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PERTURBED NONLINEAR ELLIPTIC NEUMANN PROBLEMS
INVOLVING ANISOTROPIC SOBOLEV SPACES WITH

VARIABLE EXPONENTS

A. AHMED - M.S.B. ELEMINE VALL

In this paper we study the existence of infinitely many weak solutions
of the following perturbed Kirchhoff-type non-homogeneous Neumann
problem

−
N

∑
i=1

Mi

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

)
+M0

(∫
Ω

1
p0(x)

|u|p0(x)
)
|u|p0(x)−2u = f (x,u)+g(x,u) in Ω,

N

∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

νi = 0 on ∂Ω,

by applying technical approach based on critical points theorem due to B.
Ricceri in a reflexive anisotropic Sobolev spaces. We use some suitable
assumptions on the right had side but without using log-Hölder continu-
ous condition.

1. Introduction

In recent years, the anisotropic variable exponent Sobolev spaces have attracted
the attention of many mathematicians, physicists and engineers. The impulse
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for this mainly come from their important applications in modelling real-world
problems in electrorheological, magnetorheological fluids, elastic materials and
image restoration, (see for example [9], [15], [16], [35], [38], [39]).

More recently, several authors (see e.g. [2], [10], [25]) have studied the
anisotrop-ic quasi-linear elliptic equations with variable exponents, i.e. the
quasi-linear elliptic equations involving the following p⃗(·)-Laplacian

∆p⃗(·)u =
N

∑
i=1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

)
. (1)

It’s clear that this p⃗(·)-Laplace operator is a generalization of the p(·)-Laplace
operator

∆p(·)u = div
(
|∇u|p(x)−2

∇u
)
. (2)

We refer to [1], [37], [40] for the study of the p(·)-Laplacian equations and the
corresponding variational problems.

The p(·)-Laplacian is a meaningful generalization of the p-Laplacian oper-
ator

∆pu = div
(
|∇u|p−2

∇u
)
, (3)

obtained in the case when p is a positive constant.
On the one hand, Ricceri [33], Anello and Cordaro [8] studied the existence

of solutions for the following problem
−∆pu+a(x)|u|p−2u = b(x) f (u)+ c(x)g(u) in Ω,

∂u
∂ν

= 0 on ∂Ω,
(4)

where a(x) is a positive function such that a(·) ∈ L∞(Ω) with
a− = ess infx∈Ω a(x) > 0 and p > N. The existence of solutions of problem (4)
was proved by applying Ricceri’s variational principle (see [32]).

In [21], X. Fan, C. Ji treated the problem
−∆p(·)u+a(x)|u|p(x)−2u = f (x,u)+g(x,u) in Ω,

∂u
∂ν

= 0 on ∂Ω,
(5)

and they proved the existence of infinitely many solutions in the variable expo-
nent Sobolev space W 1,p(·)(Ω).

However, there are some non-homogeneous materials that have different
behaviors in different space directions, hence the need for anisotropic spaces
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with variable exponent. Ahmed, Hjiaj, and Touzani have studied in [3] the
Neumann p⃗(·)-elliptic problem :

−∆p⃗(·)u+a(x)|u|p0(x)−2u = f (x,u)+g(x,u) in Ω,

∂u
∂ν

= 0 on ∂Ω,
(6)

and they proved the existence of infinitely many weak solutions in the
anisotropic variable exponent Sobolev space W 1,p⃗(·)(Ω) under some hypotheses.
For other related results, we refer to [5], [6], [14], [19].

On the other hand, much interest has been focused on the study of Kirchhoff
type problems. More precisely, Kirchhoff studied the following model problem
(see [26]) as an extension of d’Alembert’s classical wave equation by consider-
ing changes in string length during vibrations

ρ
∂ 2u
∂ t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂ 2u
∂x2 , (7)

where L is the length of the chord, h is the area of the cross section, E is the
Young’s modulus of the material, is the density and P0 is the initial tension. A
distinguishing feature of the Kirchhoff equation (7) is that the equation con-

tains a non-local coefficient P0
h + E

2L

∫ L
0

∣∣∣ ∂u
∂x

∣∣∣2 dx which depends on the average

E
2L

∫ L
0

∣∣∣ ∂u
∂x

∣∣∣2 of the kinetic energy 1
2

∣∣∣ ∂u
∂x

∣∣∣2 on [0,L], and hence the equation is no
longer a point-wise identity. See also [11], [17], [23], [34], [36] for related
topics.

The purpose of our paper is to investigate a class of Kirchhoff type problems
involving operators in divergence form as follows:

−
N

∑
i=1

Mi

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

)
+M0

(∫
Ω

1
p0(x)

|u|p0(x)
)
|u|p0(x)−2u = f (x,u)+g(x,u) in Ω,

N

∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

νi = 0 on ∂Ω,

(8)

where Mi, f and g define and satisfies some conditions detailed in Section 3.
In the Dirichlet case, A. Ourraoui in [29] have studied the problem (8) by as-

suming an Ambrosetti-Rabinowitz type condition and using techniques related
to a Mountain pass theorem in the case where g ≡ 0. M. Avci, R. A. Mashiyev
and B. Cekic in [12] have studied the same problem in the case where g ≡ 0,
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M0 = M2 = · · · = MN = M and the assumption 2 ≤ pi(x) ≤ N. Note that the
hypotheses we adopt are totally different from the ones assumed in the papers
just quoted.

