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FURTHER APPLICATIONS OF TWO MINIMAX THEOREMS

D. GIANDINOTO

In this paper, we deal with new applications of two minimax theorems
of B. Ricceri ([5],[9]). Here is a particular case of one of the results that
we obtain: Let (T,F ,µ) be a non-atomic measure space, with µ(T ) <
+∞, (E,∥ ·∥) a real Banach space, I ⊆ E an unbounded set whose closure
does not contain 0. Moreover, let p,q,r,s be four numbers such that 0 <
s < q ≤ p, p ≥ 1, r > 1. Set X := { f ∈ Lp(T,E) : f (T ) ⊆ I}. Then, one
has

inf
u∈X

(
∫

T ∥u(t)∥sdµ)r∫
T ∥u(t)∥qdµ

= 0 .

1. Introduction

There is no doubt that the most famous minimax result is the Fan-Sion theo-
rem ([1],[11]) which, for a given function of two variables, requires the quasi-
convexity with respect to one variable and the quasi-concavity with respect to
the other. Starting from [14], many topological minimax theorems (that is, with
assumptions of purely topological nature) were established ([2],[3],[12],[13]).
But only in 1992, H. König ([4]) was able to prove a topological minimax
which is a formal generalization of the Fan-Sion theorem. In particular, the
quasi-convexity assumption is replaced by requiring that the intersections of
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finite families of sublevel sets is connected. Such an assumption, out of a con-
vex setting, is very hard to be satisfied. In other words, while the theoretical
value of König’s theorem is unquestionable, its applicability, out of the quasi-
convex setting, is very hard. The optimal topological assumption replacing
quasi-convexity is, of course, requiring that the single sublevel sets are con-
nected. In [5], B. Ricceri observed that, with such a weaker condition, König’s
theorem is no longer true ([5], Example 1.1). At the same time, he showed that
such a condition is able to ensure the minimax equality when the other variable
of the considered function runs over a real interval. Later, refining one of the
results of [5], Ricceri established the following (Theorem 5.9 of [6]):

Theorem 1.1. Let X be a topological space, I ⊆ R a compact interval, and
f : X × I → R a function which is lower semicontinuous in X and upper semi-
continuous and quasi-concave in I. Moreover, assume that there exists a set
D ⊆ I dense in I such that, for each λ ∈ D and r ∈ R, the set

{x ∈ X : f (x,λ )< r}

is connected.
Then, one has

sup
λ∈I

inf
x∈X

f (x,λ ) = inf
x∈X

sup
λ∈I

f (x,λ )

More recently, a kind of variant of Theorem 1.1 has been obtained (Theorem
1.2 of [9]):

Theorem 1.2. Let X be a topological space, I be a compact real interval and f :
X × I →R an upper semicontinuous function which is continuous in X. Assume
that:

(a2) there exists a set D ⊆ I, dense in I, such that, for each λ ∈ D and r ∈ R,
the set

{x ∈ X : f (x,λ )< r}

is connected.

(b2) for each x ∈ X, the set of all global maxima of the function f (x, ·) is
connected.

Then, one has
sup
λ∈I

inf
x∈X

f (x,λ ) = inf
x∈X

sup
λ∈I

f (x,λ )

The aim of the present paper is to establish further applications of Theorems
1.1 and 1.2 besides the ones already provided in [7] and [9].
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2. Functionals having the same infimum

Throughout this section, X is a real Banach space, ϕ : X → R is a non-zero
continuous linear functional and ψ : X → R is a Lipschitzian functional whose
Lipschitzian constant L is equal to ∥ϕ∥X∗ .

Let us recall the following application of Theorem 1.1 established in [7]
([7], Theorem 3):

Theorem 2.1. Let γ : [−1,1]→ R be a continuous function which is derivable
in ]−1,1[. Assume that γ ′ is strictly increasing in ]−1,1[, with γ ′(]−1,1[) =R.
Denote by η the inverse of the function γ ′.

Then, one has

max
{

inf
x∈X

(ϕ(x)−ψ(x))− γ(−1), inf
x∈X

(ϕ(x)+ψ(x))− γ(1)
}

= inf
x∈X

(
ϕ(x)+η(ψ(x))ψ(x)− γ(η(ψ(x)))

)
.

