
LE MATEMATICHE
Vol. LXXVII (2022) – Issue II, pp. 441–448
doi: 10.4418/2022.77.2.10

ADDENDUM TO THE PAPER: FIXED POINTS FOR
NON-EXPANSIVE SET-VALUED MAPPINGS

J. SAINT RAYMOND

The aim of this paper is to improve or simplify some theorems which
have been published in the paper [3] in this journal after a stay of the
author at the University of Catania. In particular in [3] the main results
were that in general the known properties of the set of fixed points for
contractive set-valued mappings fail as soon as one replaces “contractive”
by “non-expansive”. In fact, as we shall prove in this addendum, some of
them hold true when the surrounding space is finite-dimensional, or the
domain is compact.

Some results of [3] are reproved here with a simpler proof for making
this addendum more self-contained.

Like in [3], the general frame is the following. Let E be a Banach
space, C a closed convex subset of E (most of time the whole E), and
F : C ⇒C a set-valued non-expansive mapping with closed convex (non-
empty) values, it means

dH(F(x),F(y))≤ ∥x− y∥

for all x and y in C, where dH denotes the Hausdorff distance between
closed sets : dH(A,B) = max

(
supx∈A d(x,B),supy∈B d(y,A)

)
. And the

main object in this frame is the set Fix(F) = {x ∈ C : x ∈ F(x)} of fixed
points of F . A very special case and studied for long is the case of con-
tractions, it is when F is q-lipschitz for some q< 1. Of course translations
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in E provide obvious examples of single-valued isometries without fixed
points, but this cannot happen with contractions.

1. Non-boundedness of fixed points

If F is a contraction and F(x) is unbounded it is proved in [2] that the set
Fix(F) is itself unbounded. Nevertheless, for non-expansive mappings,
it is proved in Theorem 4.1 of [3] that this does not longer hold : in
fact a non-expansive mapping is constructed in the Hilbert space ℓ2 with
unbounded values which has exactly one fixed point. We now show that
this cannot happen if E is finite-dimensional.

Theorem 1.1. Let E be a finite-dimensional normed space, F : E ⇒ E a
non-expansive set-valued mapping with closed convex unbounded values.
Then Fix(F) is either empty or unbounded.

Proof. One can assume that 0 is a fixed point. For any integer n ≥ 1,
let qn = 1− 2−n. Then the mapping Fn : x 7→ qnF(x) is a qn-contraction
and 0 ∈ Fix(Fn). It follows from [1] that Fix(Fn) is connected and from
[2] that it is also unbounded. So, for any R > 0, Fix(Fn) intersects the
sphere S(0,R) of center 0 and radius R in some point xn. And since this
sphere is compact, the sequence (xn) has a cluster value x∗. We will prove
that x∗ ∈ Fix(F). Let ε > 0. There is some n such that ∥xn − x∗∥ < ε

and R(1− qn) < qnε . Since xn ∈ Fix(Fn) there is x′n ∈ F(xn) such that
xn = qnx′n, and since x′n ∈ F(xn) there is some yn ∈ F(x∗) such that

∥x′n − yn∥ ≤ dH(F(xn),F(x∗))≤ ∥xn − x∗∥< ε .

So

d(x∗,F(x∗))≤ ∥x∗− yn∥ ≤ ∥x∗− xn∥+∥xn − x′n∥+∥x′n − yn∥

≤ 2ε +∥xn(1−
1
qn

)∥ ≤ 2ε +R
1−qn

qn
< 3ε

and since F(x∗) is closed and ε arbitrary we conclude that x∗ ∈ Fix(F)
hence that Fix(F)∩ S(0,R) ̸= /0. Since R is arbitrary large we are done.

2. Non-uniqueness of fixed points

As above Theorem 4.1 of [3] provides an example of non-expansive map-
ping with non-singleton values having a unique fixed point. Nevertheless
for contractions it is shown in [2] that this phenomenon cannot happen :
if F is a set-valued contraction with convex closed non-singleton values
the set Fix(F) has several fixed points (in fact infinitely many fixed points
since it is connected). More precisely if F is a q-contraction, 0 ∈ Fix(F)

and b ∈ F(0) there is some c ∈ Fix(F) with ∥c∥ ≥ 1
1+q

∥b∥.
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Theorem 2.1. Let E be a finite-dimensional normed space, F be a set-
valued non-expansive mapping with closed convex values, a∈ Fix(F) and

b∈F(a). Then there exists some c∈ Fix(F) such that ∥c−a∥≥ 1
2
∥b−a∥.

