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ON AN APPROACH TO THE CONSTRUCTION OF
DIFFERENCE SCHEMES FOR THE MOMENT EQUATIONS

OF CHARGE TRANSPORT IN SEMICONDUCTORS

A. M. BLOKHIN - S. A. BOYARSKIY - B. V. SEMISALOV

We discuss the construction of a class of difference schemes for a
hydrodynamical model of charge transport in semiconductors.

Introduction

At present time hydrodynamical models are widely used for the description of
various physical phenomena. Approximate solutions to such models are of-
ten found by finite-difference methods. Difference schemes for hydrodynamical
models can be constructed in many ways. Some methods are given in [7] (see
also [5,9]). One of them is an interesting method [7] based on the existence of
different presentations for the system of gas dynamics.

In the present paper we apply the mentioned method to a mathematical
model appearing in physics of semiconductors. It is known that hydrodynami-
cal models also appear while simulating such physical phenomena as the charge
transport in semiconductors. A lot of new mathematical models of hydrody-
namical type was suggested during the last years. It is worthy to notice that for
the most of them a mathematical ground is practically absent.

One of the latest models was recently suggested in [2,10]. This model is a
quasilinear system of conservation laws. These conservation laws were derived
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from the systems of moment equations for the Boltzman transport equation by a
truncation procedure.

In this paper, we suggest a class of difference schemes for finding approxi-
mate solutions to the moment equations mentioned above.

1. Preliminary information

In [2,10] a system of moment equations well-reasoned from the physical point of
view was proposed and used to describe the charge transport process in concrete
semiconductor devices. These equations have the form of conservation laws.
The system was obtained from the Boltzmann transport equation by a suitable
truncation procedure (see [2,10]). Note that the existence of a great number of
mathematical models for charge transport in semiconductors is caused by the
variety of truncation procedures for them.

Following [3,8], the quasilinear system of the equations mentioned above in
a dimensionless form and for the 2D case reads

Ut +Px +Ωy = F(Q,U), (1.1)

ε4x,y ϕ = R−ρ. (1.2)

Here

U =


R
J
σ

I

 , P =



J(x)

2
3 σ

0
I(x)

æR
0

 , Ω =



J(y)

0
2
3 σ

I(y)

0
æR

 ,

F =


0

RQ+ c11J+ c12I
(J,Q)+ cP

5
3 σQ+ c21J+ c22I

 ,

J =
(

J(x)

J(y)

)
= Ru = R

(
u(x)

u(y)

)
, I =

(
I(x)

I(y)

)
= Rq = R

(
q(x)

q(y)

)
,

R is the electron density,
u is the electron velocity,
q is the energy flux,
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σ = RE, P = R(2
3 E−1), Q = ∇ϕ , æ = 10

9 E2,

E is the electron energy,
ϕ is the electric potential,
ρ = ρ(x,y) is the doping density,

4x,y =
(

∂ 2

∂x2 + ∂ 2

∂y2

)
is the Laplacian.

The coefficients c11, ...,c22,c of system (1.1) are smooth functions of the
energy E. The precise but rather cumbersome expressions for these functions in
the parabolic band case can be found in [3,8]. The constant ε > 0 appearing in
the Poisson equation (1.2) is a dimensionless dielectric constant. The doping
density ρ(x,y) is a given sufficiently smooth function.

On smooth solutions system (1.1) can also be rewritten in the non-divergent
form

Ut + B̃ ·Ux + C̃ ·Uy = F, (1.1′)

where

B̃ = PU =



0 1 0 0 0 0
0 0 0 2

3 0 0
0 0 0 0 0 0
0 0 0 0 1 0
−æ 0 0 2æ

E 0 0
0 0 0 0 0 0

 , C̃ = ΩU =



0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 2

3 0 0
0 0 0 0 0 1
0 0 0 0 0 0
−æ 0 0 2æ

E 0 0

 .

Remark 1.1. It is easy to see that

P = B̃U, Ω = C̃U.

