions chosen for
this simulations are

r—1)% 1
o =" wi=t y=t (50)
The numerical simulations have been performed with a forth-order Runge-Kutta
scheme (RK4). One observes very nicely on these figures the different repulsion
and attraction forces. Noise can be also discerned by the fact that the drone

density does not form a homogeneous cloud.

3.3. Mesoscopic and macroscopic descriptions

Several numerical difficulties arise when trying to solve (49)), related for ex-
ample to long-time studies, nonlinearities, delicate competition between rather
different terms, multi-scale nature of the problem efc. One of these difficul-
ties is linked to the large number of drones N >> 1 one is simulating, lead-
ing to very large coupled systems. Sometimes to get a rapid first insight of
how a drone swarm evolves in time, given an initial drone distribution, one
can move towards mesoscopic or even macroscopic approaches, which are nu-
merically more attractive but poorer from a physical point of view. Indeed,
these meso/macroscopic models do not follow the precise trajectories of each
agent, but deal with averaged distribution quantities, like drone space-velocity
distribution functions f(¢,x,v) or even more macroscopically like drone densi-
ties n(¢,x), drone mean velocities u(z,x), total energy densities £(z,x) etc. To
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Figure 12: Time evolution of a swarm of N = 20 drones starting on the left of
the simulation domain and converging towards a target (red point), by avoiding
obstacles on their way.
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recover these meso/macroscopic models from the underlying particle models,
asymptotic limits have to be considered, letting the number of drones N tend
towards infinity.

3.3.1. Kinetic descriptions

On the way towards a macroscopic drone model, one departs from a mesoscopic
description of a drone swarm, which provides the evolution of the particle dis-
tribution function f(¢,x,v) in the phase space R¢ x R¢. Such a mesoscopic de-
scription is obtained starting for example from the following, underlying particle
model, including apart of the usual alignment, repulsion and attraction terms,
also other specific features such as a target for the swarm (destination point),
friction as well as noise, i.e.

U = ),
, 1y
R SR LA ST M ATCR R,
N
_% Z (Vi) (xi —x;) +1(t)
=L

A mean-field limit permits then to obtain the corresponding kinetic model
O +v Vel =V (v + VY + V@ xn) ]+ Vo [ f) f] = OAS, - (52)

where f(z,x,v)dxdv represents the probability to find at instant 7 a drone in the
volume dxdv around the phase-space point (x,v). Here we denoted the drone
density as well as the averaged velocity alignment force by

n(1,x) ::/ Flt,xv)dv, Es(F)(tx,v) ::/ Wlx—y) (w—v) f(t,y,w)dydw.
Rd RYxRY

Furthermore 7n(7) is a Gaussian white noise with ¢ > 0 the noise strength, y > 0

is here the friction coefficient and the potential V is modelling an exteriour at-

traction force towards a given target. Let us observe that the collision operator

of the RHS conserves the mass, but neither the momentum nor the energy.

The formal passage from the particle model (51)) towards the kinetic model
(52) can be understood (as nicely explained in [13]) via the introduction of an
empirical measure
1
N~

1

M=

uN (x,v) = Se)n(0)) 5 (53)
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which makes the link between the two descriptions. Indeed, under suitable as-
sumptions one can show that (51)) admits a global-in-time smooth solution, and
that under these conditions the measure satisfies the kinetic equation
in a distributional sense.

To give only an idea of this formal proof, take 8 € C! (R x R?) and compute

d

E/Rde(x v)uN (dxdv) = ( ZG xi(t),vi( )

% [Vxe(xi(t),v,-(t)) Vi(t) + VB (xi(1),vile)) V(1)) -

”MZ

Remarking that (if one skips the noise here)

(0 = =70 = VY () = [ wlle) =) (w=vi(e) 5 (dvdw)

[, (Va9) () =) (dvdw).

and inserting this last equality in the above formula, permits to prove that u
is a distributional solution of the kinetic equation (52). We refer the interested
reader to [7, (15 130] for more rigorous mean-field limit studies.