Proof. We can and do assume that a = 0 and b ∈ F(0). For any integer
n ≥ 1, let qn = 1− 2−n and define Fn by Fn(x) = qnF(x). Then Fn is a
contraction, 0 ∈ Fix(Fn) and qnb ∈ Fn(0). By the result of [2] we recalled

above, there is a fixed point x′n of Fn satisfying ∥x′n∥ ≥ ∥qnb∥
1+qn

. Since

Fix(Fn) is connected and contains 0 the set {∥z∥ : z ∈ Fix(Fn)} is an inter-
vall containing 0 and ∥x′n∥; hence we can choose xn ∈ Fix(Fn) such that

∥xn∥=
qn

1+qn
∥b∥, in particular ∥xn∥ ≤

1
2
∥b∥.

By compactness of the ball B(0,
∥b∥

2
), there exists a cluster value x∗

for the sequence (xn). Then for any ε > 0 one can find n ≥ 1 such that
∥x∗ − xn∥ < ε and 2−n∥b∥ < ε . Since x̃n =

xn

qn
belongs to F(xn) there

exists yn ∈ F(0) such that ∥yn − x̃n∥ ≤ dH(F(x∗),F(xn))≤ ∥x∗− xn∥ and
we get

d(x∗,F(x∗))≤ ∥x∗− yn∥ ≤ ∥x∗− xn∥+∥xn − x̃n∥+∥x̃n − yn∥

≤ ε +∥x̃n∥(1−qn)+ ε ≤ 2ε +∥b∥1−qn

1+qn

≤ 2ε +2−n∥b∥< 3ε

Again this proves that x∗ ∈ Fix(F) and that ∥x∗∥= ∥b∥
2

.
In fact theorem 1.1 appears as a corollary of this one since we can

choose ∥b∥ arbitrary large with b ∈ F(0), so get ∥x∗∥ arbitrary large.

3. Non-connectedness

The aim of this section is to give a simpler proof of theorems 6.3 and 7.5
from [3], concerning 2-dimensional normed spaces. The method of proof
is essentially the same as in [3] and again is split into two cases following
the properties of the norm. Let (E,∥.∥) be a 2-dimensional normed space
and B its unit ball.

Lemma 3.1. Either there exist two linear functionals u∗ and v∗ on E such
that ∥u∗+ tv∗∥= 1 for all t ∈ [−1,1], or there exists a basis (e1,e2) of E
satisfying ∥e1∥= ∥e2∥= ∥e∗1∥= ∥e∗2∥= 1 and ∥e2 + te1∥> 1 for all real
t ̸= 0.

Proof. Let (a1,a2) any fixed basis of E and define for x = x1a1 + x2a2
and y = y1a1 + y2a2 : x∧ y = x1y2 − x2y1. The mapping (x,y) 7→ x∧ y is
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continuous and attains its supremum µ > 0 on the compact set B×B at
some (e1,e2).

It is clear that ∥e1∥ = ∥e2∥ = 1 hence that ∥e∗1∥ ≥ ⟨e∗1,e1⟩ = 1 and
∥e∗2∥ ≥ 1 too.

Moreover since e1 ∧ (e2 +λe1) = µ one cannot have ∥e2 +λe1∥< 1.
Hence ∥e∗2∥= 1, and similarly ∥e∗1∥= 1.

e1

e2 e ′
2

e ′
1

v*=1

e ′
1∧e ′

2 > e1∧e ′
2 = e1∧e2

If we had ∥e′2∥= 1 for e′2 = e2+te1 with some t ̸= 0 then w∗ =
1
µ
(e∗1−te∗2)

would satisfy ⟨w∗,x⟩ = 1
µ

x∧ e∗2 for all x ∈ E. In particular ⟨w∗,e1⟩ =
1
µ

e1 ∧ (e2 + te1) =
1
µ

e1 ∧ e2 = 1, so ∥w∗∥ ≥ 1. And
1
µ

x∧ (e2 + te1)≤ 1

for all x ∈ B since (e2 + te1) ∈ B, so ∥w∗∥= supx∈B⟨w∗,x⟩ ≤ 1. It follows
that in this case

1 = ⟨se∗1 +(1− s)w∗,e1⟩ ≤ ∥se∗1 +(1− s)w∗∥ ≤ max(∥e∗1∥,∥w∗∥) = 1

for all s ∈ [0,1]. And it is enough to take u∗ =
e∗1 +w∗

2
and v∗ =

e∗1 −w∗

2
for getting ∥u∗+ tv∗∥ ≤ 1 for all t ∈ [−1,1].

