doi: 10.4418/2022.77.2.13

ON A QUESTION ABOUT NON-UNIQUENESS OF GLOBAL MINIMA

JEAN SAINT RAYMOND

Let X be a topological space, I and J be sequentially l.s.c. real functions on X such that J is non-negative with sequentially compact sublevels, and I/J is not bounded from below outside the sublevel $J^{-1}([0,c[)$ of J for some c>0. Is it true that for any large enough λ and any increasing l.s.c. real function φ the function $x\mapsto I(x)+\lambda J(x)+\mu \varphi \circ J(x)$ has at least two global minima for some positive μ ? We give a positive answer to this question assuming that $I+\lambda J+\mu \circ \varphi$ has sequentially compact sublevels for some λ and all $\mu>0$.

During my stay in Catania in May 2022, Prof. B. Ricceri asked me the above stated question related to his paper [1]. Theorem 6 of the present paper answers positively to this question. This improves Theorem 1.2 of [1] and gives a positive answer to Problem 1 of the same paper.

Let *X* be a topological space, *I* and *J* be two real sequentially l.s.c. functions on *X* satisfying the following three:

(i) The sublevels $S_{\alpha}:=J^{-1}(]-\infty,\alpha])$ of J are sequentially compact and $\inf_{x\in X}J(x)=0,$

(ii) There exists
$$c > 0$$
 such that $\inf_{J(x) > c} \frac{I(x)}{J(x)} = -\infty$,

AMS 2010 Subject Classification: 54C30, 54D30, 54D55

Keywords: sequential compactness, sequential semicontinuity, global minimum

(iii) There exists a l.s.c. increasing function $\varphi: J(X) \to \mathbb{R}^+$ such that for all $\mu > 0$, the function

$$\psi_{\mu}: x \mapsto I(x) + J(x) + \mu \varphi \circ J(x)$$

admits a unique global minimum¹ x_{μ} ,

Under conditions (i) and (ii), X cannot be compact: the function I would be bounded from below on X, thus also the quotient I/J on $X \setminus S_c$.

Since J attains its minimum, there exists x^* such that $J(x^*)=0$. And we can assume that I attains at x^* its minimum on the compact set $S_0 \neq \emptyset$. Up to replacing φ by the increasing l.s.c. function : $t \mapsto \varphi(t) - \varphi(0)$, in what case ψ_{μ} is replaced by $\psi_{\mu} - \mu \varphi(0)$ which has the same minima, we will always assume $\varphi(0) = 0$.

Notice that the function φ in (iii) has to be unbounded: indeed condition (ii) implies that $I + \lambda J$ cannot be bounded from below but so is $I + \lambda J + \mu \varphi \circ J$ which attains a finite global minimum.

Lemma 1. There exist an $\varepsilon > 0$, an integer n_0 and some $\lambda^* > 0$ such that for $\lambda \geq \lambda^*$, we never have simultaneously for any $x \in X$:

$$\lambda J(x) \le n_0$$
 and $I(x) \le I(x^*) - n_0$.

Proof. Take $\varepsilon > 0$ in J(X). Then the set S_{ε} is sequentially compact and the set $F_n = \{x \in X : I(x) \leq I(x^*) - n\}$ is sequentially closed. Moreover $\bigcap_{n \in \mathbb{N}} F_n$ is empty, and it follows that the non-increasing sequence $(S_{\varepsilon} \cap F_n)_n$ of sequentially compact sets has empty intersection: thus there exists some integer $n_0 > 0$ such that $F_{n_0} \cap S_{\varepsilon} = \emptyset$. Take $\lambda^* = \frac{n_0}{\varepsilon}$. Then if $x \in F_{n_0}$ and $\lambda \geq \lambda^*$, we must have $x \notin S_{\varepsilon}$, hence

$$\lambda J(x) > \lambda \varepsilon \geq \lambda^* \varepsilon = n_0$$

the wanted result.