Let us finally mention that, to be closer to reality one can couple the particle
or kinetic drone-model with a fluid model which describes the environment in
which the agents evolve. The coupling is done by means of the so-called Stokes
drag force Fy(t,x,v) = &(t,x) —v. To be more precise, the drone evolution can
be described via the following kinetic equation

If+v-Vif = [ViV 4+ (V@) xn] - Vo f =V, [(v=8) f —Fu(f) f + 0V f],
(54)
coupled to a viscous, compressible Navier-Stokes fluid model for the description
of the environment variables (p, &)

ahp+V.-(p&)=0

(55)
APE)+V, (PEDE) +Vup(p) +LE = [ (v—E)fdv,

with the pressure and the Lamé operator given by

p(p):=p%, a>1; LE=—puAE—p'V [V.-E], u>0, u+u >0.
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In some situations (for example when the fluid is a gas), one can consider
the background density as constant, leading thus to the incompressible Navier-
Stokes model. Furthermore, one can assume that the fluid (p, &) interacts only
with itself, and is hence not affected by the kinetic part, as a consequence of a
sparseness assumption on the kinetic species.

3.3.2. Fluid descriptions

The numerical simulation of a kinetic equation of the type (52)) is very costly
(6D in the phase-space (x,v)), such that it could be interesting to derive the
corresponding fluid drone model in order to reduce complexity. Introducing
now the macroscopic (mean) velocity by

(nu)(t,x) := /Rd vf(t,x,v)dv, (56)

as well as the energy and the temperature via

1 2 1o d d . _1 2
w(t,x) '_E/RdM f(t,x,v)dv-§n|u] +§nT, EnT'_E/Rd lv—ul|” fdv,

and taking the moments of the kinetic equation (51)), yields the corresponding
fluid model

on+V,-(nu) =0,
O (nu)+Vy- (nu@u)+n[VyV + (V@) xn|+V,-P
= —ynu= [ wl=y)n(ey)n(r.0) fu(r.2) = ulr.y) dy

Ow+Vy (Wu+Pu+q)+nu [V,V + (Vo) xn]

= 2yw+on—dnT (yxn)—n[yx*(nu)]

~ [ Y= y) ()t x)[u(r,x) - u(t,y)*dy,
(57)
where we denoted by IP and q the pressure tensor and the heat flux, given by

P(z,x) ::/Rd(v—u)@)(v—u)f(t,x,v)dv, q(t,x) ::;/Rd(v—uﬂv—u]zfdv.

This fluid model is not closed. To get a self-consistent model one needs to
express the pressure tensor P and the heat flux q by means of the unknowns
(n,u,w). This can be done either via empirical laws or by performing a physical
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scaling of the kinetic model (52), identifying a small parameter € € (0, 1), which
represents the regime of interest, and performing then an asymptotic (hydrody-
namic) study, which leads finally to the corresponding (closed) fluid model for
vanishing €. The parameter € serves as connection between the kinetic and the
fluid world.

This classical (rigorous) procedure is still an open research topic in the
model-case we are studying in this work. Formally the fluid limit can be ob-
tained by assuming a mono-kinetic form of the distribution function

fM(t,X,V) = n(tvx) 6u(t,x)(v)’ (58)

where the particle density n(f,x) and the average velocity u(z,x) are now solu-
tions of the pressureless Euler equations

on+Vy-(nu) =0,
0 (nu) + V- (nu@u) +n[ViV + (V@) xn]

= —pnu— [ W= y)ne3)ne,0) u(e.x) —u(e,y)] dy.

(59
As for the particle-kinetic passage, one can show formally that the measure
valued function f), defined in solves the kinetic equation in a distribu-
tional sense, as long as (n,u) satisfy the the pressureless Euler equations (59).
This formal mono-kinetic closure leads to a vanishing pressure tensor P and a
vanishing heat flux q, decoupling also the energy equation from the rest part of
the model. More rigorous studies can be found in [11, 22} [23]].

The mono-kinetic Ansatz is physically not justified, however it permits to
obtain a fluid model, whose solution have a rather similar behaviour as the par-
ticle model solution. To illustrate this, we first present some numerical results
of a comparison between a particle drone model and the corresponding pres-
sureless Euler model in Figure [I3] These are preliminary results, plotted here
only in order to give the reader an idea about what we are interested in, a de-
tailed comparison is at the moment in study. The aim was to show that with
lesser complexity (lower computational times and memory requirements) we
can achieve with fluid simulations sufficiently satisfactory results, permitting
thus to avoid the precise but time-consuming particle simulations in cases where
rapid answers are needed for the coordination of drone swarms (practical aim).
Naturally, if one wants to investigate more detailed physical or mathematical
phenomena (fundamental aim), like instabilities, phase-transitions and so on,
kinetic simulations shall be employed, and this is another subject.