Remark 1.2. In this paper we will construct numerical algorithms for system
(1.1). Numerical algorithms for the Poisson equation (1.2) are detailed, for
example, in [1,4,6]. By this reason, we will below consider only system (1.1)
(or (1.1′)) assuming that the electric potential ϕ(t,x,y) is a given sufficiently
smooth and bounded function.

Remark 1.3. In [11,12] the hyperbolicity condition for system (1.1) is formu-
lated as follows:

E > 0.

Clearly, this inequality is physically relevant.

Remark 1.4. In the stationary case system (1.1) has the form (see [1,4])
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divJ = 0,

divI = (J,Q)+ cP,

∇

(
2
3

σ

)
= RQ+ c11J+ c12I,

∇

(
4
9

RE2
)

=
2
5

{
5
3

σQ+ c21J+ c22I
}

.


(1.1′′)

From the last two vector relations of system (1.1′′) we obtain that

∇E = a ·u+b ·q. (1.3)

Here

a = a(E) =
3
2

{
3
5

c21

E
− c11

}
, b = b(E) =

3
2

{
3
5

c22

E
− c12

}
.

2. Construction of symmetrizer for system (1.1′)

We start with the following definition.

Definition 2.1. A real matrix A = A∗ = (ai j), i, j = 1,6, is called symmetrizer
for the system (1.1′) if

1) A > 0, 2) B = A · B̃ = B∗, 3) C = A · C̃ = C∗.

Here ∗ means transposition.

Now we proceed to the construction of the symmetrizer A. Multiplying A
by B̃ and A by C̃ and accounting for the symmetry of the matrix A(ai j = a ji),
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we obtain that the conditions 2) and 3) are fulfilled if

a11 =−æa25, 0 =−æa35,

2
3
(a12 +

3æ
E

a15) =−æa45, a14 =−æa55,

0 =−æa56, 0 = a13,

2
3
(a22 +

3æ
E

a25) = a14, a24 = a15,

0 = a16,
2
3
(a23 +

3æ
E

a35) = 0,

0 = a34, a44 =
2
3
(a25 +

3æ
E

a55),

0 =−æa26, 0 = a45,

−æa36 = a11, −æa46 =
2
3
(a13 +

3æ
E

a16),

0 =−æa56, a14 =−æa66,

0 = a12,
2
3
(a23 +

3æ
E

a26) = 0,

0 = a24,
2
3
(a33 +

3æ
E

a36) = a14,

0 = a15, a16 = a34,

2
3
(a35 +

3æ
E

a56) = 0,
2
3
(a36 +

3æ
E

a66) = a44.



(2.1)

Relations (2.1) are derived by equating entries of the matrices B and B∗,
C and C∗.

Analysis of relations (2.1) shows that the desired matrix A and the matrices
B,C have the following form

A = a55



æω 0 0 −æ 0 0
0 10E

3 (ω− E
2 ) 0 0 −ω 0

0 0 10E
3 (ω− E

2 ) 0 0 −ω

−æ 0 0 d 0 0
0 −ω 0 0 1 0
0 0 −ω 0 0 1

 ,

B = a55



0 æω 0 0 −æ 0
æω 0 0 −æ 0 0
0 0 0 0 0 0
0 −æ 0 0 d 0
−æ 0 0 d 0 0
0 0 0 0 0 0

 ,
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C = a55



0 0 æω 0 0 −æ
0 0 0 0 0 0

æω 0 0 −æ 0 0
0 0 −æ 0 0 d
0 0 0 0 0 0
−æ 0 0 d 0 0

 ,

where

ω =
a11

æa55
, d =

2
3

(
3æ
E
−ω

)
.