We now want to obtain two results applying Theorem 2.1 with two specific
choices of the function γ .

First, we prove the following general result which is inspired to the proof of
Theorem 4 of [7]:

Theorem 2.2. Let f ,g : X → R. Assume that, for each bounded set C ⊂ X, one
has infC f >−∞ and infC g > 0. Assume also that

inf
X
( f +g) = inf

X
f . (2.1)

Then, one has
inf
X

f = liminf
∥x∥→+∞

f (x) .

Proof. Arguing by contradiction, suppose that infX f < liminf∥x∥→+∞ f (x). Fix
ρ so that

inf
X

f < ρ < liminf
∥x∥→+∞

f (x) . (2.2)

So, by (2.2), there is δ > 0 such that

f (x)> ρ

for all x ∈ X with ∥x∥ > δ . Now, by (2.1), there is a sequence {xn} in X such
that

lim
n→∞

( f (xn)+g(xn)) = inf
X

f . (2.3)
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Since g > 0, we have
lim
n→∞

f (xn) = inf
X

f . (2.4)

Hence, by (2.2), there is ν ∈ N such that

f (xn)< ρ

for all n ≥ ν . This implies that

sup
n≥ν

∥xn∥< δ . (2.5)

Consequently, by assumption, infn f (xn) > −∞ and so, in view of (2.3) and
(2.4), we have

lim
n→∞

g(xn) = 0 .

By assumption, this implies that the sequence {xn} is not bounded, contradicting
(2.5). The proof is complete.

Now, we prove

Theorem 2.3. For each α ∈]0,1[, we have

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(
ϕ(x)+ |ψ(x)|+(1−α)

(
1+

|ψ(x)|
α

)− α

1−α

)
.

Proof. Let α ∈]0,1[ and consider the function γ : [−1,1]→ R defined by:

γ(λ ) =−(1−|λ |)α −α|λ |

for all λ ∈ [−1,1]. γ is continuous in [−1,1] and derivable in ]−1,1[, also we
have

γ
′(λ ) =

{
α

|λ |
λ

(
1

(1−|λ |)1−α −1
)

if |λ |< 1, λ ̸= 0

0 if λ = 0
.

So, γ ′ is strictly increasing and γ ′(]−1,1[) = R. The inverse of γ ′ is given by

η(µ) =

 |µ|
µ

(
1−
(

1+ |µ|
α

)− 1
1−α

)
if µ ̸= 0

0 if µ = 0
,
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so for each x ∈ X \ψ−1(0) we have

η(ψ(x))ψ(x)− γ(η(ψ(x)))

= |ψ(x)|

(
1−
(

1+
|ψ(x)|

α

)− 1
1−α

)
+

(
1−

(
1−
(

1+
|ψ(x)|

α

)− 1
1−α

))α

+

+α

(
1−
(

1+
|ψ(x)|

α

)− 1
1−α

)
= α + |ψ(x)|+(1−α)

(
1+

|ψ(x)|
α

)− α

1−α

and this is true also for ψ(x) = 0. From [7], we know that

max
{

inf
x∈X

(ϕ(x)+ψ(x)), inf
x∈X

(ϕ(x)−ψ(x))
}
= inf

x∈X
(ϕ(x)+ |ψ(x)|) .

Now, we can apply Theorem 2.1, obtaining

inf
x∈X

(ϕ(x)+|ψ(x)|)+α = inf
x∈X

(
α +ϕ(x)+ |ψ(x)|+(1−α)

(
1+

|ψ(x)|
α

)− α

1−α

)
,

and hence

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(
ϕ(x)+ |ψ(x)|+(1−α)

(
1+

|ψ(x)|
α

)− α

1−α

)
.

We point out the following particular case of Theorem 2.3 (for α = 1
2 ):

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(
ϕ(x)+ |ψ(x)|+ 1

4|ψ(x)|+2

)
.

