LE MATEMATICHE Vol. LXXVII (2022) – Issue II, pp. 441–448 doi: 10.4418/2022.77.2.10

ADDENDUM TO THE PAPER: FIXED POINTS FOR NON-EXPANSIVE SET-VALUED MAPPINGS

J. SAINT RAYMOND

The aim of this paper is to improve or simplify some theorems which have been published in the paper [3] in this journal after a stay of the author at the University of Catania. In particular in [3] the main results were that in general the known properties of the set of fixed points for contractive set-valued mappings fail as soon as one replaces "contractive" by "non-expansive". In fact, as we shall prove in this addendum, some of them hold true when the surrounding space is finite-dimensional, or the domain is compact.

Some results of [3] are reproved here with a simpler proof for making this addendum more self-contained.

Like in [3], the general frame is the following. Let *E* be a Banach space, *C* a closed convex subset of *E* (most of time the whole *E*), and $F: C \rightrightarrows C$ a set-valued non-expansive mapping with closed convex (non-empty) values, it means

$$d_H(F(x), F(y)) \le ||x - y||$$

for all x and y in C, where d_H denotes the Hausdorff distance between closed sets : $d_H(A,B) = \max(\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A))$. And the main object in this frame is the set $\operatorname{Fix}(F) = \{x \in C : x \in F(x)\}$ of fixed points of F. A very special case and studied for long is the case of contractions, it is when F is q-lipschitz for some q < 1. Of course translations

AMS 2010 Subject Classification: 49J53, 55M20, 54H25

Keywords: non-expansive mappings, fixed points, set-valued mappings

Received on December 5, 2022

in E provide obvious examples of single-valued isometries without fixed points, but this cannot happen with contractions.

1. Non-boundedness of fixed points

If *F* is a contraction and F(x) is unbounded it is proved in [2] that the set Fix(F) is itself unbounded. Nevertheless, for non-expansive mappings, it is proved in Theorem 4.1 of [3] that this does not longer hold : in fact a non-expansive mapping is constructed in the Hilbert space ℓ^2 with unbounded values which has exactly one fixed point. We now show that this cannot happen if *E* is finite-dimensional.

Theorem 1.1. Let *E* be a finite-dimensional normed space, $F : E \Longrightarrow E$ a non-expansive set-valued mapping with closed convex unbounded values. Then Fix(*F*) is either empty or unbounded.

Proof. One can assume that 0 is a fixed point. For any integer $n \ge 1$, let $q_n = 1 - 2^{-n}$. Then the mapping $F_n : x \mapsto q_n F(x)$ is a q_n -contraction and $0 \in \text{Fix}(F_n)$. It follows from [1] that $\text{Fix}(F_n)$ is connected and from [2] that it is also unbounded. So, for any R > 0, $\text{Fix}(F_n)$ intersects the sphere S(0,R) of center 0 and radius R in some point x_n . And since this sphere is compact, the sequence (x_n) has a cluster value x^* . We will prove that $x^* \in \text{Fix}(F)$. Let $\varepsilon > 0$. There is some n such that $||x_n - x^*|| < \varepsilon$ and $R(1 - q_n) < q_n \varepsilon$. Since $x_n \in \text{Fix}(F_n)$ there is $x'_n \in F(x_n)$ such that $x_n = q_n x'_n$, and since $x'_n \in F(x_n)$ there is some $y_n \in F(x^*)$ such that

$$||x'_n - y_n|| \le d_H(F(x_n), F(x^*)) \le ||x_n - x^*|| < \varepsilon.$$

So

$$d(x^*, F(x^*)) \le ||x^* - y_n|| \le ||x^* - x_n|| + ||x_n - x_n'|| + ||x_n' - y_n|$$

$$\le 2\varepsilon + ||x_n(1 - \frac{1}{q_n})|| \le 2\varepsilon + R\frac{1 - q_n}{q_n} < 3\varepsilon$$

and since $F(x^*)$ is closed and ε arbitrary we conclude that $x^* \in Fix(F)$ hence that $Fix(F) \cap S(0,R) \neq \emptyset$. Since *R* is arbitrary large we are done.