It is no a surprise that the presence of Neumann conditions in an anisotropic
non-homogeneous perturbed-Kirchhoff type problem make difficulties in the
application of the Theorem 2.3 which is our main tool. To overpass these dif-
ficulties, we combine the classical techniques with the recent techniques that
appeared when treating anisotropic problems with variable exponents.

This paper is organized as follows. In Section 2, we recall some basic facts
about anisotropic variable exponent Sobolev spaces as well as Ricceri’s varia-
tional principle. In Section 3, we state and prove our main results (Theorems
3.5 and 3.6), providing also some remarks and examples.

2. Preliminary results

Let Ω be a bounded domain in RN , we define:

C+(Ω)=
{

measurable function, p(·) : Ω−→R such that 1< p−≤ p+<∞
}

where

p− = ess inf
{

p(x) : x ∈ Ω
}

and p+ = esssup
{

p(x) : x ∈ Ω
}
.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all
measurable functions u : Ω 7−→ R for which the convex modular

ρp(·)(u) :=
∫

Ω

|u|p(x)dx,

is finite, then

∥u∥Lp(·)(Ω) = ∥u∥p(·) = inf
{

λ > 0 : ρp(·)(u/λ )≤ 1
}
,

defines a norm in Lp(·)(Ω) called the Luxemburg norm. The space (Lp(·)(Ω),∥ ·
∥p(·)) is a separable Banach space. Moreover, the space Lp(·)(Ω) is uniformly
convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω), where

1
p(·)

+
1

p′(·)
= 1. Finally, we have the following Hölder type inequality∣∣∣∣∫

Ω

u(x)v(x)dx
∣∣∣∣≤ ( 1

p−
+

1
(p−)′

)
∥u∥p(·)∥v∥p′(·), (9)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).
An important role in manipulating the generalized Lebesgue spaces is played by
the modular ρp(·) of the space Lp(·)(Ω). We give the following result.
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Proposition 2.1. (See [18], [24]). If u ∈ Lp(·)(Ω), then the following properties
hold true:

(i) ∥u∥p(·) < 1 (respectively,= 1,> 1) ⇔ ρp(·)(u)< 1 (respectively,=
1,> 1),

(ii) ∥u∥p(·) > 1 ⇒∥u∥p−

p(·) < ρp(·)(u)< ∥u∥p+

p(·),

(iii) ∥u∥p(·) < 1 ⇒∥u∥p+

p(·) < ρp(·)(u)< ∥u∥p−

p(·).

Now, we define the Sobolev space with variable exponent by

W 1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)
}
,

equipped with the following norm

∥u∥W 1,p(·)(Ω) = ∥u∥1,p(·) = ∥u∥p(·)+∥∇u∥p(·).

The space (W 1,p(·)(Ω),∥ · ∥1,p(·)) is a separable and reflexive Banach space. We
refer to [18] for the elementary properties of these spaces.
Now, we present the anisotropic Sobolev space with variable exponent which is
used for the study of our main problem.

Let p0(·), p1(·), . . . , pN(·) be N+1 variable exponents in C+(Ω). We denote

p⃗(·) =
{

p0(·), p1(·), . . . , pN(·)
}
, D0u = u and Diu =

∂u
∂xi

for i = 1, . . . ,N,

and for all x ∈ Ω we put

pM(·) = max
{

p0(·), p1(·), . . . , pN(·)
}

pm(·) = min
{

p0(·), p1(·), ..., pN(·)
}
.

We define
p = min

{
p−0 , p−1 , p−2 , . . . , p−N

}
then p > 1, (10)

and
p = max

{
p+0 , p+1 , p+2 , . . . , p+N

}
. (11)

The anisotropic variable exponent Sobolev space W 1,p⃗(·)(Ω) is defined as fol-
lows

W 1,p⃗(·)(Ω) =
{

u ∈ Lp0(·)(Ω) : Diu ∈ Lpi(·)(Ω) for all i = 1,2, . . . ,N
}
,
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endowed with the norm

∥u∥W 1,p⃗(·)(Ω) = ∥u∥1,p⃗(·) = ∥u∥Lp0(·)(Ω)+
N

∑
i=1

∥Diu∥Lpi(·)(Ω), (12)

we refer to [13], [30], [31] for the constant exponent case.
We emphasize that the space

(
W 1,p⃗(·)(Ω),∥ · ∥1,p⃗(·)

)
is a reflexive Banach

space (see [20]).
A more complete theory of anisotropic variable exponent Sobolev spaces may
be obtained in [4], [7], [22], [27], [28].

Throughout this paper we assume that

p > N. (13)

Remark 2.2. Since W 1,p⃗(·)(Ω) is continuously embedded in W 1,p(Ω) and
W 1,p(Ω) is compactly embedded in C0(Ω) (the space of continuous functions),
thus W 1,p⃗(·)(Ω) is compactly embedded in C0(Ω).