MODELLING, SIMULATION, MATHEMATICAL ANALYSIS OF DRONE SWARMS 85

The model at the basis of these simulations is the 3-zone model with po-
tentials (50) and the corresponding fluid model (39). The particle model was
simulated via the standard RK4 scheme, whereas the fluid model was simulated
with a standard second-order finite volume method in space and a RK2 scheme
in time (see [9] for the numerical scheme). The mesh in space for the fluid
simulations is rather rough (N, X Ny = 200 x 200) to keep the complexity low
and investigate the power of the fluid simulations. The time-step follows the
CFL-condition. Initially all N = 400 drones are homogeneously distributed in a
square and have all the common velocity of v, = (0.1,0.1). What we observe in
Fig[T3]is that both models capture the same organisation and drift of the swarm,
respectively due to the attraction-repulsion and the alignment forces. We see
that near equilibrium, both representations have the same radius, and the same
concentration of drones around the disk.

3.3.3. Long-time asymptotics

To complete the study of the drone-swarm modelling one interesting question is
to investigate the long-time asymptotic flocking behaviour of the kinetic model
(32) or of the corresponding fluid model (57), similarly to the exponential decay
studies we presented for the particle model. For this, let us briefly sketch some
ideas, starting from the following slightly changed kinetic equation

{ hf+v-Vof =[V.V+(VU)xn] -V f =V, [yvf —Gu(f) f+0V,f],

F(0,x,v) = fin(x,v).
(60)
with the normalized alignment term given by
 Jae S W —3) (0= v) fleyw)dydw _ x(me)
Jra Jra Wx=y) f(2,y,w)dydw Yn
Remark that choosing ¥ = § in this last formula leads to the local alignment
force G,(f)(t,x,v) := u(t,x) — v, where u is this time the mean velocity defined

in (56).

Rescaling the two quantities i and o as

G.(f)(t,x,v):

N u N )
i:= , 6:=——,
Y+1 Y+1
permits to rewrite the Fokker-Planck collision operator on the RHS of in
the more usual form

Of) = (y+ 1)Vy [(v— ) f+ 6 Vf] = (y+ 1)V, [wavv (;;)] |

u
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Positions at time 0.00

Positions at time 2.51

Figure 13

: Drone swarm particle (left, N = 400) and fluid (right) simulations at
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where we denote

’ LS R S =
MO(V) = We 26 Mﬁ(t,.x, V) = Wé 2

As usually, let us introduce some physical quantities corresponding to the
model, like the associated free energy

- 9 1 2
g(N) = — /Rd/Rdfln(f)dxdv—i—z/Rd/Rdf]v\ dxdv

+/ { U*n)} ndx,

which is the sum of the entropy S(¢) (first term) and the total energy £(¢) (last
two terms). Furthermore, the dissipation term is given by

D)) = /Rl/Rd (v—2)f + 6V, ]2 dxdv

[VV (f)] dxdv.
R4 JRd Mﬁ

In order to get some information about the long-time asymptotics of the
distribution function f, the classical procedure is to multiply the kinetic equa-

tion (60) by In (ML()) and to integrate in the phase-space dxdv, obtaining the
following evolution equation for the free energy

jtg(t)H)(f)(r):/Rdn(t,x)u(z,x) i x)dx 1/ (1,2) (1, )P dx,
which rewrites

S0+ D)) + Hyl/Rdn(t,x) 0P ds =~ [ ne0itu—ads.

(61)
Let us make here two observations. Firstly, in the case one has u = i, which
arises for example if ¥ = &, thus for very concentrated alignment functions,
the right hand side of (6I)) vanishes. This implies then that in the long-time
limit the distribution function f tends towards some function of the form [~ =
n*(x) Mo(v), with zero average velocity. The zero average velocity is obtained
for ¥ > 0. The limiting density function n* is solution of the following nonlinear
elliptic problem, called sometimes Poisson-Boltzmann equation

(o

mvxnm:—[vxv‘f‘(vx[])*nw] n”, VxeT.
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The second observation concerns the case with no friction, namely for v = 0.
Even in this case one gets the same limit distributional function f* = n(x) Mo (v),
with zero average velocity. Indeed this comes from the interplay between the
transport and the collision operator.