2. Non-uniqueness of fixed points

As above Theorem 4.1 of [3] provides an example of non-expansive mapping with non-singleton values having a unique fixed point. Nevertheless for contractions it is shown in [2] that this phenomenon cannot happen : if *F* is a set-valued contraction with convex closed non-singleton values the set $\operatorname{Fix}(F)$ has several fixed points (in fact infinitely many fixed points since it is connected). More precisely if *F* is a *q*-contraction, $0 \in \operatorname{Fix}(F)$ and $b \in F(0)$ there is some $c \in \operatorname{Fix}(F)$ with $||c|| \ge \frac{1}{1+q}||b||$.

Theorem 2.1. Let *E* be a finite-dimensional normed space, *F* be a setvalued non-expansive mapping with closed convex values, $a \in Fix(F)$ and $b \in F(a)$. Then there exists some $c \in Fix(F)$ such that $||c-a|| \ge \frac{1}{2}||b-a||$.

Proof. We can and do assume that a = 0 and $b \in F(0)$. For any integer $n \ge 1$, let $q_n = 1 - 2^{-n}$ and define F_n by $F_n(x) = q_n F(x)$. Then F_n is a contraction, $0 \in \text{Fix}(F_n)$ and $q_n b \in F_n(0)$. By the result of [2] we recalled above, there is a fixed point x'_n of F_n satisfying $||x'_n|| \ge \frac{||q_n b||}{1 + q_n}$. Since $\text{Fix}(F_n)$ is connected and contains 0 the set $\{||z|| : z \in \text{Fix}(F_n)\}$ is an interval containing 0 and $||x'_n||$; hence we can choose $x_n \in \text{Fix}(F_n)$ such that $||x_n|| = \frac{q_n}{1 + q_n} ||b||$, in particular $||x_n|| \le \frac{1}{2} ||b||$.

By compactness of the ball $B(0, \frac{\|b\|}{2})$, there exists a cluster value x^* for the sequence (x_n) . Then for any $\varepsilon > 0$ one can find $n \ge 1$ such that $\|x^* - x_n\| < \varepsilon$ and $2^{-n} \|b\| < \varepsilon$. Since $\tilde{x}_n = \frac{x_n}{q_n}$ belongs to $F(x_n)$ there exists $y_n \in F(0)$ such that $\|y_n - \tilde{x}_n\| \le d_H(F(x^*), F(x_n)) \le \|x^* - x_n\|$ and we get

$$d(x^*, F(x^*)) \le ||x^* - y_n|| \le ||x^* - x_n|| + ||x_n - \tilde{x}_n|| + ||\tilde{x}_n - y_n||$$

$$\le \varepsilon + ||\tilde{x}_n||(1 - q_n) + \varepsilon \le 2\varepsilon + ||b|| \frac{1 - q_n}{1 + q_n}$$

$$\le 2\varepsilon + 2^{-n} ||b|| < 3\varepsilon$$

Again this proves that $x^* \in Fix(F)$ and that $||x^*|| = \frac{||b||}{2}$.

In fact theorem 1.1 appears as a corollary of this one since we can choose ||b|| arbitrary large with $b \in F(0)$, so get $||x^*||$ arbitrary large. \Box

3. Non-connectedness

The aim of this section is to give a simpler proof of theorems 6.3 and 7.5 from [3], concerning 2-dimensional normed spaces. The method of proof is essentially the same as in [3] and again is split into two cases following the properties of the norm. Let $(E, \|.\|)$ be a 2-dimensional normed space and *B* its unit ball.

Lemma 3.1. Either there exist two linear functionals u^* and v^* on E such that $||u^* + tv^*|| = 1$ for all $t \in [-1, 1]$, or there exists a basis (e_1, e_2) of E satisfying $||e_1|| = ||e_2|| = ||e_1^*|| = ||e_2^*|| = 1$ and $||e_2 + te_1|| > 1$ for all real $t \neq 0$.

Proof. Let (a_1, a_2) any fixed basis of E and define for $x = x_1a_1 + x_2a_2$ and $y = y_1a_1 + y_2a_2 : x \land y = x_1y_2 - x_2y_1$. The mapping $(x, y) \mapsto x \land y$ is continuous and attains its supremum $\mu > 0$ on the compact set $B \times B$ at some (e_1, e_2) .

It is clear that $||e_1|| = ||e_2|| = 1$ hence that $||e_1^*|| \ge \langle e_1^*, e_1 \rangle = 1$ and $||e_2^*|| \ge 1$ too.