Set

C0 = sup
u∈W 1,p⃗(·)(Ω)\{0}

∥u∥L∞(Ω)

∥u∥1,p⃗(·)
. (14)

Then C0 is a positive constant.
Let us recall the following theorem obtained by B. Ricceri in [21], which

will be applied to establish the existence of weak solutions for our main prob-
lem.

Theorem 2.3. (See [21], Theorem 2.2). Let E be a reflexive real Banach space,
and let Φ,Ψ : E −→ R be two sequentially weakly lower semi-continuous and
Gâteaux differentiable functionals. Assume also that Ψ is (strongly) continuous
and satisfies lim

∥u∥E→∞

Ψ(u) = +∞. For each ρ > inf
E

Ψ, put

ϕ(ρ) = inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
v∈(Ψ−1(]−∞,ρ[))w

Φ(v)

ρ −Ψ(u)
, (15)

where (Ψ−1(]−∞,ρ[))w is the closure of Ψ−1(]−∞,ρ[) for the weak topology.
Then, the following conclusions hold

(a) If there exist ρ0 > inf
E

Ψ and u0 ∈ E such that

Ψ(u0)< ρ0, (16)

and
Φ(u0)− inf

v∈(Ψ−1(]−∞,ρ0[))w

Φ(v)< ρ0 −Ψ(u0), (17)

then the restriction of Ψ+Φ to Ψ−1(]−∞,ρ0[) has a global minimum.
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(b) If there exists a sequence (rn)n ⊂
(

inf
E

Ψ,+∞

)
with rn → ∞ and a sequence

(un)n ⊂ E such that for each n

Ψ(un)< rn, (18)

and
Φ(un)− inf

v∈(Ψ−1(]−∞,rn[))w

Φ(v)< rn −Ψ(un), (19)

and in addition,
liminf
∥u∥→+∞

(Ψ(u)+Φ(u)) =−∞, (20)

then, there exists a sequence (vn)n of local minima of Ψ+Φ such that
Ψ(vn)→+∞ as n → ∞.

(c) If there exists a sequence (rn)n ⊂ (inf
E

Ψ,+∞) with rn → inf
E

Ψ and a se-

quence (un)n ⊂ E such that for each n the condition (18) and (19) are
satisfied, and in addition,

every global minimizer of Ψ is not a local minimizer of Φ+Ψ, (21)

then, there exists a sequence (vn)n of pairwise distinct local minimizers
of Φ+Ψ such that lim

n→∞
Ψ(vn) = inf

E
Ψ, and (vn)n weakly converges to a

global minimizer of Ψ.

3. Basic assumptions and main results

Throughout the paper, we assume that the following assumptions hold true:
Let Ω be a bounded open subset of RN with boundary of class C1, and let νi

be the components of the outer normal unit vector on the boundary ∂Ω.
Assume that f ,g : Ω×R 7−→ R are Carathéodory functions satisfying,

sup
|t|≤r

| f (x, t) |∈ L1(Ω), and sup
|t|≤r

| g(x, t) |∈ L1(Ω) for each r > 0.

(22)
We set

F(x, t) =
∫ t

0
f (x,s)ds, and G(x, t) =

∫ t

0
g(x,s)ds. (23)

Assume the following assumptions:

(M1) Mi : R+ −→ R+ are continuous functions satisfy the condition

Mi(t)≥ m for all t ≥ 0,

where m is a positive constant.
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(M2) There are constants s∗ > 1 and λ1,λ2 > 0 such that

M̂0(t)≤ λ1ts∗ +λ2 for all t ≥ 0,

where M̂i(t) =
∫ t

0
Mi(s)ds.

We define, for any u ∈W 1,p⃗(·)(Ω), the functionals

J(u) =
N

∑
i=1

M̂i

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)
+ M̂0

(∫
Ω

1
p0(x)

|u|p0(x)dx
)
, (24)

Ψ(u) = J(u)−
∫

Ω

G(x,u)dx and Φ(u) =−
∫

Ω

F(x,u)dx. (25)

We assume that G satisfies one of the following two conditions:

(G1) There are positive functions ϑ0(·),ϑ1(·) ∈ L1(Ω) with ϑ0 ̸= 0 such that

|G(x, t)| ≤ mϑ0(x)

2(N +1)p−1 pC
p
0∥ϑ0∥L1(Ω)

|t|p +ϑ1(x)

almost everywhere x ∈ Ω, and for any t ≥ 0.

(G2) There are a constants R > 0, ε ∈ (0,1) and C1 > 0 such that

for any |t| ≥ R,
∫

Ω

|G(x, t)|dx ≤ (1− ε)M̂0

(∫
Ω

1
p0(x)

|t|p0(x)dx
)
+C1,

almost everywhere x in Ω.