Up to taking $\lambda \geq \lambda^*$ and replacing J by $J' = \lambda J$ and φ by $\varphi' : t \mapsto \varphi(t/\lambda)$, hence

$$I(x) + J'(x) + \mu \varphi' \circ J'(x) = I(x) + \lambda J(x) + \mu \varphi \circ J(x),$$

¹In fact we can assume φ 1.s.c., increasing on J(X) and defined on $[0, +\infty[$ By hypothesis J is unbounded, and if $t \in \mathbb{R}^+ \setminus J(X)$, there exists $\alpha, \beta \in J(X)$ with $\alpha < t < \beta$. We then put $\alpha^* = \sup J(X) \cap [0, t[$ and $\beta^* = \inf J(X) \cap]t, \infty[$. Si $\alpha^* = t = \beta^*$, we define $\varphi(t) = \sup \{\varphi(\alpha) : \alpha \in J(X), \alpha < t\}$, what ensures the semi-continuity at t.

In contrary if $\alpha^* < \beta^*$, we put $\varphi(\alpha^*) = \sup\{\varphi(\alpha) : \alpha \in J(X), \ \alpha \le \alpha^*\}$, and for $\alpha^* < t \le \beta^*$, $\varphi(t) = \inf\{\varphi(\beta) : \beta \in J(X), \ \beta \ge \beta^*\}$. It is easily checked that this extends φ to an increasing l.s.c. function. It follows that, so defined on \mathbb{R}^* , φ is increasing on J(X).

we will later on assume that

$$(iv)$$
 $J(x) \le n_0 \Longrightarrow I(x) > I(x^*) - n_0$.

Theorem 2. The function $\rho : \mu \mapsto x_{\mu}$ is continuous from \mathbb{R}_{+}^{*} to X.

Proof. It is enough to prove the continuity of ρ on each interval $[\alpha, \beta]$ where $0 < \alpha \le \beta < \infty$. Recall that $x_{\mu} \in X$ is the unique global minimum of the function $\psi_{\mu}: x \mapsto I(x) + J(x) + \mu \varphi \circ J(x)$.

We prove first that there exists some $\theta > 0$ such that $\rho([\alpha, \beta]) \subset S_{\theta}$. If $\alpha \le \nu < \mu \le \beta$, we have $\psi_{\mu}(x_{\mu}) \le \psi_{\mu}(x_{\nu})$ and $\psi_{\nu}(x_{\mu}) \ge \psi_{\nu}(x_{\nu})$, hence

$$(\mu - \nu)\phi \circ J(x_{\mu}) = \psi_{\mu}(x_{\mu}) - \psi_{\nu}(x_{\mu}) \le \psi_{\mu}(x_{\nu}) - \psi_{\nu}(x_{\nu}) = (\mu - \nu)\phi \circ J(x_{\nu})$$

whence $\varphi \circ J(x_{\mu}) \leq \varphi \circ J(x_{\nu})$, and since φ^{-1} is increasing $^2: J(x_{\mu}) \leq J(x_{\nu})$. And if we put $\theta = J(x_{\alpha})$, we get $\rho(\mu) = x_{\mu} \in S_{\theta}$.

So we have $\rho([\alpha,\beta]) \subset S_{\theta}$. If V is any open neighborhood of $y=\rho(\mu)$ for $\mu \in [\alpha,\beta]$ and if $\rho^{-1}(V)$ is not a neighborhood of μ , there exists a sequence (μ_n) in $[\alpha,\beta] \setminus \rho^{-1}(V)$ which converges to μ . And by sequential compactness of S_{θ} , the sequence $y_n = x_{\mu_n}$ possesses a cluster value $y^* \in S_{\theta} \setminus V$, and in particular $y^* \neq y$. Since $(\mu,x) \mapsto \psi_{\mu}(x)$ is sequentially l.s.c., and since $\psi_{\mu_n}(y_n) \leq \psi_{\mu_n}(y)$, we have

$$\psi_{\mu}(y^{*}) \leq \liminf_{n} \psi_{\mu_{n}}(y_{n}) \leq \liminf_{n} \psi_{\mu_{n}}(y) = \liminf_{n} \left(I(y) + J(y) + \mu_{n} \varphi \circ J(y) \right)$$
$$= \psi_{\mu}(y)$$

from what follows that y^* is a global minimum of ψ_{μ} , hence that $y^* = y$, a contradiction. This proves the continuity of ρ .