Moreover since $e_1 \wedge (e_2 + \lambda e_1) = \mu$ one cannot have $||e_2 + \lambda e_1|| < 1$. Hence $||e_2^*|| = 1$, and similarly $||e_1^*|| = 1$.

If we had $||e'_2|| = 1$ for $e'_2 = e_2 + te_1$ with some $t \neq 0$ then $w^* = \frac{1}{\mu}(e_1^* - te_2^*)$ would satisfy $\langle w^*, x \rangle = \frac{1}{\mu}x \wedge e_2^*$ for all $x \in E$. In particular $\langle w^*, e_1 \rangle = \frac{1}{\mu}e_1 \wedge (e_2 + te_1) = \frac{1}{\mu}e_1 \wedge e_2 = 1$, so $||w^*|| \ge 1$. And $\frac{1}{\mu}x \wedge (e_2 + te_1) \le 1$ for all $x \in B$ since $(e_2 + te_1) \in B$, so $||w^*|| = \sup_{x \in B} \langle w^*, x \rangle \le 1$. It follows that in this case

$$1 = \langle se_1^* + (1-s)w^*, e_1 \rangle \le \|se_1^* + (1-s)w^*\| \le \max(\|e_1^*\|, \|w^*\|) = 1$$

for all $s \in [0, 1]$. And it is enough to take $u^* = \frac{e_1^* + w^*}{2}$ and $v^* = \frac{e_1^* - w^*}{2}$ for getting $||u^* + tv^*|| \le 1$ for all $t \in [-1, 1]$.

Lemma 3.2. Let *E* be a normed space, u^* be a non-zero linear functional and, for $t \in \mathbb{R}$, P_t be the halfspace $\{z \in E : \langle u^*, z \rangle \ge t\}$.

Then, for
$$s,t \in \mathbb{R}$$
, $d_H(P_s,P_t) = \frac{|s-t|}{||u^*||}$.

Proof. This follows immediately from the definition of the norm in E^* .

Lemma 3.3 (cf. [3], Theorem 6.3). Let *E* be a 2-dimensional normed space and E^* be its dual. If there are two non-zero linear functionals u^* and v^* in E^* such that $||u^* + tv^*|| = 1$ for all $t \in [-1, 1]$ (equivalently for $t \in \{-1, 0, 1\}$), then there exists a non-expansive set-valued mapping $F : E \rightrightarrows E$ with closed convex values such that Fix(F) is non connected.

Proof. The function $h: E \to \mathbb{R}$ defined by $h(x) = \langle u^*, x \rangle + \sin^2(\langle v^*, x \rangle)$ is C^1 and satisfies $h'(x) = u^* + \sin(2\langle v^*, x \rangle)v^*$, hence ||h'(x)|| = 1. Thus *h* is 1-lipschitz, an so is the set-valued function

$$F: x \mapsto \{z \in E : \langle u^*, z \rangle \ge h(x)\}$$

Moreover

$$x \in \operatorname{Fix}(F) \iff \langle u^*, x \rangle \ge \langle u^*, x \rangle + \sin^2(\langle v^*, x \rangle) \iff \sin(\langle v^*, x \rangle) = 0$$

so Fix(*F*) is the countable union $\bigcup_{k \in \mathbb{Z}} \{x : \langle v^*, x \rangle = k\pi\}$ of pairwise disjoint lines, which is not connected.

Lemma 3.4 (cf. [3], Lemma 7.2). Let *h* be a continuous positive function from \mathbb{R}^+ to \mathbb{R} . Then there exists a convex positive decreasing 1-lipschitz function φ on \mathbb{R}^+ such that $0 < \varphi(t) \le h(t)$ for all $t \in \mathbb{R}^+$.

Proof. One can assume that $h(0) \le 1$. For $\alpha \ge 0$ denote $H_{\alpha} = \inf_{t \le \alpha} h(t)$ and define the affine function ℓ_{α} on \mathbb{R}^+ by

$$\ell_{\alpha}(t) = H_{\alpha}\left(1 - \frac{t}{\alpha}\right),$$

then the convex function $\varphi = \sup_{\alpha \ge 1} \ell_{\alpha}$. It is readily checked that $H_{\alpha} > 0$, that ℓ_{α} is decreasing, 1-lipschitz and that $\ell_{\alpha} \le h$.