All this analysis is done in the simplified case of # = ii. In more general cases,
with a communication weight which is concentrated around r ~ 0, one has to
try to show the smallness of the term u — i and to include the RHS into the LHS.
Applying then standard Sobolev inequalities on (61)) shall permit to obtain the
exponential decay of f (in the entropy sense) towards the equilibrium. This
problem is for the moment in study.

4. Some fundamental inequalities

In this chapter we shall compact some classical theorems and inequalities
often used in entropy methods.

4.1. Gronwall lemma

Lemma 4.1. (Bellman-Gronwall lemma, integral version)

Let u,@,y : [a,b) — R be three continuous functions on la,b) C R. Let us
furthermore suppose that @ is positive on [a,b) and that u satisfies the following
inequality

u(t) < y(s) —l—/a[(p(s)u(s) ds, Vt € [a,b).

Then one has the estimate

) < v+ [ "(s) 0(s) el O ds e [ab).

Lemma 4.2. (Gronwall lemma, integral version)

Let u, @ : [a,b) — R be two continuous functions on [a,b) C R. Let us further-
more suppose that ¢ > 0 on |a,b) and that u satisfies the following inequality,
with some constant ug € R

!
u(t) <up —|—/ o(s)u(s)ds, Vt € [a,b).
a
Then one has the estimate

u(t) < ugele®9) ds. Vt € [a,b).
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Lemma 4.3. (Gronwall lemma, classical version)
Let @,y : [a,b) — R be two continuous functions on [a,b) C R and u € C'([a,b)).
Let u satisfy moreover the following inequality

W) <y(t)+o@)u), Vt € [a,b).

Then one has the estimate

1 1 .
u(;) < M(O) efa <P(s)ds+/ W(S)e'fs (p(f)dfds.

4.2. Poincaré inequality

Lemma 4.4. (Generalized Poincaré inequality) [24)]
Let Q C RY be an open, bounded domain with Lipschitz boundary. Furthermore,
let us consider a continuous semi-norm

N WP (Q) =R, p € [1,).
Then, there exists a constant C > 0, depending only on Q,n, p such that
oy < € [|1Valliriay + N (w)]
Remark 4.5. Some examples of continuous semi-norms are:
o N(u) := [p|u(x)|do with Q of classe C! and I" C dQ with |T| > 0;
o N(u):= (u) with (u) := ﬁfgudx.

Lemma 4.6. (Poincaré-Wirtinger inequality) [l10, 29]
Let Q C R? be a connected open and bounded set of Lipschitz regularity and let
p € [1,00]. Then there exists a constant C > 0 depending only on Q.n, p such
that

| — ()||r@) < ClIVullr(@), Vuewhr(Q).

Lemma 4.7. (Inflow-Poincaré inequality) [10, [29]
Let Q C R? be an open bounded set and let p € [1,0). Then there exists a
constant C > 0 depending only on Q,n, p such that

lull o) < Cl|Vallp),  Yue WP (Q).

Remark 4.8. This last Poincaré inequality remains valid for domains which are
bounded only in one direction (strip-like domains) or for functions which vanish
only on part of the boundary I' C dQ with non-zero measure.
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Lemma 4.9. (Weighted Poincaré inequality) [3|]
Let us fix a sufficiently regular potential V satisfying

loc

Ve L;Zc(Rd) mWZ’l (Rd) ’ liminfi)d*)oov(x) = ©oo.
Then there exists some constant C > 0 such that

/d ]u!ze*VdXSC/JVu]ze*de, Vu e H'(R?) such that /
R R

ueVdx=0.
]Rd

Lemma 4.10. (Inhomogeneous Poincaré inequality) [28)]
Let Q :=T x R with T the periodic torus in x, and let us consider the weighted
measure dlle == Mdxdv where M = \/#27: e V12, Then, there exists some con-

stant C > 0 depending only on Q, such that for each u € H'(dl..) satisfying
Joudpe =0 one has

/|u|2d,uoo§C/ \Vul? dpt. . (62)
Q Q

4.3. Logarithmic Sobolev inequalities

Lemma 4.11. (Gaussian and Euclidean logarithmic Sobolev inequalities)
Let du := Mdx be the normalized Gaussian measure on R? with d > 1 and
M(x) := (27)~4/2 e~ W1/2. The Gaussian logarithmic inequality reads then

1
[P du =2 [ ju og(al?) du.

forallu € H'(R?,dp) satisfying [pa|u|*du = 1.