The matrix A is positive definite if

5
3

E
{

1−
√

2
5

}
< ω <

5
3

E
{

1+

√
2
5

}
, a55 > 0. (2.2)

In what follows we assume that ω = 5
3 E = 3æ

2E . Then d = 10
9 E = æ

E . Mul-
tiplying system (1.1′) from the left by the matrix A and omitting the common
multiplier a55 in the matrices A, B, and C, we finally obtain the symmetric hy-
perbolic system

A ·Ut +B ·Ux +C ·Uy = AF. (2.3)

Taking into account the structure of the vector F, we present the vector AF as
follows:

AF = DU+F. (2.4)

Here D = AD,

D =



0 0 0 0 0 0
0 c11 0 0 c12 0
0 0 c11 0 0 c12

−c 0 0 2
3 c 0 0

0 c21 0 0 c22 0
0 0 c21 0 0 c22

 , F = æ


−(J,Q)

RQ
1
E (J,Q)

0
0

 .

3. Another form of system (2.3)

The aim of our work is to construct a numerical algorithm for finding stationary
solutions to the original system (1.1) by the stabilization method when station-
ary solutions to (1.1) are sought as a limit of nonstationary ones as t → +∞.
While doing so we assume that stationary and nonstationary solutions to (1.1)
coincide for large t.
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System (2.3) can be also represented as follows:

(AU)t +(BU)x +(CU)y = AF+{A′ ·Et
:::::

+B′ ·Ex +C′ ·Ey}U. (3.1)

Here A′ =
dA
dE

, etc.
In view of the aforesaid, in system (3.1) we omit the summand underlined

with a wavy line and replace the underlined derivatives Ex,Ey by their expres-
sions for the stationary case using formula (1.3). The resulting system is

(AU)t +(BU)x +(CUy) = D̃U+F, (3.2)

where D̃ = D+L, L = (B′u(x) +C′u(y))a+(B′q(x) +C′q(y))b,

B′ =



0 5æ 0 0 −2d 0
5æ 0 0 −2d 0 0
0 0 0 0 0 0
0 −2d 0 0 10

9 0
−2d 0 0 10

9 0 0
0 0 0 0 0 0

 ,

C′ =



0 0 5æ 0 0 −2d
0 0 0 0 0 0

5æ 0 0 −2d 0 0
0 0 −2d 0 0 10

9
0 0 0 0 0 0
−2d 0 0 10

9 0 0

 .

Remark 3.1. In the stationary case systems (2.3) and (3.2) are equivalent on
smooth solutions of system (1.1).

Remark 3.2. Strictly speaking, smooth bounded solutions to system (1.1) do
not satisfy system (3.2). Nevertheless, following the reasons from above we
assume that for large t the solutions to system (1.1) are solutions to system (3.2)
as well. So, in what follows we assume that systems (2.3) and (3.2) are two
equivalent forms of (1.1) on its smooth bounded solutions. With this assumption
we are able to derive an a priori estimate for smooth bounded solutions of (1.1).
Indeed, let U(t,x,y) be a bounded smooth solution to (1.1) in the domain

Π = {(t,x,y)|T0 ≤ t ≤ T < ∞,(x,y) ∈ R2}

with a sufficiently large T0 > 0 satisfying the condition

(U,U) = |U|2→ 0 as
√

x2 + y2→ ∞. (3.3)
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Multiplying (2.3) and (3.2) by U and summing up the results, we have

(U,AU)t +(U,BU)x +(U,CU)y = (U,ΛU)+2(U,F). (3.4)

Here Λ = D+D∗+ L+L∗
2 , (U,F) = æR(J,Q).

Next, we assume that in the domain Π the norms of the matrices B and C
are bounded, the matrix A > 0, the functions R≥ 0,E > 0. Besides, we assume
that the electric potential ϕ is a given smooth bounded function in the domain
Π. Integrating (3.4) over R2 and accounting for (3.3) and the inequalities