Remark 3.1. Assume the hypothesis (M2) and one of the assumptions (G1)
and (G2). Then there are positives constants d1 and d2 such that

M̂0

(∫
Ω

1
p0(x)

|ξ |p0(x)dx
)
−
∫

Ω

G(x,ξ )dx ≤ d1|ξ |ps∗ +d2, for all ξ ∈ R. (26)

Indeed, on the one hand, assumptions (M2) and (G1) implies

M̂0

(∫
Ω

1
p0(x)

|ξ |p0(x)dx
)
−
∫

Ω

G(x,ξ )dx

≤ λ1

(∫
Ω

1
p0(x)

|ξ |p0(x)dx
)s∗

+λ2 +
m

2(N +1)p−1 pC
p
0

|ξ |p +∥ϑ1∥L1(Ω)

≤ λ1

ps∗ |ξ |
ps∗ +

m

2(N +1)p−1 pC
p
0

|ξ |p +∥ϑ1∥L1(Ω)+λ2, for ξ large enough .
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Then, we have (26) for d1 = max
(

λ1
ps∗ ,

m
2(N+1)p−1 pC

p
0

)
and d2 = ∥ϑ1∥L1(Ω)+λ2.

On the other hand, assumptions (M2) and (G2) implies

M̂0

(∫
Ω

1
p0(x)

|ξ |p0(x)dx
)
−
∫

Ω

G(x,ξ )dx

≤ M̂0

(∫
Ω

1
p0(x)

|u|p0(x)dx
)
+(1− ε)M̂0

(∫
Ω

1
p0(x)

|t|p0(x)dx
)
+C1

≤ (2− ε)
λ1

ps∗ |ξ |
ps∗ +C1 +λ2(2− ε) for ξ large enough .

Which ends the proof of (26) with d1 = (2− ε) λ1
ps∗ and d2 =C1 +λ2(2− ε).

Let us prove that the functional Ψ is coercive.

Lemma 3.2. Assume that (M1) and (M2) hold and one of the condition (G1)
or (G2) is satisfied. Then the functional Ψ is coercive.

Proof. Assuming that the condition (G1) is satisfied, then for ∥u∥1,p⃗(·) ≥ 1, we
have

Ψ(u) = J(u)−
∫

Ω

G(x,u)dx

=
N

∑
i=1

M̂i

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)
+ M̂0

(∫
Ω

1
p0(x)

|u|p0(x)dx
)

−
∫

Ω

G(x,u)dx

≥
N

∑
i=1

m
p+i

(∥∥∥ ∂u
∂xi

∥∥∥p

pi(·)
−1
)
+

m
p+0

(
∥u∥p

p0(x)
−1
)

− m

2(N +1)p−1 pC
p
0

∫
Ω

ϑ0(x)
∥ϑ0∥L1(Ω)

| u |p dx−
∫

Ω

ϑ1(x)dx, (by (M1))

≥ m
p(N +1)p−1 ∥u∥p

1,p⃗(·)−
m

2(N +1)p−1 pC
p
0

∥u∥p
L∞(Ω)

−∥ϑ1(·)∥L1(Ω)−N −1

≥ m
p(N +1)p−1 ∥u∥p

1,p⃗(·)−
m

2(N +1)p−1 p
∥u∥p

1,p⃗(·)−C2 (by (14))

≥ m
2p(N +1)p−1 ∥u∥p

1,p⃗(·)−C2. (27)
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Under the condition (G2) we have for ∥u∥1,p⃗(·) ≥ 1

Ψ(u) = J(u)−
∫

Ω

G(x,u)dx

=
N

∑
i=1

M̂i

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)
+ M̂0

(∫
Ω

1
p0(x)

|u|p0(x)dx
)

− (1− ε)M̂0

(∫
Ω

1
p0(x)

|t|p0(x)dx
)
−C1

≥
N

∑
i=1

m
p+i

(∥∥∥ ∂u
∂xi

∥∥∥p

pi(·)
−1
)
+

mε

p+0

(
∥u∥p

p0(x)
−1
)
−C1 (by (M1))

≥ min{1,ε}m
p(N +1)p−1 ∥u∥p

1,p⃗(·)−N −mε −C1

≥ min{1,ε}m
p(N +1)p−1 ∥u∥p

1,p⃗(·)−C3. (28)

Thanks to (27)–(28) we conclude that Ψ is coercive. Moreover, there exist two
positive constants α and β such that

Ψ(u)≥ α∥u∥p
1,p⃗(·) for all ∥u∥1,p⃗(·) ≥ β . (29)

Definition 3.3. A measurable function u ∈W 1,p⃗(·)(Ω) is called a weak solution
of the Neumann elliptic problem (8) if

N

∑
i=1

Mi

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)∫

Ω

N

∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

∂v
∂xi

dx (30)

+ M0

(∫
Ω

1
p0(x)

|u|p0(x)dx
)∫

Ω

|u|p0(x)−2uvdx =
∫

Ω

f (x,u)v(x)dx+
∫

Ω

g(x,u)v(x)dx

for all v ∈W 1,p⃗(·)(Ω).

Definition 3.4. A function F(x, t) satisfies the condition (S) if for each compact
subset E of R, there exists ξ ∈ E such that

(S)
F(x,ξ ) = sup

t∈E
F(x, t) for a.e. x ∈ Ω.