Lemma 3. As μ tends to $+\infty$, $\rho(\mu)$ tends to $J^{-1}(0)$, in the sense that $\rho([1,+\infty[)$ is conditionnally compact in X and that the cluster values of ρ at $+\infty$ belong to S_{θ} , where $\theta = \inf(J(X) \setminus \{0\}$. More precisely, if $\varepsilon \in J(X) \setminus \{0\}$, we have $\rho(\mu) \in S_{\varepsilon}$ for all large enough μ .

Proof. Let $\varepsilon \in J(X) \setminus \{0\}$ and $\delta = \varphi(\varepsilon)$. We have $\delta > 0$ since φ is increasing. If $x_{\mu} = \rho(\mu) \notin S_{\varepsilon}$, fix some $\nu < \mu$; we have

$$I(x^{*}) = I(x^{*}) + J(x^{*}) + \varphi \circ J(x^{*}) = \psi_{\mu}(x^{*})$$

$$\geq \psi_{\mu}(x_{\mu}) = I(x_{\mu}) + J(x_{\mu}) + \mu \varphi \circ J(x_{\mu})$$

$$\geq I(x_{\mu}) + J(x_{\mu}) + \nu \varphi \circ J(x_{\mu}) + (\mu - \nu) \varphi \circ J(x_{\mu})$$

$$\geq \psi_{\nu}(x_{\nu}) + (\mu - \nu) \varphi \circ J(x_{\mu})$$

$$\geq \psi_{\nu}(x_{\nu}) + (\mu - \nu) \delta$$

²if we assume only φ non-decreasing, we can find θ such that $\varphi(\theta) > \varphi \circ J(x_{\alpha})$ since φ is unbounded, whence $\varphi \circ J(x_{\mu}) \leq \varphi \circ J(x_{\alpha}) < \varphi(\theta)$ and $J(x_{\mu}) < \theta$ for all $\mu \in [\alpha, \beta]$.

whence $\mu < v + \frac{1}{\delta} \Big(I(x^*) - \psi_v(x_v) \Big)$, which is contradictory for large μ . Thus for all $\varepsilon > 0$ we have $\rho(\mu) \in S_{\varepsilon}$ for large enough μ . Since the set S_{ε} is compact, we see that $\rho([1, +\infty[)$ is contained in $S_{\varepsilon} \cup \rho([1, \mu])$ for a convenient μ , whence we get the conditional compactness. And if x is a cluster value of ρ at $+\infty$, we get $x \in S_{\varepsilon}$ for all $\varepsilon > 0$, hence $x \in \bigcap_{\varepsilon > 0, \ \varepsilon \in J(X)} S_{\varepsilon} = S_{\theta}$.

If 0 belongs to the closure of $J(X) \setminus \{0\}$, we have $\theta = 0$ and $S_{\theta} = J^{-1}(0)$.

Lemma 4. We have $\liminf_{\mu\to 0} I \circ \rho(\mu) = -\infty$.

Proof. Let $\eta>0$. There exists c>0 such that $\inf_{x\notin S_c}\frac{I(x)}{J(x)}=-\infty$. Thus, for each integer q>1, we can find some $z_q\in X$ such that $I(z_q)<-(q+2)J(z_q)$ and $J(z_q)\geq c$. We the have

$$I(z_q) + J(z_q) < -(1+q)J(z_q) \le -(1+q)c$$

and one can find some $\mu \in]0, \eta[$ such that $\mu \varphi \circ J(z_q) < c$, and by definition of $x_\mu = \rho(\mu)$,

$$\begin{split} I \circ \rho(\mu) &= I(x_{\mu}) \leq I(x_{\mu}) + J(x_{\mu}) + \mu \varphi \circ J(x_{\mu}) \\ &\leq I(z_q) + J(z_q) + \mu \varphi \circ J(z_q) \\ &< -(1+q)J(z_q) + \mu \varphi \circ J(z_q) \\ &< -(1+q)c + c = -qc \,, \end{split}$$

and this completes the proof since qc est arbitrarily large.