Remark 2.1. Notice that Theorem 2.3 is no longer true, in general, if L> ∥ϕ∥X∗ .
Indeed, fix λ > 1 and take ψ(x) = λ∥ϕ∥X∗∥x∥ . So, we have

ϕ(x)+ψ(x)≥ (λ −1)∥ϕ∥X∗∥x∥

for all x ∈ X . This implies that

inf
x∈X

(ϕ(x)+ψ(x)) = 0

and
lim

∥x∥→+∞

(ϕ(x)+ψ(x)) = +∞ .
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Of course, for each bounded set C ⊂ X and α ∈]0,1[, we have

inf
x∈C

(1−α)

(
1+

ψ(x)
α

)− α

1−α

> 0

and hence, in view of Theorem 2.2, we have

inf
x∈X

(ϕ(x)+ψ(x))< inf
x∈X

(
ϕ(x)+ψ(x)+(1−α)

(
1+

ψ(x)
α

)− α

1−α

)
.

The other result is as follows:

Theorem 2.4. We have

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(
ϕ(x)+

√
ψ(x)2 +2|ψ(x)|+ arcsin

1
1+ |ψ(x)|

)
−1.

Proof. Consider the function γ defined by

γ(λ ) = arcsin |λ |− |λ |

for all λ ∈ [−1,1]. Following the exact same steps as before, we compute

γ
′(λ ) =

{ |λ |
λ

(
1√

1−λ 2 −1
)

if |λ |< 1, λ ̸= 0

0 if λ = 0

and

η(µ) =

{ |µ|
µ

√
1− 1

(1+|µ|)2 if µ ̸= 0

0 if µ = 0

hence

η(ψ(x))ψ(x)− γ(η(ψ(x)))

= |ψ(x)|

√
1− 1

(1+ |ψ(x)|)2 −arcsin

√
1− 1

(1+ |ψ(x)|)2 +

√
1− 1

(1+ |ψ(x)|)2

=
√

ψ(x)2 +2|ψ(x)|+ arcsin
1

1+ |ψ(x)|
− π

2

so if we apply Theorem 2.1, since γ(1) = γ(−1) = π

2 −1, we obtain

inf
x∈X

(ϕ(x)+ |ψ(x)|)− π

2
+1

= inf
x∈X

(
ϕ(x)+

√
ψ(x)2 +2|ψ(x)|+ arcsin

1
1+ |ψ(x)|

− π

2

)
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hence

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(
ϕ(x)+

√
ψ(x)2 +2|ψ(x)|+ arcsin

1
1+ |ψ(x)|

)
−1.

Remark 2.2. Notice that also Theorem 2.4, in general, is no longer true when
L > ∥ϕ∥X∗ . To see this, it is enough to consider X = R, with ϕ(x) = x and
ψ(x) = 2|x| ∀x ∈ R. A few easy computations show that

0 = inf
x∈R

(x+ 2|x|) < inf
x∈R

(
x+
√

4x2 +4|x|+ arcsin
1

1+2|x|
−1
)

=
π

2
− 1

3. Infimum of certain functionals on Lp

Throughout this section, (T,F ,µ) is a measure space, with µ(T )<+∞, E is a
real Banach space and p ≥ 1.

We denote by Lp(T,E) the space of all equivalence classes of strongly µ-
measurable functions u with

∫
T ∥u(t)∥pdµ <+∞, equipped with the norm

∥u∥Lp(T,E) =

(∫
T
∥u(t)∥pdµ

) 1
p

.

We will write Lp(T ) instead of Lp(T,R).

A set D ⊆ Lp(T,E) is said to be decomposable if, for every u,v ∈ D and
every A ∈ F , the function

t 7−→ χA(t)u(t)+(1−χA(t))v(t)

is an element of D, where χA is the characteristic function of A.

A function f : T × E → R is said to be a Carathéodory function if it is
measurable in T and continuous in E.