Now we are in the position to state our first main result.
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Theorem 3.5. Let the conditions (M1)-(M2) be satisfied, and let (G1) or (G2)
hold. Moreover, let F satisfy the condition (S). Moreover, we suppose that

liminf
|ξ |→+∞

M̂0

(∫
Ω

(
1

p0(x)
|ξ |p0(x)

)
dx
)
−
∫

Ω

(
G(x,ξ )+F(x,ξ )

)
dx =−∞, (31)

and there are positives sequences (an)n and (bn)n such that

lim
n→∞

bn =+∞, lim
n→∞

ap
n

b
p
n
= 0. (32)

Finally, we assume that there exist a positive function
h(·) ∈ L1(Ω) with ∥h(·)∥L1(Ω) = 1 and suitable positives constants d1 and d2
such that for each n we have for almost every x in Ω

F(x,an)+h(x)

(
α

(
bn

C0

)ps∗

−d1aps∗
n −d2

)
≥ sup

t∈[an,bn]

F(x, t), (33)

F(x,−an)+h(x)

(
α

(
bn

C0

)ps∗

−d1aps∗
n −d2

)
≥ sup

t∈[−bn,−an]

F(x, t), (34)

where α is constant of coercivity defined in (29), d1 = max
(

λ1
ps∗ ,

m
2(N+1)p−1 pC

p
0

)
and d2 = ∥ϑ1∥L1(Ω)+λ2 if we assume (G1) and d1 = (2− ε) λ1

ps∗ and d2 =C1 +

λ2(2− ε) if we assume (G2). The last inequalities (33) and (34) are strict on a
subset of Ω with positive measure.
Then there is a sequence (vn)n of local minima of Ψ+Φ such that lim

n→∞
Ψ(vn) =

+∞. Consequently, the problem (8) admits an unbounded sequence of weak
solutions.

Proof. Let Ψ, Φ be the functionals defined in (23)-(25).
Since p > N, the embedding W 1,p⃗(·)(Ω) ↪→ C0(Ω) is continuous and com-

pact. We can see that J,Φ,Ψ ∈ C1(W 1,p⃗(·)(Ω),R) (see [12], [29]) with the
derivative given by

⟨Ψ′(u),v⟩ =
N

∑
i=1

Mi

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)∫

Ω

N

∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

∂v
∂xi

dx

+ M0

(∫
Ω

1
p0(x)

|u|p0(x)dx
)∫

Ω

|u|p0(x)−2uvdx−
∫

Ω

g(x,u)v(x)dx,

(35)

and
⟨Φ′(u),v⟩=−

∫
Ω

f (x,u)v(x)dx, for all (u,v) ∈W 1,p⃗(·)(Ω). (36)
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Then u ∈ W 1,p⃗(·)(Ω) is a weak solution of (8) if and only if u is a critical
point of Ψ+Φ.

Let us prove that the functionals Ψ and Φ are sequentially weakly lower
semi-continuous.

For i = 0, . . . ,N and any u ∈W 1,p⃗(·)(Ω) define Ji,H : W 1,p⃗(·)(Ω)−→ R by

Ji =
∫

Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx, where

∂u
∂x0

= u,

H(u) =−
∫

Ω

G(x,u)dx.

Let (un)n be a sequence such that un ⇀ u in W 1,p⃗(·)(Ω). Since Ji is convex, for
any n we have

Ji(u)≤ Ji(un)+ ⟨J′i(u),u−un⟩.

Passing to the limit in the above inequality with n → ∞, we see that Ji is sequen-
tially weakly lower semi-continuous. Then we have

∫
Ω

N

∑
i=1

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx ≤ liminf

n→+∞

∫
Ω

N

∑
i=0

1
pi(x)

∣∣∣∂un

∂xi

∣∣∣pi(x)
dx. (37)

From (37) and since M̂i is continuous and monotone, we have

liminf
n→+∞

J(un) = liminf
n→+∞

N

∑
i=0

M̂i

(∫
Ω

1
pi(x)

∣∣∣∂un

∂xi

∣∣∣pi(x)
dx
)

≥
N

∑
i=0

M̂i

(
liminf
n→+∞

∫
Ω

1
pi(x)

∣∣∣∂un

∂xi

∣∣∣pi(x)
dx
)

≥
N

∑
i=0

M̂i

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)

≥ J(u), (38)

namely, J is sequentially weakly lower semi-continuous.
On the other hand, by Remark 2.2 up to a sub-sequence we have un −→ u

in C0(Ω). Hence,

un −→ u uniformelly in Ω,

k := sup
n∈N

∥un∥L∞(Ω) <+∞.

Therefore, G(x,un(x)) −→ G(x,u(x)) almost every x in Ω and |G(x,un(x))| ≤
k sup
|s|≤k

|g(x,s)|. Note that sup
|s|≤k

|g(x,s)| ∈ L1(Ω) by (22). Thus, the dominated
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convergence theorem implies that lim
n→∞

H(un) = H(u). So, the functional H is

sequentially weakly continuous on W 1,p⃗(·)(Ω), and hence, being Ψ = J −H, Ψ

is sequentially weakly lower semi-continuous. In the same way (as in the case
of the mapping H) we can show that Φ is sequentially weakly continuous.

