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A LIAPUNOV FUNCTION
FOR THE INITIAL-BOUNDARY VALUE PROBLEM

MODELLING
THE MICROWAVE HEATING AND ITS CONSEQUENCES ON

THE FORMATION OF HOT-SPOTS

G. CIMATTI

We prove that if the electricconductivity σ is grater than the adsorp-
bidity q and the condition of perfect insulation holds on the boundary of
the specimen heated, the functional

V =
∫

Ω

[1
2

(
ε|E|2 +µ|H|2

)
+θ

]
dx (1)

is a Liapunov function for the initial boundary value problem mod-
elling the microwave heating. If σ and q are constants the formation of
hotspots is impossible.

1. Introduction

Microwave heating is used in many applications, the most popular being cer-
tainly the cooking of foods. The mathematical modelling of the process is based
on the Maxwell equations coupled with the heat equation. This leads to the fol-
lowing initial-boundary value problem [8], [10], [11]
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ε
∂E
∂ t

= ∇×H−σE in Ω (2)

µ
∂H
∂ t

=−∇×E in Ω (3)

∇ ·H = 0 in Ω (4)

E×n = 0 on Γ (5)

H ·n = 0 on Γ (6)

E(x,0) = E0(x) in Ω (7)

H(x,0) = H0(x) in Ω (8)

θt = ∆θ +q|E|2 in Ω (9)

∂θ

∂n
= 0 on Γ (10)

θ(x,0) = θ̄(x) in Ω, (11)

where Ω is an open and bounded subset of R3 representing the heated specimen,
Γ designates the boundary of Ω and n the exterior pointing unit nornal vector to
Γ. The electric conductivity is denoted by σ and q is the thermal absorptivity.
The initial values E0(x) and H0(x) are supposed to satisfy the condition

E0(x)×n = 0 on Γ (12)

H0(x) ·n = 0 on Γ (13)

∇ ·H0(x) = 0 in Ω. (14)

The problem is non-linear, since both the electric conductivity σ and the thermal
absorptivity q are functions of the temperature θ . This fact makes the problem
very complex. In particular the formation of hot-spots, i.e. of small regions of
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very high temperature is strictly related to the nonlinear character of the prob-
lem, see [4], [12], [5]. In this paper we consider a zero-order approximation
of the nonlinear problem assuming σ and q to be two positive constants. This
simplifies the problem, and has the advantage to put in evidence the role of the
condition

σ > q (15)

which is crucial to guarantee that the temperature remains bounded.. This is
done in Section 5 via the introduction of a Liapunov function which exists only
if the condition (15) is satisfied. The crucial role of the conductivity σ was
stressed by N.F. Smyth in [16]. We also cite the related works [13], [14], [15]
and [9].

The condition (10) is an ideal condition which one would like to have in
order not to disperse the heat generated.

This paper is organised as follows. In Section 2 we prove that the initial-
boundary value problem for the Maxwell equations with a constant conductivity
has a unique solution. The semigroup theory is used together with the Lax-
Milgram lemma. The stationary problem formally corresponding to (2)-(8) is
considered in Section 3. A remark is made in Section 4 on the influence of
condition (10) on the asymptotic behaviour of the solution of heat equation (9).

2. The Maxwell equations with a constant conductivity term

The proof of existence and uniqueness for the initial-boundary problem for the
Mawell equations with a constant conductivity term can be found in [7]. To
make this paper self-contained we present in this Section a proof which partly
differs from [7]. It is convenient to consider first a problem with less conditions
with respect to (2)-(8), i.e. the problem

ε
∂E
∂ t

= ∇×H−σE in Ω (16)

µ
∂H
∂ t

=−∇×E in Ω (17)

E×n = 0 on Γ (18)

E(x,0) = E0(x) in Ω (19)

H(x,0) = H0(x) in Ω. (20)
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We recall the formula of integration by parts∫
Ω

B · (∇×A)−A · (∇×B)dx =
∫

Γ

B · (n×A)dΓ (21)

valid if A and B belong to H(curl,Ω), (see [3] page 31). For the definition of
this and the other Sobolev spaces used in this paper we refer to the Appendix.
Let us define

H= (L2(Ω))3 × (L3(Ω))3. (22)

To emphasize the physical meaning of the various components of H we use the
notation [

E
H

]
=

[
E1 E2 E3
H1 H2 H3

]
∈H.

In H we define the scalar product

[
E
H

]
·
[

Ē
H̄

]
=

∫
Ω
(∑3

i=1 EiĒi +∑
3
i=1 HiH̄i)dx.