In [9], as an application of Theorem 1.2, the following result has been ob-
tained (Theorem 2.4 of [9]):

Theorem 3.1. Let X ⊆ Lp(T,E) a decomposable set, [a,b] a compact real in-
terval, and γ : [a,b] → R a convex (resp. concave) and continuous function.
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Moreover, let ϕ,ψ,ω : T ×E → R be three Carathéodory functions such that,
for some M ∈ L1(T ), k ∈ R, one has

max{|ϕ(t,x)|, |ψ(t,x)|, |ω(t,x)|} ≤ M(t)+ k∥x∥p

for all (t,x) ∈ T ×E and

γ(a)
∫

T
ψ(t,u(t))dµ+a

∫
T

ω(t,u(t))dµ ̸= γ(b)
∫

T
ψ(t,u(t))dµ+b

∫
T

ω(t,u(t))dµ

for all u ∈ X such that
∫

T ψ(t,u(t))dµ > 0 (resp.
∫

T ψ(t,u(t))dµ < 0).
Then, one has

sup
λ∈[a,b]

inf
u∈X

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +λ

∫
T

ω(t,u(t))dµ

)
=

= inf
u∈X

sup
λ∈[a,b]

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +λ

∫
T

ω(t,u(t))dµ

)
.

Let I ⊆ E be a non-empty set. We denote by AI the class of all pairs of
continuous functions ω,ψ : E → R, with ω(x) ≥ 0 and ψ(x) > 0 for all x ∈ I,
such that

sup
x∈E

|ω(x)|+ |ψ(x)|
1+∥x∥p <+∞

and

sup
x∈I

ω(x)
ψ(x)

<+∞ .

Moreover, we denote by BI the family of all decomposable subsets X of Lp(T,E)

such that u(T ) ⊆ I for all u ∈ X , and containing each constant function taking
its value in I.

Remark 3.1. Of course, if (ω,ψ) ∈ AI and X ∈ BI , we have

inf
x∈I

ω(x)
ψ(x)

≤
∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

≤ sup
x∈I

ω(x)
ψ(x)

for all u ∈ X .

In this setting, applying Theorem 3.1, we get the following two results.

Theorem 3.2. Let (ω,ψ) ∈ AI , X ∈ BI and let r > 1. Set

a :=
(

1
r

inf
x∈I

ω(x)
ψ(x)

) 1
r−1
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and

b :=
(

1
r

sup
x∈I

ω(x)
ψ(x)

) 1
r−1

.

Then, one has

inf
u∈X

(
∫

T ω(u(t))dµ)r∫
T ψ(u(t))dµ

=

(
µ(T )

r
r

r−1

r−1
sup

λ∈[a,b]
inf
x∈I

(
λω(x)−λ

r
ψ(x)

))r−1

(3.1)

Proof. By Remark 3.1, we have{( ∫
T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) 1
r−1

: u ∈ X

}
⊆ [a,b] .

Since X contains each constant function taking its value in I, we clearly have

inf
u∈X

(∫
T

(
λω(u(t))−λ

r
ψ(u(t))

)
dµ

)
= µ(T ) inf

x∈I

(
λω(x)−λ

r
ψ(x)

)
for all λ ∈ [a,b], and hence

sup
λ∈[a,b]

inf
u∈X

(∫
T

(
λω(u(t))−λ

r
ψ(u(t))

)
dµ

)
= µ(T ) sup

λ∈[a,b]
inf
x∈I

(
λω(x)−λ

r
ψ(x)

)
.

(3.2)
Now, since

∫
T ψ(u(t))dµ > 0 for all u ∈ X , we can apply Theorem 3.1, with

γ(λ ) =−λ r and ϕ = 0, obtaining

sup
λ∈[a,b]

inf
u∈X

(∫
T

(
λω(u(t))−λ

r
ψ(u(t))

)
dµ

)
= inf

u∈X
sup

λ∈[a,b]

(
λ

∫
T

ω(u(t))dµ −λ
r
∫

T
ψ(u(t))dµ

)
. (3.3)

Fix u ∈ X . The function λ 7→ λ
∫

T ω(u(t))dµ −λ r ∫
T ψ(u(t))dµ is concave in

[0,+∞[ and its derivative vanishes at the point
( ∫

T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) 1
r−1

which lies in
[a,b]. Consequently, we have

inf
u∈X

sup
λ∈[a,b]

(
λ

∫
T

ω(u(t))dµ −λ
r
∫

T
ψ(u(t))dµ

)

= inf
u∈X

(( ∫
T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) 1
r−1
∫

T
ω(u(t))dµ −

( ∫
T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) r
r−1
∫

T
ψ(u(t))dµ

)