For ρ > infu∈W 1,p⃗(·)(Ω) Ψ(u), we define

K(ρ) = inf
{

τ > 0 suh that Φ
−1(]−∞,ρ[)⊂ B(0,τ)

}
, (39)

where B(0,τ) =
{

u∈W 1,p⃗(·)(Ω) : ∥u∥1,p⃗(·) < τ

}
and B(0,τ) denotes the closure

of B(0,τ) in W 1,p⃗(·)(Ω) for the norm topology.
Owing to the fact that Ψ is coercive, we have 0 < K(ρ) < +∞ for each

ρ > inf
u∈W 1,p⃗(·)(Ω)

Ψ(u). In view of (29), we deduce that

if Ψ(u)< α∥u∥p
1,p⃗(·), then ∥u∥1,p⃗(·) < β .

Thanks to (39), one has Ψ−1(]−∞,ρ[)⊂ B(0,K(ρ)) and so
(Ψ−1(]−∞,ρ[))w ⊂ B(0,K(ρ)).
Using (14), we get ∥u∥L∞(Ω) ≤C0∥u∥1,p⃗(·). Then,

B(0,K(ρ))⊂
{

u ∈C(Ω) : ∥u∥L∞(Ω) ≤C0K(ρ)
}
,

which yields

inf
v∈(Ψ−1(]−∞,ρ[))w

Φ(v)≥ inf
∥v∥1,p⃗(·)≤K(ρ)

Φ(v)≥ inf
∥v∥L∞(Ω)≤C0K(ρ)

Φ(v). (40)

Let τ ≥ αβ
ps∗ and u ∈W 1,p⃗(·)(Ω) be such that Ψ(u) < τ . When ∥u∥1,p⃗(·) ≥ β ,

by (29), one has
τ > Ψ(u)≥ α∥u∥p

1,p⃗(·),

which implies that ∥u∥1,p⃗(·) ≤
(

τ

α

) 1
ps∗ . When ∥u∥1,p⃗(·) < β , it is clear that

∥u∥1,p⃗(·) ≤
(

τ

α

) 1
ps∗ .

By the definition of K(τ), we have

K(τ)≤
(

τ

α

) 1
ps∗

. (41)

Since F(x, ·) satisfies condition (S), for each n, there exists ξn ∈ [−an,an] such
that

F(x,ξn) = sup
t∈[−an,an]

F(x, t) a.e. in Ω. (42)
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Now, in order to satisfy (b) of Theorem 2.3, take as un the constant function

whose value is ξn and ρn = α

(
bn
C0

)ps∗

, then lim
n→∞

ρn → +∞, and thanks to (41)
we obtain

K(ρn)≤
bn

C0
then C0K(ρn)≤ bn. (43)

By (26), one has

en = M̂0

(∫
Ω

1
p0(x)

|ξn|p0(x)dx
)
−
∫

Ω

G(x,ξn)dx

≤ d1|ξn|ps∗ +d2 ≤ d1|an|ps∗ +d2.

It follows from (32) that for n large enough,

d1|an|ps∗ +d2 < α

(
bn

C0

)ps∗

= ρn,

and consequently en < ρn, that is (18) holds. Without loss of generality, we may
assume that (18) holds for all n.

From (33)-(34) and (42), we obtain

F(x,ξn)+h(x)(ρn − en)≥ sup
|t|≤bn

F(x, t) a.e. in Ω, (44)

and the inequality (44) is strict on a subset of Ω with positive measure. Using
(43) and (44), we obtain (19) and (20) follows directly from (31).

Therefore, all hypotheses of Theorem 2.3 (b) are satisfied, then the proof of
the Theorem 3.5 is concluded.

Our second result is the following theorem.

Theorem 3.6. Assume that (M1)-(M2) hold. Suppose that

G(x, t)≤ 0 for t ∈ R and a.e. x ∈ Ω, (45)

and that there exist two positive constants δ and ε such that

−G(x, t)≤ δ |t|p for |t| ≤ ε and a.e. x ∈ Ω, (46)

Moreover, let the functional F satisfy the condition (S) and

limsup
|ξ |→0

∫
Ω

F(x,ξ )dx+
∫

Ω

G(x,ξ )dx

|ξ |p
> M̂0

(∫
Ω

1
p0(x)

dx
)
. (47)
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Suppose that (an)n and (bn)n be two positives sequences such that

lim
n→∞

bn = 0 and lim
n→∞

a
p
n

bp
n
= 0, (48)

and there exists a positive function h ∈ L1(Ω) with ∥h∥L1(Ω) = 1 such that for
each n and almost every x in Ω, we have

F(x,an)+h(x)

(
d3

(
bn

C0

)ps∗

−d4a
ps∗
n −λ2

)
≥ sup

t∈[an,bn]

F(x, t), (49)

F(x,−an)+h(x)

(
d3

(
bn

C0

)ps∗

−d4a
ps∗
n −λ2

)
≥ sup

t∈[−bn,−an]

F(x, t), (50)

with d3 =
m

p(N +1)p−1 and d4 =max
(

λ1
ps∗ ,δ |Ω|

)
, the inequalities (49) and (50)

are strict on a subset of Ω with positive measure.
Then there exists a sequence (vn)n of pairwise distinct local minima of

Ψ + Φ such that vn → 0 in W 1,p⃗(·)(Ω). Consequently, the problem (8) ad-
mits a sequence of non-zero weak solutions which strongly converges to 0 in
W 1,p⃗(·)(Ω).