ν0|U|2 ≤ (U,AU),

(U,ΛU)≤ µ0|U|2 ≤ µ̃0(U,AU),

2æR|(J,Q)| ≤ 2æR|J||Q| ≤ 2µ1|J|R≤ µ1|U|2 ≤ µ̃1(U,AU),

where

ν0 = inf
(t,x,y)∈Π

λmin(A) > 0, µ0 = sup
(t,x,y)∈Π

λmax(Λ), µ̃0 =
µ0

ν0
,

µ1 = sup
(t,x,y)∈Π

(æ|Q|), µ̃1 =
µ1

ν0
,

λmin(A) is the minimal eigenvalue of A,
λmax(Λ), the maximal eigenvalue of Λ,

we finally obtain the inequality

dI(t)
dt
≤ µ̃I(t)

or
I(t)≤ I(T0)exp{µ̃(t−T0)}, T0 < t ≤ T < ∞. (3.5)

Here µ̃ = µ̃0 + µ̃1,

I(t) =
∫

R2
(U,AU)dxdy.

Inequality (3.5) is the desired a priori estimate.
The original system of the momentum equations (1.1) can be represented

as (2.3) or (3.2) (for large t). This gives us an idea to use this fact while con-
structing finite-difference schemes for (1.1) in order to derive a finite difference
analog of the a priori estimate (3.5) for approximate solutions. In terms of [7]
this means the adequacy of the mathematical and numerical models. In the
next section we describe a class of difference schemes for which we employ the
mentioned idea (another examples can be found in [5,9]).
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4. A class of “stable” difference schemes for system (1.1)

Now we formulate a numerical model for the original mathematical model (1.1).
In the domain Π we construct a difference scheme with the steps ∆ = ∆t, hx =
∆x, hy = ∆y. We introduce the notations:

Un
α = U(n∆,α ·h) = Un

αxαy
= Uα = Uαx = Uαy = U

is a grid vector-function,
α = (αx,αy) is a multiindex,

h = (hx,hy), α ·h = (αxhx,αyhy),

|αx|, |αy|= 0,1, ...; n = N0, ...,N; T0 = ∆N0, T = ∆N,

χ, Ψx, Ψy, Ψ−1
x , Ψ−1

y are translation operators:

χU = Un+1
α = Û,

Ψ±1
x U = Un

αx±1, Ψ±1
y U = Un

αy±1(Ψ
+1
x = Ψx, Ψ+1

y = Ψy);

τ, ξx, ξy, ξ x, ξ y are difference operators:

τ = χ−1, ξx = Ψx−1, ξy = Ψy−1,

ξ x = 1−Ψ−1
x , ξ y = 1−Ψ−1

y .

As is known, the symmetric matrices B, C can be represented as follows:

B = B+−B−, C = C+−C−, (4.1)

where B+, B−, C+, C− ≥ 0 are symmetric matrices. Validity of (4.1) is easily
checked if the matrices B+, B−, C+, C− are the following

B+ =
1
2

R∗x(Λx + |Λx|)Rx, B− =
1
2

R∗x(−Λx + |Λx|)Rx,

C+ =
1
2

R∗y(Λy + |Λy|)Ry, C− =
1
2

R∗y(−Λy + |Λy|)Ry.

The matrices Rx,Ry are orthogonal matrices reducing the matrices B and C to
the diagonal form:
B = R∗xΛxRx,
C = R∗yΛyRy,

Λx = diag(λ (x)
1 , ...,λ

(x)
6 ),

Λy = diag(λ (y)
1 , ...,λ

(y)
6 ),

λ
(x)
i ,λ

(y)
i are the eigenvalues of the matrices B,C, i = 1,6,

|Λx|= diag(|λ (x)
1 |, ..., |λ

(x)
6 |),

|Λy|= diag(|λ (y)
1 |, ..., |λ

(y)
6 |).
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Remark 4.1. Instead of the theoretical method from above we can propose a
constructive method for finding B+, B−, C+, and C−. Namely, these matrices
can be taken in the form:

B+ = dx(E)A+
1
2

B, B− = dx(E)A− 1
2

B,

C+ = dy(E)A+
1
2

C, C− = dy(E)A− 1
2

C,

where the functions dx(E), dy(E) > 0 are chosen so that they guarantee the
fulfillment of the inequalities

B+, B−, C+, C− ≥ 0.