= inf
u∈X

r−1
r

r
r−1

(
(
∫

T ω(u(t))dµ)r∫
T ψ(u(t))dµ

) 1
r−1

.
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Therefore, in view of (3.2) and (3.3), we have

inf
u∈X

r−1
r

r
r−1

(
(
∫

T ω(u(t))dµ)r∫
T ψ(u(t))dµ

) 1
r−1

= µ(T ) sup
λ∈[a,b]

inf
x∈I

(
λω(x)−λ

r
ψ(x)

)
which is equivalent to (3.1).

It is worth noticing the following corollary of Theorem 3.2:

Theorem 3.3. Let (ω,ψ) ∈ AI , X ∈ BI and let r > 1. Assume that

inf
x∈I

(ω(x)−λψ(x)) =−∞ (3.4)

for all λ > 0.
Then, one has

inf
u∈X

(
∫

T ω(u(t))dµ)r∫
T ψ(u(t))dµ

= 0 .

Proof. Writing

ω(x)−λψ(x) = ψ(x)
(

ω(x)
ψ(x)

−λ

)
,

from (3.4), we infer that infx∈I
ω(x)
ψ(x) = 0. So, (3.1) holds with a = 0 and hence,

by (3.4) again, the right-hand side of (3.1) is 0, as claimed.

In turn, a particular case of Theorem 3.3 is as follows

Proposition 3.1. Let I be an unbounded set whose closure does not contain 0,
and let q,r,s be three positive numbers such that s < q ≤ p and r > 1.

Then, for each X ∈ BI , one has

inf
u∈X

(
∫

T ∥u(t)∥sdµ)r∫
T ∥u(t)∥qdµ

= 0 .

Proof. It is enough to notice that the pair (∥ · ∥s,∥ · ∥q) belongs to AI and that
(3.4) is satisfied.

Theorem 3.4. Let (ω,ψ) ∈ AI , with infx∈I
ω(x)
ψ(x) > 0, and let X ∈ BI . Set

a := log
(

inf
x∈I

ω(x)
ψ(x)

)
and

b := log
(

sup
x∈I

ω(x)
ψ(x)

)
.
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Then, one has

inf
u∈X

(∫
T

ω(u(t))dµ

(
log
(∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

)
−1
))

= µ(T ) sup
λ∈[a,b]

inf
x∈I

(
λω(x)−eλ

ψ(x)
)
.

(3.5)

Proof. By Remark 3.1, we have{
log
(∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

)
: u ∈ X

}
⊆ [a,b].

As we have seen in the proof of Theorem 3.2, we have

sup
λ∈[a,b]

inf
u∈X

(∫
T

(
λω(u(t))− eλ

ψ(u(t))
)
dµ

)
= µ(T ) sup

λ∈[a,b]
inf
x∈I

(
λω(x)−eλ

ψ(x)
)
.

(3.6)
Then, since

∫
T ψ(u(t))dµ > 0 for all u ∈ X , we can apply Theorem 3.1 with

γ(λ ) =−eλ and ϕ = 0, obtaining

sup
λ∈[a,b]

inf
u∈X

(∫
T

(
λω(u(t))− eλ

ψ(u(t))
)
dµ

)
= inf

u∈X
sup

λ∈[a,b]

(
λ

∫
T

ω(u(t))dµ − eλ

∫
T

ψ(u(t))dµ

)
. (3.7)

Fix u ∈ X . The derivative of the concave function λ 7→ λ
∫

T ω(u(t))dµ −
eλ
∫

T ψ(u(t))dµ vanishes at the point log
( ∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

)
which lies in [a,b]. So,

we have

inf
u∈X

sup
λ∈[a,b]

(
λ

∫
T

ω(u(t))dµ − eλ

∫
T

ψ(u(t))dµ

)
= inf

u∈X

(
log
(∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

)∫
T

ω(u(t))dµ − elog
( ∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

) ∫
T

ψ(u(t))dµ

)
= inf

u∈X

(∫
T

ω(u(t))dµ

(
log
(∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

)
−1
))

.

