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ADDENDUM TO THE PAPER: FIXED POINTS FOR
NON-EXPANSIVE SET-VALUED MAPPINGS

J. SAINT RAYMOND

The aim of this paper is to improve or simplify some theorems which
have been published in the paper [3] in this journal after a stay of the
author at the University of Catania. In particular in [3] the main results
were that in general the known properties of the set of fixed points for
contractive set-valued mappings fail as soon as one replaces “contractive”
by “non-expansive”. In fact, as we shall prove in this addendum, some of
them hold true when the surrounding space is finite-dimensional, or the
domain is compact.

Some results of [3] are reproved here with a simpler proof for making
this addendum more self-contained.

Like in [3], the general frame is the following. Let E be a Banach
space, C a closed convex subset of E (most of time the whole E), and
F : C =2 C a set-valued non-expansive mapping with closed convex (non-
empty) values, it means

dp (F(x), F(y)) < [lx—l|

for all x and y in C, where dy denotes the Hausdorff distance between
closed sets : dy(A,B) = max(sup,c, d(x,B),sup,cgd(y,A)). And the
main object in this frame is the set Fix(F) = {x € C: x € F(x)} of fixed
points of F. A very special case and studied for long is the case of con-
tractions, it is when F is g-lipschitz for some g < 1. Of course translations
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in E provide obvious examples of single-valued isometries without fixed
points, but this cannot happen with contractions.

1. Non-boundedness of fixed points

If F is a contraction and F (x) is unbounded it is proved in [2] that the set
Fix(F) is itself unbounded. Nevertheless, for non-expansive mappings,
it is proved in Theorem 4.1 of [3] that this does not longer hold : in
fact a non-expansive mapping is constructed in the Hilbert space £> with
unbounded values which has exactly one fixed point. We now show that
this cannot happen if E is finite-dimensional.

Theorem 1.1. Let E be a finite-dimensional normed space, F : E = E a
non-expansive set-valued mapping with closed convex unbounded values.
Then Fix(F) is either empty or unbounded.

Proof. One can assume that 0 is a fixed point. For any integer n > 1,
let g, = 1 —27". Then the mapping F, : x — ¢,F (x) is a g,-contraction
and 0 € Fix(F;). It follows from [1] that Fix(F;) is connected and from
[2] that it is also unbounded. So, for any R > 0, Fix(F,) intersects the
sphere S(0,R) of center 0 and radius R in some point x,. And since this
sphere is compact, the sequence (x,,) has a cluster value x*. We will prove
that x* € Fix(F). Let € > 0. There is some n such that ||x, —x*|| < €
and R(1 — g,) < gn€. Since x, € Fix(F,) there is x, € F(x,) such that
Xn = qnX,, and since x), € F(x,) there is some y, € F(x*) such that

12 = yall < dr(F (x2), F (x7)) < [lxa —x"|| < €.
So
d(x" F(x")) < [|x" = yull 16" = x| 4 [ — 25| 15—l

1 1—
<26+ |an(1— —)| <28 +R—In
4q

n n

< 3e

and since F(x*) is closed and € arbitrary we conclude that x* € Fix(F)
hence that Fix(F) N S(0,R) # 0. Since R is arbitrary large we are done.
O

2. Non-uniqueness of fixed points

As above Theorem 4.1 of [3] provides an example of non-expansive map-
ping with non-singleton values having a unique fixed point. Nevertheless
for contractions it is shown in [2] that this phenomenon cannot happen :
if F is a set-valued contraction with convex closed non-singleton values
the set Fix(F') has several fixed points (in fact infinitely many fixed points
since it is connected). More precisely if F is a g-contraction, 0 € Fix(F)

1
and b € F(0) there is some ¢ € Fix(F) with ||c|| > ﬁHbH
q
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Theorem 2.1. Let E be a finite-dimensional normed space, F be a set-
valued non-expansive mapping with closed convex values, a € Fix(F) and

1
b € F(a). Then there exists some c € Fix(F) such that ||c —al| > §||b—a||.

Proof. We can and do assume that a = 0 and b € F(0). For any integer
n>1,let g, =1—27" and define F, by F,(x) = ¢,F(x). Then F, is a
contraction, 0 € Fix(F,) and g,b € F,(0). By the result of [2] we recalled

H‘In I
+

above, there is a fixed point x], of F, satisfying ||x}| > . Since

Fix(F,) is connected and contains 0 the set {||z|| : z € Fix(F;,) } i 1s an inter-
vall contammg 0 and ||x||; hence we can choose x, € Fix(F,) such that

|I2]], in particular ||x,|| < f||b|\
16 ||

for the sequence (x,). Then for any 8 > 0 one can find n > 1 such that

ol =

By compactness of the ball B(0, ) there exists a cluster value x*

lx* —x,]| < € and 27"||b|| < €. Since &, = n belongs to F(x,) there

n
exists y, € F(0) such that ||y, —%,|| < du(F(x*),F(x,)) < |[x* —x,|| and
we get

d(x*, F(x")) < I =yl < [x" =2l + [0 = Fall + 1% =l

~ 1— n
et 8l(1-gu) +e <26+ b

n

<2e+27"|b|| < 3¢

b
Again this proves that x* € Fix(F) and that ||x*|| = @

In fact theorem 1.1 appears as a corollary of this one since we can
choose ||b|| arbitrary large with b € F(0), so get ||x*|| arbitrary large. [