Lemma 3.2. Let E be a normed space, u∗ be a non-zero linear functional
and, for t ∈ R, Pt be the halfspace {z ∈ E : ⟨u∗,z⟩ ≥ t}.

Then, for s, t ∈ R, dH(Ps,Pt) =
|s− t|
∥u∗∥ .
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Proof. This follows immediately from the definition of the norm in E∗.

Lemma 3.3 (cf. [3], Theorem 6.3). Let E be a 2-dimensional normed
space and E∗ be its dual. If there are two non-zero linear functionals
u∗ and v∗ in E∗ such that ∥u∗+ tv∗∥ = 1 for all t ∈ [−1,1] (equivalently
for t ∈ {−1,0,1}), then there exists a non-expansive set-valued mapping
F : E ⇒ E with closed convex values such that Fix(F) is non connected.

Proof. The function h : E →R defined by h(x) = ⟨u∗,x⟩+ sin2(⟨v∗,x⟩) is
C1 and satisfies h′(x) = u∗+ sin(2⟨v∗,x⟩)v∗, hence ∥h′(x)∥= 1. Thus h is
1-lipschitz, an so is the set-valued function

F : x 7→ {z ∈ E : ⟨u∗,z⟩ ≥ h(x)}

Moreover

x ∈ Fix(F) ⇐⇒ ⟨u∗,x⟩ ≥ ⟨u∗,x⟩+ sin2(⟨v∗,x⟩) ⇐⇒ sin(⟨v∗,x⟩) = 0

so Fix(F) is the countable union
⋃

k∈Z{x : ⟨v∗,x⟩ = kπ} of pairwise dis-
joint lines, which is not connected.

Lemma 3.4 (cf. [3], Lemma 7.2). Let h be a continuous positive function
from R+ to R. Then there exists a convex positive decreasing 1-lipschitz
function ϕ on R+ such that 0 < ϕ(t)≤ h(t) for all t ∈ R+.

Proof. One can assume that h(0)≤ 1. For α ≥ 0 denote Hα = inft≤α h(t)
and define the affine function ℓα on R+ by

ℓα(t) = Hα

(
1− t

α

)
,

then the convex function ϕ = supα≥1 ℓα . It is readily checked that Hα > 0,
that ℓα is decreasing, 1-lipschitz and that ℓα ≤ h.

For t ≥ 0 and α ≥max(1, t), we have 0<
1
2

H2α ≤ ℓ2α(t)≤ϕ(t) hence
ϕ > 0. So ϕ is decreasing positive and 1-lipschitz.

Lemma 3.5 (cf [3], Lemma 7.5). Assume that (e1,e2) is a basis of the
normed space E such that ∥e1∥ = ∥e2∥ = ∥e∗1∥ = ∥e∗2∥ = 1 and ∥e2 +
se1∥> 1 for all s ̸= 0. Then there exists a non-expansive set-valued map-
ping F : E ⇒ E with closed convex values such that Fix(F) is not con-
nected.

Proof. For t ̸= 0 and s = t−1 we have ∥e1+ te2∥= |t|.∥e2+se1∥> |t|. So
by previous lemma we can find some positive decreasing and 1-lipschitz
function ϕ such that for all t ∈ R+ :

0 < ϕ(t)≤ h(t) := min
(
∥e1 + te2∥,∥e1 − te2∥

)
− t .
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Define γ(t) = ϕ(|t|)+ |t|, a = −e1, b = e1, D = {a,b}∪R.e2, then the
function g : D → R+ by g(a) = g(b) = 0 and g(te2) = γ(t).

Check that g is 1-lipschitz on D. The only non-obvious inequality is
the following : since ϕ is decreasing if t1 = |t| ≤ |s|= s1

|g(se2)−g(te2)|= |γ(s)− γ(t)|= s1 − t1 +ϕ(s1)−ϕ(t1)

≤ s1 − t1 +ϕ(s1)−ϕ(s1) = s1 − t1
≤ |s− t|= ∥se2 − te2∥

Thus g can be extended into some 1-lipschitz function g̃ : E → R+, and
we define F on E by

F(x) = {z ∈ E : ⟨e∗2,z⟩ ≥ g̃(x)}

which is non-expansive following lemma 3.2 since g̃ is 1-lipschitz. It
is clear that a and b belong to Fix(F). It is enough now to check that
Fix(F)∩R.e2 = /0. But if x = te2 ∈ Fix(F) we have

t = ⟨e∗2,x⟩ ≥ g̃(x) = g(x) = γ(t) = |t|+ϕ(|t|)> |t| ,

a contradiction. And this shows that Fix(F) is not connected.