Therefore, in view of (3.6) and (3.7), we obtain (3.5).

By taking ψ,ω that satisfy the conditions of either Theorem 3.2 or Theorem
3.4, we can compute the infimum of a variety of functionals of the type figuring
in the left-hand sides of (3.1) and (3.5).

We remark that Theorem 3.1 is just one of the possible ways of applying
Theorem 1.2 to integral functionals in Lp-spaces. Another way is the following.
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Theorem 3.5. Let X ⊆ Lp(T,E) be a decomposable set, [a,b] a compact real
interval and γ,δ ∈C0([a,b])∩C1(]a,b[) two functions such that γ ′(λ ) ̸= 0 for all
λ ∈ [a,b] and δ ′

γ ′ is strictly monotone in ]a,b[. Moreover, let ϕ,ψ,ω : T ×E →R
be three Carathéodory functions such that, for some M ∈ L1(T ), k ∈R, one has

max{|ϕ(t,x)|, |ψ(t,x)|, |ω(t,x)|} ≤ M(t)+ k∥x∥p

for all (t,x) ∈ T ×E and

γ(a)
∫

T
ψ(t,u(t))dµ+δ (a)

∫
T

ω(t,u(t))dµ ̸= γ(b)
∫

T
ψ(t,u(t))dµ+δ (b)

∫
T

ω(t,u(t))

in each of the two following cases:

(i) δ ′

γ ′ is strictly increasing, u ∈ X and γ ′(λ )
∫

T ω(t,u(t))dµ > 0 for all λ ∈
]a,b[;

(ii) δ ′

γ ′ is strictly decreasing, u ∈ X and γ ′(λ )
∫

T ω(t,u(t))dµ < 0 for all λ ∈
]a,b[.

Then, one has

sup
λ∈[a,b]

inf
u∈X

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +δ (λ )

∫
T

ω(t,u(t))dµ

)
= inf

u∈X
sup

λ∈[a,b]

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +δ (λ )

∫
T

ω(t,u(t))dµ

)
.

Proof. Consider the function f : X × [a,b]→ R defined by

f (u,λ ) =
∫

T
ϕ(t,u(t))dµ + γ(λ )

∫
T

ψ(t,u(t))dµ +δ (λ )
∫

T
ω(t,u(t))dµ

for all (u,λ )∈X × [a,b]. Fix u∈X . Assume that
∫

T ω(t,u(t))dµ ̸= 0. We check
that f (u, ·) has a unique global maximum in [a,b]. Indeed, if f ′

λ
(u, ·) ̸= 0 for all

λ ∈]a,b[, then f (u, ·) is strictly monotone and so it reaches its maximum only ei-
ther at a or at b. Otherwise, since δ ′

γ ′ is strictly monotone, f ′
λ
(u, ·) vanishes only

at the point λ̃ ∈]a,b[ such that δ ′(λ̃ )

γ ′(λ̃ )
=−

∫
T ψ(t,u(t))dµ∫
T ω(t,u(t))dµ

. If λ̃ is a global maximum

of f (u, ·), then it is the only one in view of Rolle’s theorem. So, suppose that λ̃

is not a global maximum of f (u, ·). Now, assume that δ ′

γ ′ is strictly increasing.
If γ ′(λ )

∫
T ω(t,u(t))dµ < 0 for all λ ∈]a,b[, we would have f ′

λ
(u,λ ) < 0 for

all λ ∈]λ̃ ,b] and f ′
λ
(u,λ ) > 0 for all λ ∈ [a, λ̃ [ and hence λ̃ would be a global

maximum of f (u, ·). Consequently, we have γ ′(λ )
∫

T ω(t,u(t))dµ > 0 for all
λ ∈]a,b[ and hence, by assumption, f (u,a) ̸= f (u,b). Therefore, f (u, ·) reaches
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its maximum only at a or at b. With similar arguments, we get the same conclu-
sion when δ ′

γ ′ is strictly decreasing. Now, suppose that
∫

T ω(t,u(t))dµ = 0. In
this case, f (u, ·) is either constant or strictly monotone. We then infer that, for
every u ∈ X , the set of all global maxima of f (u, ·) is connected. On the other
hand, it is clear that the function f is continuous in X × [a,b]. Furthermore, by
Théorème 7 of [10], f (·,λ ) is inf-connected for all λ ∈ [a,b]. Now, we can
apply Theorem 1.2, and the proof is complete.