Theorem 5. Hypotheses (i), (ii), (iii) and (iv) cannot hold simultaneously.

Proof. Consider the two sets $H_1 = \rho^{-1} (\{x \in X : I(x) \le I(x^*) - n_0\})$ and $H_2 = \rho^{-1} (S_{n_0})$. Since ρ is continuous both sets are sequentially closed, hence closed in \mathbb{R}_+^* . Il follows from condition (iv) that $H_1 \cap H_2 = \emptyset$, from lemma 3 that $H_2 \ne \emptyset$ and from lemma 4 that $H_1 \ne \emptyset$. By connectedness of \mathbb{R}_+^* , we cannot have $H_1 \cup H_2 = \mathbb{R}_+^*$. Thus there exists μ^* such that $\mu^* \notin H_1 \cup H_2$. Then we have, for $z^* = \rho(\mu^*)$, $J(z^*) > n_0$ and $J(z^*) > J(x^*) - n_0$, thus

$$I(x^*) < I(z^*) + J(z^*) \le I(z^*) + J(z^*) + \mu^* \varphi \circ J(z^*)$$

$$\le I(x^*) + J(x^*) + \mu^* \varphi \circ J(x^*) = I(x^*),$$

since $J(x^*) = 0$ and $\varphi(0) = 0$, a contradiction.

³if φ is only assumed to be non-decreasing, we can find $\eta > 0$ such that $\delta = \varphi(\eta) > 0$. We will then have $\rho(\mu) \in S_{\eta}$ for all large μ , and the cluster values of ρ at $+\infty$ will belong to S_{ζ} , where $\zeta = \inf\{\varepsilon \in J(X) : \varphi(\varepsilon) > 0\}$.

Theorem 6. Let X be a topological space, I and J two real sequentially l.s.c. functions on X satisfying (i) and (ii). Then there exists some $\lambda^* > 0$ such that for all $\lambda \geq \lambda^*$ and all increasing l.s.c. function φ from J(X) to \mathbb{R}^+ the function $\psi_{\mu}: x \mapsto I(x) + \lambda J(x) + \mu \varphi \circ J(x)$ has necessarily at least two global minima on X for some $\mu > 0$ if it has sequentially compact sublevels.

Proof. Notice that if the l.s.c. function $I + \lambda J + \mu \varphi \circ J$ has sequentially compact sublevels for some λ , μ , then for $\lambda' > \lambda$ and $\mu' > \mu$,

$$S'_{\alpha} = \{x : (I + \lambda'J + \mu'\varphi \circ J)(x) \ge \alpha\} \subset S_{\alpha} = \{x : (I + \lambda J + \mu\varphi \circ J)(x) \ge \alpha\}$$

hence S'_{α} which is closed in the sequentially compact set S_{α} is itself sequentially compact. For example this is the case if $\varepsilon I + \varphi \circ J$ is bounded from below for every $\varepsilon > 0$: S_{α} is contained in some sublevel of J.

It follows from what precedes that one can find λ^* such that for every $\lambda \geq \lambda^*$ the extra condition (iv) be satisfied for I and λJ . Then the result follows immediately from theorem 5: the condition (iii) cannot hold; for every increasing sequentially l.s.c. function φ there are some $\mu > 0$ for which ψ_{μ} does not have a unique global minimum. But since this function ψ_{μ} has sequentially compact sublevels, the global minimum is attained, necessarily at several points: ψ_{μ} has several global minima.

REFERENCES

[1] B. Ricceri, Kirchhoff-type problems involving nonlinearities satisfying only subcritical and superlinear conditions, Electron. J. Differ. Equ. Conf., 25 (2018), 213-219

JEAN SAINT RAYMOND

Jean Saint Raymond, Sorbonne Université, Université Paris Diderot, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, IMJ-PRG, F-75005, Paris. France

e-mail: jean.saint-raymond@imj-prg.fr