Let

dx(E) = dy(E) = d̃(E) = æd̂(E), E =
1

2d̂(E)
.

Then

B± = d̃(E)(A± E

æ
B) = d̃(E)



æω ±Eω 0 −æ ∓E 0

±Eω
7
2 æ 0 ∓E −ω 0

0 0 7
2 æ 0 0 −ω

−æ ∓E 0 æ
E ±E

E 0

∓E −ω 0 ±E

E 1 0

0 0 −ω 0 0 1


,

C± = d̃(E)(A± E

æ
C) = d̃(E)



æω 0 ±Eω −æ 0 ∓E
0 7

2 æ 0 0 −ω 0

±Eω 0 7
2 æ ∓E 0 −ω

−æ 0 ∓E æ
E 0 ±E

E

0 −ω 0 0 1 0

∓E 0 −ω ±E

E 0 1


.

The matrices B±, C± ≥ 0 if

0 < E≤

√√√√3
2

æ2
1−
√

2
5

E
, i.e. d̃(E)≥

√√√√ E

6(1−
√

2
5)

.
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Now we propose the following finite difference scheme for finding numeri-
cal solutions to the original mathematical model (1.1):
K̂Â · τU+K · τ(AU)+

+rx{K̂B+(E(x)) ·ξ xÛ+ K̂αx−1 ·ξ x(B+(E(x))Û)−
−K̂B−(E (x)) ·ξxÛ− K̂αx+1 ·ξx(B−(E (x))Û)}+
+ry{K̂C+(E(y)) ·ξ yÛ+ K̂αy−1 ·ξ y(C+(E(y))Û)−

−K̂C−(E (y)) ·ξyÛ− K̂αy+1 ·ξy(C−(E (y))Û)}=

= ∆K̂(2D+L)Û+2∆K̂F̂. (4.2)

Here A = A(E), Â = A(Ê),

K = diag{R,J(x),J(y),σ , I(x), I(y)},
K̂ = diag{R̂, Ĵ(x), Ĵ(y), σ̂ , Î(x), Î(y)},
K̂αx±1 = Ψ±1

x K̂, K̂αy±1 = Ψ±1
y K̂,

rx =
∆

hx
, ry =

∆

hy
,

E(x), E (x), E(y), E (y) – ”intermediate” values of E,

F̂ = æ̂


−(Ĵ,Q̂)

R̂Q̂
1
Ê
(Ĵ,Q̂)

0
0

 .

Remark 4.2. The difference scheme (4.2) approximates a consequence of sys-
tem (1.1′) following from (2.3) and (3.2) rather than this system itself:

AUt +(AU)t +BUx +(BU)x +CUy +(CU)y = (2D+L)U+2F. (4.3)

Remark 4.3. Below we assume that the following conditions are fulfilled for
the finite-difference scheme (4.2):

1) |Un
α |2→ 0 as (α2

x +α2
y )→∞,n = N0, ...,N; (4.4)

2) the matrix norms B+(E(x)),B−(E (x)),C+(E(y)),C−(E (y)) are bounded;

3) A(En
α) > 0,En

α > 0,Rn
α ≥ 0, |αx|, |αy|= 0,1, ...,n = N0, ...,N.

Remark 4.4. The proposed difference scheme (4.2) is implicit and can be prob-
ably realized by nonlinear iterations.

Remark 4.5. We do not detail formulas for E(x),E (x),E(y),E (y) because a wide
variety of choices is possible that is very useful for the numerical resolution of
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our problems. For example we can choose E(x),E (x),E(y),E (y) so: E(x) = E (x) =
E(y) = E (y) = Ê.