Proof. Let us verify all the hypotheses of Theorem 2.3 point (c). Using (45),
for ∥u∥1,p⃗(·) ≤ 1 we have

Ψ(u) = J(u)−
∫

Ω

G(x,u)dx

=
N

∑
i=1

M̂i

(∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)
+ M̂0

(∫
Ω

1
p0(x)

|u|p0(x)dx
)

≥ d3∥u∥p
1,p⃗(·)−C4,

with d3 =
m

p(N+1)p−1 . Then, Ψ is coercive, infW 1,p(·)(Ω,w) Ψ = Ψ(0) = 0 and 0 is
the unique global minimizer of Ψ. Thanks to (47) we have

limsup
|ξ |→0

{
Ψ(ξ )+Φ(ξ )

}
= limsup

|ξ |→0

{
M̂0

(∫
Ω

|ξ |p0(x)

p0(x)
dx

)
−
∫

Ω

G(x,ξ )dx−
∫

Ω

F(x,ξ )dx

}

≤ limsup
|ξ |→0

{
M̂0

(∫
Ω

1
p0(x)

dx
)
|ξ |p −

∫
Ω

G(x,ξ )dx−
∫

Ω

F(x,ξ )dx

}
< 0,
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that is, 0 is not a local minimizer of Ψ+Φ; so (21) is satisfied.
For r > 0 sufficiently small, the condition Ψ(u)< r implies that ∥u∥1,p⃗(·) <(

r
d3

) 1
ps∗ , this shows that

K(r)≤
(

r
d3

) 1
ps∗

.

Now put ρn = d3

(
bn
C0

)ps∗

and take u0 and un as constants values functions
ξ0 and ξn respectively in Theorem 2.3. Then

C0K(ρn)≤ bn. (51)

By (46) and (M2), there exists a sequence (ξn)n ⊂ R with ξn ∈ [−an,an] such
that for each an sufficiently small,

en = M̂0

(∫
Ω

1
p(x)

|ξn|p(x)dx
)
−
∫

Ω

G(x,ξn)dx

≤ M̂0

(∫
Ω

|ξn|p0(x)

p0(x)
dx

)
+δ |Ω||ξn|p

≤ λ1

ps∗ |ξn|ps∗ +δ |Ω||ξn|p +λ2

≤ d4|ξn|p +λ2

≤ d4|an|p +λ2. (52)

where d4 = max
(

λ1
ps∗ ,δ |Ω|

)
.

It follows from (48) that for n large enough,

d4|an|ps∗ < d3

(
bn

C0

)ps∗

= ρn +λ2.

Then (18) is obtained.
Noting that F(x, ·) satisfies condition (S), for each n, there exists ξn ∈ [−an,an]
such that

F(x,ξn) = sup
t∈[−an,an]

F(x, t) a.e. in Ω. (53)

Then, thanks to (49) and (50) we can obtain that

F(x,ξn)+h(x)(ρn − en −λ2)≥ sup
|t|≤bn

F(x, t) a.e. in Ω, (54)

and the inequality (54) is strict on a subset of Ω with positive measure. Thanks
to (51) and (54) we obtain (19). Therefore, the hypotheses of Theorem 2.3 (c)
are satisfied.
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Consequently, there exists a sequence (vn)n of pairwise distinct local min-
ima of Ψ+Φ such that Ψ(vn)→ 0, which implies ∥vn∥1,p⃗(·) → 0, which com-
plete the proof.

Now we give some remarks and some examples which motivate our results.

Remark 3.7. The definition of our framework requires only the measurabil-
ity of p(·) and we do not use Modular-Poincaré inequality which require the
log-Hölder continuity of the exponent p(·), while the norm Poincaré inequality
requires only the continuity of p(·), for more details we refer to [3], [18].

Remark 3.8. Observe that our results require the condition (S) on F (for more
details on the condition (S) see [21], Remark 2.5), and on the function G we
need one of the assumptions (G1) which is a growth condition on G and (G2)
which gives a relation between M̂0 and the integral of G.

Now, we present some examples to illustrate our results.
For i ∈ [[0,N]] we set Mi(t) = (1+ t)θi−1 where θi > 1 the we have Mi(t)≥ 1

for all t ≥ 0 and by using following classical result

(a+b)θ ≤ 2θ−1(aθ +bθ ), for all a,b ≥ 0 and θ ≥ 1,

we get

M̂0(t) =
(1+ t)θ0

θ0
≤ 2θ0−1(1+ tθ0).