Corollary 3.6. There exist on the 2-dimensional euclidean space R2 a
linear functional f of norm 1 and a 1-lipschitz function g̃ such that the
sublevels of f + g̃ are not all connected.

Proof. In lemma 3.5, we can take (e1,e2) an orthonormal basis and ϕ(t)=√
1+ t2 − t. Choosing f =−e∗2, and g̃ and F as above we get

L0 = {x : ( f + g̃)(x)≤ 0}= {x : ⟨e∗2,x⟩ ≥ g̃(x)}= Fix(F)

which is not connected.

Theorem 3.7 (cf. [3], Corollary 7.7). Let E be a normed space of di-
mension at least 2. Then there exists a non-expansive set-valued mapping
F : E ⇒ E with closed convex values such that Fix(F) is not connected.

Proof. Take two non-proportional continuous linear functionals ϕ and ψ

on E, define Φ : E → R2 by Φ(x) =
(
ϕ(x),ψ(x)

)
and equip R2 with the

quotient norm : |∥u∥|= infx∈Φ−1(u) ∥x∥.
By lemmas 3.1, 3.3 and 3.5 we can construct a a non-expansive set-

valued mapping G : R2 ⇒R2 with closed convex values such that Fix(G)
is non connected. It is enough now to define

F(x) = Φ
−1(G◦Φ(x)

)
for x ∈ E for getting the desired set-valued mapping.
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4. Connectedness

We shall consider in this section the case where H is a convex compact
subset of a Banach space and F is a non-expansive set-valued mapping
F : H ⇒ H with closed convex values. In particular, if E is a finite-
dimensional normed space, F is a non-expansive set-valued mapping F :
H ⇒ H with closed convex values and R = supx∈E supy∈F(x) ∥y∥ < +∞,
one can take for H the ball of radius R and get that Fix(F) = Fix(F|H).

Theorem 4.1. If H is a convex compact subset of a Banach space and
F is a non-expansive set-valued mapping F : H ⇒ H with closed convex
values, then Fix(F) is necessarily non-empty compact and connected.

Proof. For any integer n ≥ 1 let qn = 1− 2−n and Fn : H ⇒ H be the
set-valued mapping

x 7→ qnF(x)+2−nH

which is well defined since Fn(x)⊂ H. Clearly Fn is qn-contractive. Thus
Fix(Fn) is non-empty, closed hence compact, and connected following
[1]. The set K(H) of non-empty compact subsets of H equipped with
Vietoris topology is compact.

Lemma 4.2. The set Fix(F) is the limit in K(H) of the sequence (Fix(Fn)).

Proof. Let K be any cluster value of the sequence
(
Fix(Fn)

)
. Notice first

that Fix(F)⊂ Fix(Fn) : indeed if x ∈ Fix(F) then

x = qnx+2−nx ∈ qnF(x)+2−nH = Fn(x) ,

so Fix(F) ⊂ Fix(Fn) and Fix(F) ⊂ K. Conversely, suppose that x∗ ∈ K.
Then x∗ is a cluster value of some sequence (xn) with xn ∈ Fix(Fn). Then
for ε > 0, one can find n such that ∥x∗− xn∥ < ε and 2−nM < ε where
M = supx∈H ∥x∥.

So there exist zn ∈ F(xn) and un ∈H such that xn = qnzn+2−nun. And
since F is non-expansive, there is z′n ∈ F(x∗) such that

∥zn − z′n∥ ≤ dH
(
F(x∗),F(xn)

)
≤ ∥x∗− xn∥ .

Thus

∥xn − zn∥= ∥2−nun − (1−qn)zn∥ ≤ 2−n∥un∥+2−n∥zn∥ ≤ 21−nM

and

d(x∗,F(x∗))≤ ∥x∗− z′n∥ ≤ ∥x∗− xn∥+∥xn − zn∥+∥zn − z′n∥
≤ 2ε +21−nM < 4ε

and since ε is arbitrary we conclude that x∗ ∈ Fix(F). Hence K ⊂ Fix(F).
It follows that Fix(F) is the only cluster value in K(H) of the sequence(
Fix(Fn)

)
, thus that this sequence converges to Fix(F).
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And since the set of connected compact subsets of H is closed in
K(H), we conclude that Fix(F) is connected. So the proof of theorem 4.1
is complete.
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