Forw:=uM"?we get [pa|w|>dx =1, [ga|x|>|w|>dx = d and via an integra-
tion by part we obtain the equivalent Euclidean logarithmic Sobolev inequality
[ wwla = 2 [ P og(wP)dx+ § log(2me?),

R 2 Jrd 4
Ywe HY(RY), w>0, ||w|[2=1.

Lemma 4.12. [52]] (Convex Sobolev inequalities)
Let ¢ : (0,00) — [0,00) be a smooth function, such that

"

o(1)=0, ¢'(1)=1, ¢ >0, (1/¢") <0 on (0,).

The convex Sobolev inequality relates a non-negative convex entropy function

Ep (u|ue) == /Rd(]) (Zo) Uso dx
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to an entropy-production function

oL (2) )

in particular one has

2
Uso dX,

1
Eo (ulue) < 5 [Zg (ufue.)]

for all u: R? — R* such that u € H'(R?,du) satisfying [ga|u|?du = 1 with
d = e dx and u. := (21) /> e F12 as well as Jraudx=1.

By choosing ¢ in a suitable way, we can obtain specific inequalities. For
example, choosing the typical generating function ¢ (s) := s log(s) —s+ 1 one

gets
1
umdx:f/ V10g<u>
2 Jrd Uoo

/ ulog( )dx<2
R4 Uoo R4

As one has u., := (27)"4/2 e~ */2, the convex Sobolev inequality can be rewrit-
ten in the different form

d
/lulog(u)dx—l—ilog(ZJt)—i—dSZ/J‘V\/;:‘zdx,
d R

2 2

\Y% i dx.

U

which is nothing else than the Euclidean logarithmic Sobolev inequality.

Remark 4.13. In bounded domains Q C R one has for some C > 0 (depending
only on Q and d) the following estimate, obtained from Sobolev injection and
Poincaré-Wirtinger theorems

/u log dr<C|Vullg — VueH(Q).
Tl um

4.4. Csiszar-Kullback inequality

The following inequality shows that the L!-distance of two functions f and g is
controlled by the relative entropy

E(fle) = [ 0(f/8)gdx.

Lemma 4.14. [32)] (Classical Csiszdr-Kullback inequality)

Let Q C R? be a domain and let f,g € L' (Q) satisfy f >0, g >0 and [, fdx =
Jogdx = 1. Let furthermore ¢(s) := slog(s) —s+1 for s > 0. Then, one has
with optimal constant

1f =gl <2&5(f19)-
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Lemma 4.15. (General Csiszdr-Kullback inequality)

Let Q C R? be a domain and let f,g € L' (Q) satisfy f >0, g > 0and [, fdx =
Jogdx = 1. Let furthermore ¢ € C°([0,00)) N C*(0,00) be such that ¢(1) = 0,
¢ (1)>0,¢"(1) >0, ¢ is convex and 1/¢" is concave in (0,0). The, one has

2
If —sllfs < W%(f\g%

Summary

The mathematical modelling and analysis of the collective behaviour of a cloud
of N interacting particles or agents has attracted a lot of interest in the last years
in several communities, such as biologists, physicists, mathematicians, com-
puter scientists efc. This is motivated not only by fundamental reasons, such
as the understanding of the natural phenomena occurring around us, but also by
the wide applications of this field in several domains, such as collective robotics,
unmanned areal vehicles, ...

Several mathematical models appeared in literature in the last years, such
as for ex. the Viscek model, the Kuramoto model, the Cucker-Smale model
etc, each one being specifically adapted for a particular situation, and several
mathematical and numerical studies have been performed, the literature being
constantly growing. The basic models have been fully understood today, what is
still open in our opinion is the design of more realistic models, permitting to get
closer to reality, and the corresponding mathematical and numerical analysis.
In fact, a truly good model must on one hand recreate the real-life behaviour
one is investigating, and on the other hand it must be simple enough to enable
a detailed mathematical and numerical study. So in our particular case of a
drone swarm, all the specificities mentionned in Section[3.2]shall be step by step
included in a realistic drone model and efficient, multi-scale numerical schemes
designed to be proposed to the industrials.
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