3. Non-connectedness

The aim of this section is to give a simpler proof of theorems 6.3 and 7.5
from [3], concerning 2-dimensional normed spaces. The method of proof
is essentially the same as in [3] and again is split into two cases following
the properties of the norm. Let (E, ||.||) be a 2-dimensional normed space
and B its unit ball.

Lemma 3.1. Either there exist two linear functionals u* and v* on E such
that ||u* +tv*|| = 1 for all t € [—1,1], or there exists a basis (e1,e2) of E

t#0.

Proof. Let (ay,ay) any fixed basis of E and define for x = xja; + xpas
and y = yja; +y2as : X Ay =x1y2 —x2y1. The mapping (x,y) — x Ay is
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continuous and attains its supremum £ > 0 on the compact set B x B at
some (e, ez).

It is clear that |lej|| = ||e2|| = 1 hence that ||ef|| > (e},e1) = 1 and
lle3]] > 1 too.

Moreover since e A (ex +Aej) = 1 one cannot have |le; +Ae;|| < 1.
Hence ||¢;|| = 1, and similarly ||e}|| = 1.

! ! o . .
eNey, > e Ne, = e e

1
If we had ||é} || = 1 for €}, = e +1e; with some 7 # 0 then w* = ﬁ(e’{ —té})
1
would satisfy (w*,x) = ﬁx/\e§ for all x € E. In particular (w*,e) =

1 1 1

ﬁel A(ex+te)) = —erNex=1,50||w*|| > 1. And —x A (e2+1te;) <1
for all x € B since (ez+te;) € B, so |[w*|| = sup,cp(w*,x) < 1. It follows
that in this case

1= (se1+ (1 —s)w,er) < |[|se7 + (1 —s)w| < max([lef ][, [w"[|) = 1

* * Xk
for all s € [0,1]. And it is enough to take u* = atw and v = 1Y

for getting ||u* +1v*|| < 1 forallt € [—1,1]. O

Lemma 3.2. Let E be a normed space, u* be a non-zero linear functional
and, for t € R, B, be the halfspace {z € E : (u*,z) > 1t}.

—1
Then, for s,t € R, dy(P,,P;) = |ﬁ *”I
u
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Proof. This follows immediately from the definition of the norm in E*.
O

Lemma 3.3 (cf. [3], Theorem 6.3). Let E be a 2-dimensional normed
space and E* be its dual. If there are two non-zero linear functionals
u* and v* in E* such that ||u* +1v*|| = 1 for all t € [—1,1] (equivalently
fort € {—1,0,1}), then there exists a non-expansive set-valued mapping
F : E = E with closed convex values such that Fix(F) is non connected.

Proof. The function 4 : E — R defined by h(x) = (u*,x) +sin?((v*,x)) is
C! and satisfies //(x) = u* + sin(2(v*,x))v*, hence ||/ (x)|| = 1. Thus A is
1-lipschitz, an so is the set-valued function

F:x—{z€E:(u"z) >h(x)}
Moreover
x € FiX(F) <= (u*,x) > (u*,x) +sin®((v*,x)) <= sin((v*,x)) =0

so Fix(F) is the countable union Jycy{x : (v¥,x) = kz} of pairwise dis-
joint lines, which is not connected. ]

Lemma 3.4 (cf. [3], Lemma 7.2). Let h be a continuous positive function
from R to R. Then there exists a convex positive decreasing 1-lipschitz
function @ on R™ such that 0 < @(t) < h(t) forallt € R".

Proof. One can assume that 2(0) < 1. For a > 0 denote Hy, = inf;<q A(t)
and define the affine function £, on R™ by

alt) =Ha(l = ).

then the convex function @ = sup,,~ £4. Itis readily checked that Hy, > 0,
that ¢, is decreasing, 1-lipschitz and that £ < h.

1
Fort > 0and > max(1,7), we have 0 < EHZQ <l (t) < @(r) hence
¢ > 0. So ¢ is decreasing positive and 1-lipschitz. O

Lemma 3.5 (cf [3], Lemma 7.5). Assume that (ey,e;) is a basis of the
normed space E such that ||ei| = ||e2]| = ||ef]| = ||e5]| = 1 and ||e2 +
set|| > 1 for all s # 0. Then there exists a non-expansive set-valued map-
ping F : E = E with closed convex values such that Fix(F) is not con-
nected.