For $t \ge 0$ and $\alpha \ge \max(1, t)$, we have $0 < \frac{1}{2}H_{2\alpha} \le \ell_{2\alpha}(t) \le \varphi(t)$ hence $\varphi > 0$. So φ is decreasing positive and 1-lipschitz.

Lemma 3.5 (cf [3], Lemma 7.5). Assume that (e_1, e_2) is a basis of the normed space E such that $||e_1|| = ||e_2|| = ||e_1^*|| = ||e_2^*|| = 1$ and $||e_2 + se_1|| > 1$ for all $s \neq 0$. Then there exists a non-expansive set-valued mapping $F : E \rightrightarrows E$ with closed convex values such that Fix(F) is not connected.

Proof. For $t \neq 0$ and $s = t^{-1}$ we have $||e_1 + te_2|| = |t| \cdot ||e_2 + se_1|| > |t|$. So by previous lemma we can find some positive decreasing and 1-lipschitz function φ such that for all $t \in \mathbb{R}^+$:

$$0 < \varphi(t) \le h(t) := \min(\|e_1 + te_2\|, \|e_1 - te_2\|) - t.$$

Define $\gamma(t) = \varphi(|t|) + |t|$, $a = -e_1$, $b = e_1$, $D = \{a, b\} \cup \mathbb{R}.e_2$, then the function $g: D \to \mathbb{R}^+$ by g(a) = g(b) = 0 and $g(te_2) = \gamma(t)$.

Check that g is 1-lipschitz on D. The only non-obvious inequality is the following : since φ is decreasing if $t_1 = |t| \le |s| = s_1$

$$|g(se_2) - g(te_2)| = |\gamma(s) - \gamma(t)| = s_1 - t_1 + \varphi(s_1) - \varphi(t_1)$$

$$\leq s_1 - t_1 + \varphi(s_1) - \varphi(s_1) = s_1 - t_1$$

$$\leq |s - t| = ||se_2 - te_2||$$

Thus g can be extended into some 1-lipschitz function $\tilde{g}: E \to \mathbb{R}^+$, and we define F on E by

$$F(x) = \{z \in E : \langle e_2^*, z \rangle \ge \tilde{g}(x)\}$$

which is non-expansive following lemma 3.2 since \tilde{g} is 1-lipschitz. It is clear that *a* and *b* belong to Fix(F). It is enough now to check that $Fix(F) \cap \mathbb{R}.e_2 = \emptyset$. But if $x = te_2 \in Fix(F)$ we have

$$t = \langle e_2^*, x \rangle \ge \tilde{g}(x) = g(x) = \gamma(t) = |t| + \varphi(|t|) > |t|,$$

a contradiction. And this shows that Fix(F) is not connected.

Corollary 3.6. There exist on the 2-dimensional euclidean space \mathbb{R}^2 a linear functional f of norm 1 and a 1-lipschitz function \tilde{g} such that the sublevels of $f + \tilde{g}$ are not all connected.

Proof. In lemma 3.5, we can take (e_1, e_2) an orthonormal basis and $\varphi(t) = \sqrt{1+t^2} - t$. Choosing $f = -e_2^*$, and \tilde{g} and F as above we get

$$L_0 = \{x : (f + \tilde{g})(x) \le 0\} = \{x : \langle e_2^*, x \rangle \ge \tilde{g}(x)\} = \text{Fix}(F)$$

which is not connected.

Theorem 3.7 (cf. [3], Corollary 7.7). Let *E* be a normed space of dimension at least 2. Then there exists a non-expansive set-valued mapping $F : E \Rightarrow E$ with closed convex values such that Fix(F) is not connected.

Proof. Take two non-proportional continuous linear functionals φ and ψ on *E*, define $\Phi : E \to \mathbb{R}^2$ by $\Phi(x) = (\varphi(x), \psi(x))$ and equip \mathbb{R}^2 with the quotient norm : $|||u|| = \inf_{x \in \Phi^{-1}(u)} ||x||$.

By lemmas 3.1, 3.3 and 3.5 we can construct a a non-expansive setvalued mapping $G : \mathbb{R}^2 \rightrightarrows \mathbb{R}^2$ with closed convex values such that Fix(G) is non connected. It is enough now to define

$$F(x) = \Phi^{-1}(G \circ \Phi(x))$$

for $x \in E$ for getting the desired set-valued mapping.