This makes H an Hilbert space. Let

D(A) =
{

H0(curl,Ω)×H(curl,Ω)
}
⊂H

be the domain of the operator

A
[

E
H

]
=

[
∇×H −σE

−∇×E

]
.

Lemma 2.1. The operator A is dissipative.

Proof. Using (21) and recalling that E×n = 0 on Γ we have

(
A
[

E
H

])
·
[

E
H

]
=

∫
Ω

[
(∇×H−σE) ·E−(∇×E) ·H

]
dx=−σ

∫
Ω
|E|2dx≤

0.

This means precisely that A is dissipative.
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Theorem 1. The problem (16)-(20) has one and only one solution.

Proof. We apply the Hille-Yoshida Theorem, see [2], page 101. We already
know that A is dissipative. It remains to show that for every[

F
G

]
∈H

the equation

[
E
H

]
∈ D(A), (I −A)

[
E
H

]
=

[
F
G

]

or, in components,

(1+σ)E−∇×H = F, E ∈ H0(curl,Ω) (23)

H+∇×E = G, H ∈ H(curl,Ω) (24)

has one and only one solution. Let us take formally the curl of (24). We have

∇×H = ∇×G−∇× (∇×E). (25)

Substitute (25) in (23). We obtain

(1+σ)E−∇×G+∇× (∇×E) = F. (26)

Given the degree of regularity at our disposal (26) is meaningless. However,
we can rewrite (26) in weak form. To this end, let us multiply (26) by a test
function W ∈ H0(curl,Ω) and integrate by parts the resulting equation over Ω.
Using (21) and recalling (18) we obtain the following variational problem for
the determination of E ∈ H0(curl,Ω)

∫
Ω

(1+σ)E ·Wdx+
∫

Ω

(∇×E) · (∇×W)dx =
∫

Ω

F ·Wdx+
∫

Ω

G · (∇×W)dx,

(27)
for all W ∈H0(curl,Ω), (27) is the weak form of equation (26) and could have
been taken as starting point. We claim that (27) has one and only one solution.
Indeed H0(curl,Ω) is an Hilbert space if endowed with the scalar product
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∫
Ω

(∇×E) · (∇×W)dx+
∫

Ω

E ·Wdx,

where E ∈ H0(curl,Ω) and W ∈ H0(curl,Ω). In H0(curl,Ω)×H0(curl,Ω) we
define the bilinear form

a(E,W) =
∫

Ω

(1+σ)E ·Wdx+
∫

Ω

(∇×E) · (∇×W)dx (28)

which is coercive since

a(E,E)≥
∫

Ω

|E|2dx+
∫

Ω

|∇×E|2dx.

On the other hand, a(E,W) is also bounded as can be easily verified. More-
over, the right hand side of (27) defines a linear and continuous functional in
H0(curl,Ω). Hence (27) has, by the Lax-Milgram Lemma, one and only one
solution in H0(curl,Ω). In a similar way we can obtain a variational equation
determining H. For, let us take formally the curl of (23). We obtain

∇×E = (1+σ)−1
∇× (∇×H)+(1+σ)−1

∇×F. (29)

Substituting (29) in (24) we have

H+(1+σ)−1
∇× (∇×H)+(1+σ)−1

∇×F = G. (30)

We rewrite (30) in weak form. To this end, let us multiply (30) by a test function
V ∈ H0(curl,Ω) and then integrate by parts over Ω. Using (21) and recalling
(18) we arrive at the problem: to find H ∈ H(curl,Ω) such that∫

Ω

H ·Vdx+(1+σ)−1
∫

Ω

(∇×H) · (∇×V)dx+ (31)

(1+σ)−1
∫

Ω

F · (∇×V)dx =
∫

Ω

G ·Vdx

for all V ∈ H0(curl,Ω). We can apply again the Lax-Milgram Lemma to (31)
and in this way we determine H. This proves the existence and uniqueness for
problem (16)- (20)

To have a theorem of existence and uniqueness for the problem (2)-(8)
which, with respect to problem (16)- (20) contains two additional conditions we
use the results of [6] page 356, where it is proved that the additional conditions
(4), (6) are automatically verified if we assume (12), (13) and (14). Hereafter
we always assume that the data satisfy the conditions (12), (13) and (14.
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3. The stationary problem

Together with the initial-boundary value problem for the Maxwell equations
with a constant conductivity term (2)-(8) it appears natural to consider as corre-
sponding stationary problem the following: to find

E(x) ∈ H0(curl,Ω), H(x) ∈ H(curl,Ω)∩H0(div,Ω),

such that

∇×H−σE = 0 in Ω (32)

∇×E = 0 in Ω (33)

∇ ·H = 0 in Ω (34)

E×n = 0 on Γ (35)

H ·n = 0 on Γ. (36)

Theorem 2. Assume Ω to be simply connected and σ > 0. Then E(x) = 0,
H(x) = 0 is the only solution of (32)-(36).