Now we deduce a finite-difference analog of the a priori estimate (3.5). We
multiply (4.2) by V = (1,1,1,1,1,1)∗. As far as

K̂V = Û, KV = U, Ψ±1
x K̂ ·V = Ψ±x Û, Ψ±1

y K̂ ·V = Ψ±y Û
we obtain

(Û, Â · τU)+(U,τ(AU))+

+rx{(Û,B+(E(x)) ·ξ xÛ)+(Ψ−1
x Û,ξ x(B+(E(x))Û))−

−(Û,B−(E (x)) ·ξxÛ)− (ΨxÛ,ξx(B−(E (x))Û))}+
+ry{(Û,C+(E(y)) ·ξ yÛ)+(Ψ−1

y Û,ξ y(C+(E(y))Û))−

−(Û,C−(E (y)) ·ξyÛ)− (ΨyÛ,ξy(C−(E (y))Û))}=

= ∆(Û,ΛÛ)+2∆æ̂R̂(Ĵ,Q̂). (4.5)

We have following relations:

1) (Û, Â · τU)+(U,τ(A ·U)) = τ((U,AU)),

2) (Û,B+(E(x)) ·ξ xÛ)+(Ψ−1
x Û,ξ x(B+(E(x))Û)) = ξ x(Û,B+(E(x))Û),

3) (Û,B−(E (x)) ·ξxÛ)+(ΨxÛ,ξx(B−(E (x))Û)) = ξx(Û,B−(E (x))Û),

4) (Û,C+(E(y)) ·ξ yÛ)+(Ψ−1
y Û,ξ y(C+(E(y))Û)) = ξ y(Û,C+(E(y))Û),

5) (Û,C−(E (y)) ·ξyÛ)+(ΨyÛ,ξy(C−(E (y))Û)) = ξy(Û,C−(E (y))Û).

In view of 1)–5), equality (4.5) has the form

τ(U,AU)+ rx{ξ x(Û,B+(E(x))Û)−ξx(Û,B−(E (x))Û)}+
+ry{ξ y(Û,C+(E(y))Û)−ξy(Û,C−(E (y))Û)}=

= ∆(Û,ΛÛ)+2∆æ̂R̂(Ĵ,Q̂). (4.5′)

The relation (4.5′) is a difference analog of (3.4).
Multiplying (4.5′) by h = hx ·hy and summing up the result with αx,αy from

+∞ to −∞, in a view of (4.4), we finally have:

τIn ≤ ∆µ̃In+1, In = h
∞

∑
αx=−∞

∞

∑
αy=−∞

(Un
α ,A(En

α)Un
α) (4.6)

or

In+1 ≤
1

1−∆ · µ̃
Tn, (4.6′)

where
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µ̃ = µ̃0 + µ̃1, µ̃0 =
µ0

ν0
, µ̃1 =

µ1

ν0
,

ν0 = inf
n,αx,αy

λmin(A),

µ0 = sup
n,αx,αy

λmax(Λ),

µ1 = sup
n,αx,αy

(æ|Q|).

From (4.6′) for small ∆ we derive a finite-differential analog of the a priori
estimate (3.5):

In ≤
(

1
1−∆µ̃

)n−N0

IN0 , n = N0 +1, ...,N (4.7)

Relation (4.7) also implies the “stability” of the difference scheme (4.2) in the
energy norm

√
In.

Remark 4.6. We put the word stability into quotation marks because, strictly
speaking, it is necessary to prove that the conditions listed in Remark 4.3 are
fulfilled on solutions to the finite-difference numerical model (4.2)

Remark 4.7. While deducing (4.6) we also used the relation (see Remark 4.3)

∞

∑
αx=−∞

ξ x(Û,B+(E(x))Û) = lim
M→∞

M

∑
αx=−M+1

ξ x(Û,B+(E(x))Û) =

= lim
M→∞
{(Û,B+(E(x))Û)|αx=+M− (Û,B+(E(x))Û)|αx=−M}= 0

5. Conclusions

We have described a class of difference schemes for the system of momentum
equations of charge transport in semiconductors. Construction of such schemes
is based on the possibility to represent the original system in different ways. The
authors plans to carry out numerical simulations in order to check the efficiency
of the proposed difference schemes.
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