Proof. Fort#0ands=1t"" wehave |le; +tes|| = [t|.|e2 +ser| > |t]. So
by previous lemma we can find some positive decreasing and 1-lipschitz

function ¢ such that for all € R* :

0 < @(t) <h(r) :==min(|le; +1ea,|le; —ter]]) —1.
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Define y(t) = @(|t]) + |t|, a = —e1, b =e1, D = {a,b} UR.ez, then the
function g: D — R* by g(a) = g(b) =0 and g(re;) = ¥(1).

Check that g is 1-lipschitz on D. The only non-obvious inequality is
the following : since @ is decreasing if 1} = |¢]| < |s| = s}

|g(se2) — g(te2)| = [¥(s) = ¥(t)| = s1 —t1 + @ (s1) — @(t1)
<si—t+@(s1) —@(s1) =s1—1
<s—t| = [|sex —ter|

Thus g can be extended into some 1-lipschitz function g : E — R™, and
we define F on E by

F(x)={z€E:{e3,2) 2 §(x)}

which is non-expansive following lemma 3.2 since g is 1-lipschitz. It
is clear that a and b belong to Fix(F). It is enough now to check that
Fix(F)NR.e; = 0. But if x = e, € Fix(F) we have

t=(e3,%) > §(x) = glx) = 1(1) = [e| + ([e]) > e,
a contradiction. And this shows that Fix(F) is not connected. O

Corollary 3.6. There exist on the 2-dimensional euclidean space R* a
linear functional f of norm 1 and a 1-lipschitz function g such that the
sublevels of f+ g are not all connected.

Proof. Inlemma 3.5, we can take (e, e;) an orthonormal basis and ¢(7) =
V141> —1t. Choosing f = —¢3, and g and F as above we get

Loy={x:(f+8&)(x) <0} = {x: (e3,x) > g(x)} = Fix(F)
which is not connected. O

Theorem 3.7 (cf. [3], Corollary 7.7). Let E be a normed space of di-
mension at least 2. Then there exists a non-expansive set-valued mapping
F : E = E with closed convex values such that Fix(F) is not connected.

Proof. Take two non-proportional continuous linear functionals ¢ and y
on E, define @ : E — R? by ®(x) = (¢(x), y(x)) and equip R? with the
quotient norm : [[[ul]| = infycq-1,) [1x[-

By lemmas 3.1, 3.3 and 3.5 we can construct a a non-expansive set-
valued mapping G : R? = R? with closed convex values such that Fix(G)
is non connected. It is enough now to define

F(x) =2 ' (Go®(x))

for x € E for getting the desired set-valued mapping. O
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4. Connectedness

We shall consider in this section the case where H is a convex compact
subset of a Banach space and F is a non-expansive set-valued mapping
F : H = H with closed convex values. In particular, if E is a finite-
dimensional normed space, F is a non-expansive set-valued mapping F :
H = H with closed convex values and R = sup,cp Supycpy) [1l| < +oo,
one can take for H the ball of radius R and get that Fix(F) = Fix(Fjy).

Theorem 4.1. If H is a convex compact subset of a Banach space and
F is a non-expansive set-valued mapping F : H = H with closed convex
values, then Fix(F) is necessarily non-empty compact and connected.

Proof. For any integer n > 1 let ¢, = 1—27" and F, : H = H be the
set-valued mapping
X+ gnF(x)+27"H

which is well defined since F,,(x) C H. Clearly F, is g,-contractive. Thus
Fix(F,) is non-empty, closed hence compact, and connected following
[1]. The set K(H) of non-empty compact subsets of H equipped with
Vietoris topology is compact.

Lemma 4.2. The set Fix(F) is the limit in IC(H) of the sequence (Fix(Fy)).

Proof. Let K be any cluster value of the sequence (Fix(F,,)). Notice first
that Fix(F) C Fix(F,) : indeed if x € Fix(F) then

X=qux+2"x € g,F (x)+27"H = F,(x),

so Fix(F) C Fix(F,) and Fix(F) C K. Conversely, suppose that x* € K.
Then x* is a cluster value of some sequence (x,,) with x,, € Fix(F,). Then
for € > 0, one can find n such that ||x* —x,|| < € and 27"M < & where
M = sup, .y ]

So there exist z, € F(x,) and u,, € H such that x, = g,z, +2 "u,. And
since F is non-expansive, there is z,, € F(x*) such that

llzn — 2|l < (F(x*),F (xa)) < [Ix* =] -
Thus
e = 2l = 127"t — (1 = gu)zall < 27" ]|+ 27"z < 2' "M
and

d(x", F(x) < " = g | < [l = xall + [l = zall + ]z = 23
<2e+2'""M < 4e
and since € is arbitrary we conclude that x* € Fix(F). Hence K C Fix(F).

It follows that Fix(F') is the only cluster value in XC(H) of the sequence
(Fix(F,)), thus that this sequence converges to Fix(F). O
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And since the set of connected compact subsets of H is closed in
K(H), we conclude that Fix(F) is connected. So the proof of theorem 4.1
is complete. O
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