Proof. Let E(x), H(x) be a solution of (32)-(36). Multiply (32) by E and inte-
grate over Ω. We have ∫

Ω

E · (∇×H)dx = σ

∫
Ω

|E|2dx. (37)

By (21) and in view of (35) we have, by (33),∫
Ω

E · (∇×H)dx =
∫

Ω

(∇×E) ·Hdx = 0. (38)

Hence by (37)

σ

∫
Ω

|E|2dx = 0. (39)

Since σ > 0 we have E(x) = 0. Recalling (32) we conclude that

∇×H = 0. (40)

Since Ω is simply connected there exists a scalar potential ψ(x) such that



104 G. CIMATTI

H = ∇ψ. (41)

But (34) H is also solenoidal, therefore

∆ψ = 0 in Ω. (42)

By (36) and (41) we have

∂ψ

∂n
= 0 on Γ. (43)

All the constants are solutions of (42) (43) and we conclude, by (41), that
H(x) = 0.

Remark 1. If we drop one of the hypoteses of Theorem 3.1 the situation is more
complex and the solution of (32)-(36) need not to be unique.

4. Remark on the non-homogeneous heat equation with Neumann bound-
ary condition

When in problem (2)-(8) the electric field E(x, t) is known via the results of
Section 2 it remains to consider the problem

θt = ∆θ +q|E|2 in Ω (44)

θ(x,0) = θ̄(x) (45)

∂θ

∂n
= 0 on Γ. (46)

The solution of problem (44)-(46) is well-known. In this Section we would
like to put in evidence a consequence of the Neumann boundary condition (46)
expressing the thermal insulation of the body. The problem (44)-(46) can be
split in the following two problems

∂θ1

∂ t
= ∆θ1 in Ω (47)

θ1(x,0) = θ̄(x) (48)

∂θ1

∂n
= 0 on Γ (49)
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and

∂θ2

∂ t
= ∆θ2 +q|E|2 in Ω (50)

θ2(x,0) = 0 (51)

∂θ2

∂n
= 0 on Γ. (52)

For the solution of (44)-(46) we have θ(x, t) = θ1(x, t)+ θ2(x, t). We are in-
terested in the behaviour for t → ∞ of the solution of (47)-(49). To this end
we construct the solution of (47)-(49) as a Fourier’s development in series of
the normalized eigensolutions X j(x) and eigenvalues λ j of the Laplace operator
with Neumann boundary condition i.e.

−∆X j(x) = λ jX j(x) in Ω, j = 0,1,2, .... (53)

∂X j

∂n
on Γ (54)

∫
Ω

Xi(x)X j(x)dx = δi j. (55)

The existence of a complete orthonormal system of eigensolutions for problem
(53)-(55) is a consequence of the spectral theory for self-adjoint operator. It is
immediately verified that λ0 = 0 is an eigenvalue having as correspondent eigen-
solutions all the constants. On the other hand, by normalization we immediately
found the value of the normalized eigenvector X0 to be

X0 =
1√
|Ω|

. (56)

All other eigenvalues λ j with j greater than 0 are positive as can be seen if we
multiply (53) by X j(x) and integrate by parts over Ω. Taking into account (54)
we have ∫

Ω

|∇X j(x)|2dx = λ j

∫
Ω

|X j(x)|2dx j = 1,2, ... (57)

This implies λ j > 0 if j > 0. If we write the Fourier development of θ1(x, t) in
series of eigensolutions of (53), (54) we find, taking into account (56),

θ1(x, t) =
1
|Ω|

∫
Ω

θ̄(ξ )dξ +
∞

∑
j=1

[∫
Ω

θ̄(ξ )X j(ξ )dξ

]
X j(x)e−λ jt . (58)
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In (58) all the terms, with the exception of the first one, tend uniformly to zero
as t → ∞ since λ j > 0 for j > 0. Thus

lim
t→∞

θ1(x, t) =
1
|Ω|

∫
Ω

θ̄(ξ )dξ . (59)

This is physically natural since by the condition (49) heat cannot escape from
Ω. Thus the total heat present in Ω for t = 0 remains unchanged. The interest of
the present Remark in relation to the original problem (2)-(8) lies in the fact that
as t → ∞ the electric field E vanishes. Thus (59) holds not only for θ1(x, t) but
also for the entire solution (44)-(46). This is what is proved in the next Section
using a Liapunov function.

5. Existence of a Liapunov function and its consequences

The following theorem is the main result of this paper and explains the crucial
role of the condition (60) below.