Which means that (M1) and (M2) hold with m= 1, s∗ = θ0 and λ1 = λ2 = 2θ0−1.

Proposition 3.9. Let g(x, t) =
pϑ0(x)

2(N+1)p−1 pC
p
0
|t|p−1 where ϑ0 ∈ L1(Ω) is positive

function with ∥ϑ0∥L1(Ω) = 1, and let f (x, t)≡ α(x) f1(t), with α(·) ∈ L1(Ω) be
a positive function such that ∥α(·)∥L1(Ω) = 1 and f1(·) a continuous function
with f1(t) = F ′

1(t) and F1(−t) = F1(t). Then, the following nonlinear perturbed
Kirchhoff problem

−
N

∑
i=1

(
1+

∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)θi−1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

)
+

(
1+

∫
Ω

1
p0(x)

|u|p0(x)
)θ0−1

|u|p0(x)−2u

= α1(x) f1(t)+
pϑ0(x)

2(N+1)p−1 pC
p
0
|u|p−1 in Ω,

N

∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

νi = 0 on ∂Ω,

(55)

admits a sequence of weak solutions (un)n in W 1,p⃗(x)(Ω) such that

lim
n→∞

∥un∥1,p⃗(x) = ∞.
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Proof. It is clear that Ψ, is coercive. We have F(x, t) = α(x)F1(t), Choose two
positive sequences (an)n and (bn)n such that a1 ≥ 1, b

p
n = 2n2ap

n and an+1 > bn

for every n. Define F1(an) = aθ0 p+1
n and F1(bn) such that

F1(an)< F1(bn)<

(
1

2p(N +1)p−1

( bn

C0

)pθ0
−d1|an|pθ0 −d2

)
+F1(an), (56)

where d1 = max
(

2θ0−1

pθ0
, 1

2(N+1)p−1 pC
p
0

)
and d2 = ∥ϑ1∥L1(Ω)+2θ0−1.

Put ρn =
1

2p(N+1)p−1

(
bn
C0

)pθ0
and ξn = an.

Since

M̂0

(∫
Ω

1
p0(x)

|an|p0(x)dx
)
−
∫

Ω

F(x,an)dx

≤ d1|an|pθ0 +d2 −∥α(·)∥L1(Ω)a
p++1
n →−∞

as n → ∞, then the conditions (31)− (32) holds true. Taking w1(x) = α(x), and
in view of (56) we can obtain the conditions (33)− (34).
The hypotheses of Theorem 3.5 are satisfied, then the problem (55) admits a
sequence of weak solutions (un)n in W 1,p⃗(x)(Ω) such that lim

n→∞
∥un∥1,p⃗(x) = ∞.

Remark 3.10. Observe that the function

G(x, t) =
1

2|Ω|
M̂0

(∫
Ω

1
p0(x)

|t|p0(x)dx
)
+C1γ(x),

where ∥γ∥L1(Ω) = 1 satisfies the assumption (G2). Then, we get the same result
as the previous example with a function satisfies (G2).

Proposition 3.11. Let g(x, t) = −pµ(x)|t|p−1 where µ(·) is a positive func-
tion such that

∫
Ω

µ(x)dx = 1 and let f be the function defined in the previous
proposition, and consider two positives sequences (an)n and (bn)n such that
a

pθ0
n = 1

n bps∗
n and bn+1 < an, with F1(0) = 0, F1(an) = a

pθ0+1
n and

F1(an)< F1(bn)<
( 1

p(N +1)p−1

( bn

C0

)pθ0
−d3|an|pθ0

)
+F1(an). (57)
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Then, the following perturbed Kirchhoff problem

−
N

∑
i=1

(
1+

∫
Ω

1
pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx
)θi−1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

)
+

(
1+

∫
Ω

1
p0(x)

|u|p0(x)
)θ0−1

|u|p0(x)−2u

= α1(x) f1(t)−µ(x)p|u|p−1 in Ω,
N

∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u
∂xi

νi = 0 on ∂Ω,

(58)

admits a sequence of weak solutions (un)n in W 1,p⃗(x)(Ω) such that

lim
n→∞

∥un∥1,p⃗(x) = 0.

Proof. Set ρn =
1

p(N+1)p−1

(
bn
C0

)pθ0
and ξn = an, we have

∫
Ω

F(x,an)dx+
∫

Ω

G(x,an)dx− M̂0

(∫
Ω

1
p0(x)

dx
)
|an|p

> |an|pθ0+1 −|an|p − λ |Ω|
p |an|p −→ 0 as n → ∞,

therefore (45)-(47) hold true. Using (57) we obtain the conditions (49)-(50).
Thus all the assumptions of Theorem 3.6 are satisfied, which completes the

proof.
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15 (1981), 127-140.

[32] B. Ricceri, A general variational principle and some of its applications, J. Com-
put. Appl. Math. 113 (2000), no. 1-2, 401-410.

[33] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations
involving the p-Laplacian, Bull. Lond. Math. Soc. 33 (2001), no. 3, 331-340.

[34] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters,
J. Global Optim. 46 (2010), no. 4, 543-549.
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