Now, exactly as we did for Theorem 3.1, we want to apply Theorem 3.5 to
a specific case, obtaining results on the infimum of certain integral functionals.
This gives us the following result.

Theorem 3.6. Let I ⊆ E be a non-empty set, X ∈ BI and ω,ψ : R → R two
continuous functions such that ω(x)> 0 for all x ∈ I and

sup
x∈E

ω(x)+ |ψ(x)|
1+∥x∥p <+∞ .

Then, we have

inf
u∈X

√(∫
T

ψ(u(t))dµ

)2

+

(∫
T

ω(u(t))dµ

)2

= µ(T ) sup
λ∈[− π

2 ,
π

2 ]

inf
x∈I

(ψ(x)sinλ +ω(x)cosλ ) (3.8)

Proof. We are going to apply Theorem 3.5 taking [a,b] = [−π

2 ,
π

2 ], γ(λ ) = sinλ

and δ (λ ) = cosλ . Since δ ′

γ ′ is strictly decreasing and γ ′(λ )
∫

T ω(u(t))dµ > 0
for all λ ∈]a,b[, u ∈ X , no other condition has to be satisfied. Consequently, we
have

inf
u∈X

sup
λ∈[− π

2 ,
π

2 ]

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)
= sup

λ∈[− π

2 ,
π

2 ]

inf
u∈X

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)
. (3.9)

On the other hand, since X ∈ BI , we have

sup
λ∈− π

2 ,
π

2 ]

inf
u∈X

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)
= µ(T ) sup

λ∈[− π

2 ,
π

2 ]

inf
x∈I

(ψ(x)sinλ +ω(x)cosλ ). (3.10)
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Fix u ∈ X . An easy checking shows that the function λ 7→
∫

T ψ(u(t))dµ sinλ +∫
T ω(u(t))dµ cosλ reaches its maximum at the point arctan

( ∫
T ψ(u(t))dµ∫
T ω(u(t))dµ

)
. So,

we have

sup
λ∈[− π

2 ,
π

2 ]

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)
= sin

(
arctan

(∫
T ψ(u(t))dµ∫
T ω(u(t))dµ

))∫
T

ψ(u(t))dµ+

cos
(

arctan
(∫

T ψ(u(t))dµ∫
T ω(u(t))dµ

))∫
T

ω(u(t))dµ

=

∫
T ψ(u(t))dµ∫

T ω(u(t))dµ

√
1+
( ∫

T ψ(u(t))dµ∫
T ω(u(t))dµ

)2

∫
T

ψ(u(t))dµ+
1√

1+
( ∫

T ψ(u(t))dµ∫
T ω(u(t))dµ

)2

∫
T

ω(u(t))dµ

=

√(∫
T

ψ(u(t))dµ

)2

+

(∫
T

ω(u(t))dµ

)2

.

Now (3.8) follows directly from (3.9) and (3.10).

Remark 3.2. Let X , ω and ψ be as in Theorem 3.6. Consider the set

K =

{(∫
T

ω(u(t))dµ,
∫

T
ψ(u(t))dµ

)
: u ∈ X

}
⊆ R2 .

Theorem 3.6 gives us the exact value of the distance of 0 from K. Since, by
the Lyapunov convexity theorem, K is convex, this information is very useful in
applying Theorem 1 of [8] to K.
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Circ. Mat. Palermo 44 (1995), 162-168.

[11] M. Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176.
[12] F. Terkelsen, Some minimax theorems, Math. Scand. 31 (1972), 405-413.
[13] H. Tuy, On a general minimax theorem, Soviet Math. Dokl. 15 (1974), 1689-1693
[14] W.T. Wu, A remark on the fundamental theorem in the theory of games, Sci.

Record (N.S.) 3 (1959), 229-233.

D. GIANDINOTO
Department of Mathematics, Stockholm University, SE-106 91 Stockholm,

Sweden
e-mail: dario.giandinoto@math.su.se