446

4. Connectedness

We shall consider in this section the case where *H* is a convex compact subset of a Banach space and *F* is a non-expansive set-valued mapping $F: H \rightrightarrows H$ with closed convex values. In particular, if *E* is a finite-dimensional normed space, *F* is a non-expansive set-valued mapping $F: H \rightrightarrows H$ with closed convex values and $R = \sup_{x \in E} \sup_{y \in F(x)} ||y|| < +\infty$, one can take for *H* the ball of radius *R* and get that $Fix(F) = Fix(F_{|H})$.

Theorem 4.1. If H is a convex compact subset of a Banach space and F is a non-expansive set-valued mapping $F : H \rightrightarrows H$ with closed convex values, then Fix(F) is necessarily non-empty compact and connected.

Proof. For any integer $n \ge 1$ let $q_n = 1 - 2^{-n}$ and $F_n : H \rightrightarrows H$ be the set-valued mapping

$$x \mapsto q_n F(x) + 2^{-n} H$$

which is well defined since $F_n(x) \subset H$. Clearly F_n is q_n -contractive. Thus Fix (F_n) is non-empty, closed hence compact, and connected following [1]. The set $\mathcal{K}(H)$ of non-empty compact subsets of H equipped with Vietoris topology is compact.

Lemma 4.2. The set Fix(F) is the limit in $\mathcal{K}(H)$ of the sequence $(Fix(F_n))$.

Proof. Let *K* be any cluster value of the sequence $(Fix(F_n))$. Notice first that $Fix(F) \subset Fix(F_n)$: indeed if $x \in Fix(F)$ then

$$x = q_n x + 2^{-n} x \in q_n F(x) + 2^{-n} H = F_n(x),$$

so $\operatorname{Fix}(F) \subset \operatorname{Fix}(F_n)$ and $\operatorname{Fix}(F) \subset K$. Conversely, suppose that $x^* \in K$. Then x^* is a cluster value of some sequence (x_n) with $x_n \in \operatorname{Fix}(F_n)$. Then for $\varepsilon > 0$, one can find *n* such that $||x^* - x_n|| < \varepsilon$ and $2^{-n}M < \varepsilon$ where $M = \sup_{x \in H} ||x||$.

So there exist $z_n \in F(x_n)$ and $u_n \in H$ such that $x_n = q_n z_n + 2^{-n} u_n$. And since *F* is non-expansive, there is $z'_n \in F(x^*)$ such that

$$||z_n - z'_n|| \le d_H(F(x^*), F(x_n)) \le ||x^* - x_n||.$$

Thus

$$||x_n - z_n|| = ||2^{-n}u_n - (1 - q_n)z_n|| \le 2^{-n}||u_n|| + 2^{-n}||z_n|| \le 2^{1-n}M$$

and

$$d(x^*, F(x^*)) \le ||x^* - z'_n|| \le ||x^* - x_n|| + ||x_n - z_n|| + ||z_n - z'_n||$$

$$\le 2\varepsilon + 2^{1-n}M < 4\varepsilon$$

and since ε is arbitrary we conclude that $x^* \in Fix(F)$. Hence $K \subset Fix(F)$. It follows that Fix(F) is the only cluster value in $\mathcal{K}(H)$ of the sequence $(Fix(F_n))$, thus that this sequence converges to Fix(F).

J. SAINT RAYMOND

And since the set of connected compact subsets of H is closed in $\mathcal{K}(H)$, we conclude that Fix(F) is connected. So the proof of theorem 4.1 is complete.

REFERENCES

- Ricceri B., Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, Atti Acad. Nat. Lincei Cl. Sci. Fis. Mat. Natur. 81 (1987), 383–386
- [2] Saint Raymond J., *Multivalued contractions* Set-Valued Analysis 2, (1994), 559–571
- [3] Saint Raymond J., Fixed points for non-expansive set-valued mappings Le Matematiche 74, (2019) n° 2, 321–336

J. SAINT RAYMOND Sorbonne Université, Université Paris Cité, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, IMJ-PRG, F-75005, Paris, France e-mail: jean.saint-raymond@imj-prg.fr