Theorem 3. If Ω is simply connected and σ and q are positive constants such
that

σ > q (60)

the functional

V =
∫

Ω

[1
2
(
ε|E|2 +µ|H|2

)
+θ

]
dx (61)

is a strict Liapunov function for the initial-boundary value problem

ε
∂E
∂ t

= ∇×H−σE in Ω (62)

µ
∂H
∂ t

=−∇×E in Ω (63)

∇ ·H = 0 in Ω (64)

E×n = 0 on Γ (65)

H ·n = 0 on Γ (66)

E(x,0) = E0(x) in Ω (67)
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H(x,0) = H0(x) in Ω (68)

θt = ∆θ +q|E|2 in Ω (69)

∂θ

∂n
= 0 on Γ (70)

θ(x,0) = θ̄(x) in Ω (71)

lim
t→∞

θ(x, t) =
1
|Ω|

∫
Ω

θ̄(x)dx. (72)

Moreover,

(E,H,θ) =
(

0,0,
1
|Ω|

∫
Ω

θ̄(x)dx
)

(73)

is the only stationary solution for (62)-(72). In addition (73) is globally
asymptotically stable.

Proof. The functional(61) is defined in the phase space of the initial conditions
{E0(x),H0(x), θ̄(x)}. By the results of Sections 2 and 3 the problem (62)-(72)
has one and only one solution

(E(x, t),H(x, t),θ(x, t)) (74)

globally defined in [0,∞). Let us compute (61) along (74), in this way the func-
tional (61) becomes a function of the time t of which we can compute the first
derivative. We find

dV
dt

=
∫

Ω

(
E · εEt +H ·µHt +θt

)
dx. (75)

Substituting in (75) in place of εEt , µHt and θt respectively (62), (63) and (69)
we find

dV
dt

=
∫

Ω

[E · (∇×H−σE)+H · (−∇×E)]dx+
∫

Ω

(∆θ +q|E|2)dx (76)

which can be rewritten as

dV
dt

=
∫

Ω

(E ·∇×H−H ·∇×E)dx+
∫

Ω

(q−σ)|E|2dx+
∫

Ω

∆θdx. (77)



108 G. CIMATTI

The first integral (77) vanishes by (21) in view of (65). The last integral in (77)
disappears by the condition (70), which is seen here to be essential in the present
treatment. Thus we arrive at

dV
dt

= (q−σ)
∫

Ω

|E|2dx. (78)

Hence, by (60),

dV
dt

< 0. (79)

This permits to say that V is a strict Liapunov function. We have dV
dt = 0 if and

only if ∫
Ω

|E|2dx = 0 (80)

i.e.

E = 0. (81)

Thus we can repeat, from a different perspective, the considerations of Section
3. More precisely, from (62) and (81) we obtain

∇×H = 0. (82)

Since Ω is simply connected there exists a scalar potential ψ such that

H(x) = ∇ψ(x) (83)

and by (64)

∆ψ = 0 in Ω. (84)

But by (66)

∂ψ

∂n
= 0 on Γ. (85)

Hence ψ is a constant. By (83) we conclude that H(x) = 0. The considerations
of Section 3 imply that

E(x) = 0, H(x) = 0, θ(x) =
1
|Ω|

∫
Ω

θ̄(x)dx (86)

is a stationary solution of problem (62)-(72). By the theory of Liapunov func-
tion in infinite dimensions, see [6], [1], the stationary solution (86) is globally
asymptotically stable.
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The physical meaning of the functional

V =
∫

Ω

1
2

(
ε|E|2 +µ|H|2

)
dx+

∫
Ω

θdx (87)

is clear. The first integral in (87) is the electro-magnetic energy presents at a
certain time in Ω, the second integral in (87) is the thermal energy which exists
at the same instant in Ω. If in problem (62)-(72) q < σ the total energy is
constantly decreasing with time and the contrary happens if q > σ .

If in the definition of “hot-spot” we require the temperature to diverge in
a finite time, then the present model cannot predict the formation of hot-spots.
However, the functional (87) is a Liapunov function even in the full non linear
problem, i.e. when σ and q depend on the temperature, see [4].
Appendix. We collect here the definitions of the functions space used in this
paper.

H(curl,Ω) = {A ∈ L2(Ω,R3), ∇×A ∈ L2(Ω,R3)} (88)

H0(curl,Ω) = {A ∈H(curl,Ω), A×n on Γ} (89)

H(div,Ω) = {A ∈ L2(Ω,R3), ∇ ·A ∈ L2(Ω,R3)} (90)

H0(div,Ω) = {A ∈H(div,Ω), A ·n on Γ}. (91)
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