TRANSCENDENCE OF SOME INFINITE SERIES

F. SGHIOUER - K. BELHROUKIA - A. KACHA

In the present paper and as an application of J. Hančl criterion for transcendental sequences which gave a sufficient conditions that will assure us that a series of positive rational terms is a transcendental number. With the same conditions, we establish a transcendental measure of $\sum_{n=1}^{\infty} 1 / a_{n}$.

1. Introduction

The theory of transcendental numbers has a long history. We know since J. Liouville in 1844 that the very rapidly converging sequences of rational numbers provide examples of transcendental numbers. So, in his famous paper [7], Liouville showed that a real number admitting very good rational approximation can not be algebraic, then he explicitly constructed the first examples of transcendental numbers.

There are a number of sufficient conditions known within the literature for an infinite series, $\sum_{n=1}^{\infty} 1 / a_{n}$, of positive rational numbers to converge to an irrational number, see $[2,9,11]$. These conditions, which are quite varied in form, share one common feature, namely, they all require rapid growth of the sequence $\left(a_{n}\right)$ to deduce irrationality of the series. As an illustration consider the following results of J. Sándor which have been taken from [11] and [12].

[^0]From this direction, the transcendence of some infinite series has been studied by several authors such as M.A. Nyblom [8], J. Hančl and J. Štepnicka [4]. we also note that the transcendence of some power series with rational coefficients is given by some authors such as J. P. Allouche [1] and G. K. Gözer [3]. The following Theorem gives Roth's Criterion for transcendental numbers, see [10].

Theorem 1.1. Let α be a real number, δ a real number >2, if there exists an infinity rational numbers $\frac{p}{q}$ with $\operatorname{gcd}(p, q)=1$ such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{\delta}}
$$

then α is a transcendental number.

2. Transcendence

We recall that the concept of a transcendental sequence is defined by J. Hančl in [5] where he gave a criterion for transcendental series which depends only on the speed of convergence. This criterion is expressed in the following Theorem.

Theorem 2.1. Let ε, γ and c be three positive real numbers satisfying

$$
\gamma>2 \varepsilon>\frac{\log _{2}(3+2 \varepsilon)}{\log _{2}(3+2 \gamma)}
$$

Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of positive integers, with $\left(a_{n}\right)_{n=1}^{\infty}$ nondeacresing, such that

$$
\begin{gather*}
\limsup a_{n}^{\frac{1}{(3+\gamma)^{n}}}>1, \tag{1}\\
a_{n}>n^{1+\varepsilon} \tag{2}\\
b_{n}<a_{n}^{\frac{\varepsilon}{1+\varepsilon}} \cdot 2^{-\left(\log _{2} a_{n}\right)^{c}} \tag{3}
\end{gather*}
$$

hold for every sufficiently large positive integer n. Then the sequence $\left(\frac{a_{n}}{b_{n}}\right)_{n=1}^{\infty}$ is transcendental.

Proof. See Theorem 2.1 of [5].

Our first result is given in the following Theorem.

Theorem 2.2. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of non-zero natural integers and α be a positive real >2 such that

$$
\begin{equation*}
a_{n+1}>a_{n}^{\alpha+1}, \text { for all } n \geq 1 \tag{4}
\end{equation*}
$$

Then, the series

$$
\sum_{n=1}^{+\infty} 1 / a_{n}
$$

converges to a transcendental number.
Proof. It is an immediate consequence of the previous Theorem 2.1 of J. Hančl.

We will now give a corollary as an application of the previous result.
Corollary 2.3. Any subseries of the series $\sum_{n=1}^{+\infty} 1 / a_{n}$, where the terms $a_{n} \in \mathbb{N}^{*}$ satisfy (4) will have a transcendental sum.

Proof. Consider an arbitrary subseries $\sum_{n \geq 1} 1 / c_{n}$ then by definition there must exist a strictly monotone increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $c_{n}=a_{g(n)}$. Clearly as $g(n+1) \geq g(n)+1$, one has

$$
\frac{c_{n+1}}{c_{n}^{\alpha+1}}=\frac{a_{g(n+1)}}{a_{g(n)}^{\alpha+1}} \geq \frac{a_{g(n)+1}}{a_{g(n)}^{\alpha+1}}>1
$$

and by Theorem 2.2 the subseries has a transcendental sum.
Example 2.4. We consider the following sequence

$$
\left\{\begin{array}{rc}
a_{n}=2^{n!+1}, & n \geq 1 \\
a_{n+1}>a_{n}^{3}, & n \geq 3
\end{array}\right.
$$

By applying Theorem 2.2, the series

$$
\sum_{n} \frac{1}{2^{n!+1}}
$$

converges to a transcendental number.

3. Transcendental measure

Definition 3.1. Let $P \in \mathbb{Z}[X] /\{0\}$ be a polynomial of degree d. The height of polynomial P is maximum of the absolute value of its coefficients.

The second main result of this paper is to give a transcendental measure of $\theta=\sum_{n=1}^{\infty} \frac{1}{a_{n}}$. In this section, we keep the same notations as in the second section.

Theorem 3.2. Let $P \in \mathbb{Z}[X] /\{0\}$ be a polynomial of degree $d \geq 2$ and height H. Let $\alpha>d$ and $k>1$ be two real numbers such that

$$
a_{n}^{\alpha+1} \leq a_{n+1}<a_{n}^{k \alpha}, \text { for all } n \geq 1
$$

Then, we have

$$
|P(\theta)|>\frac{1}{(H d(d+1))^{\frac{k d(\alpha+1)}{\alpha-d}}}
$$

In order to prove this Theorem, we need the following Lemmas.

Lemma 3.3. Let

$$
\frac{p_{m}}{q_{m}}=\sum_{k=1}^{m} \frac{1}{a_{k}}
$$

such that $\left(p_{m}, q_{m}\right)=1$. Then, we have

$$
\begin{equation*}
q_{m} \leq a_{1} a_{2} \ldots a_{m} \tag{5}
\end{equation*}
$$

Proof. Since $\left(p_{m}, q_{m}\right)=1$, the lowest common denominator of the fraction $\frac{1}{a_{1}} \cdots \frac{1}{a_{m}}$ must be greater than or equal to q_{m}. So we deduce $q_{m} \leq a_{1} a_{2} \cdots$ a_{m}.

Lemma 3.4. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of natural integers ; 0 , and α be a given real >2. The hypothesis $a_{n+1}>a_{n}^{\alpha+1}$ implies that

$$
\begin{align*}
& \text { (i) } \lim _{n \rightarrow \infty} \frac{\left(a_{1} a_{2} \ldots a_{n}\right)^{\alpha}}{a_{n+1}}=0 \tag{6}\\
& \text { (ii) }\left|\theta-\frac{p_{m}}{q_{m}}\right|<\frac{1}{q_{m}^{\alpha}}
\end{align*}
$$

Proof. (i) We set

$$
b_{n}=\frac{\left(a_{1} a_{2} \ldots a_{n}\right)^{\alpha}}{a_{n+1}}
$$

and we show that $\lim _{n \rightarrow \infty} b_{n}=0$. We have

$$
\begin{aligned}
\ln \left(\frac{1}{b_{n}}\right) & =\ln \left(a_{n+1}\right)-\alpha \sum_{k=1}^{n} \ln \left(a_{k}\right) \\
& =\sum_{k=1}^{n} \ln \left(\frac{a_{k+1}}{a_{k}}\right)+\ln \left(a_{1}\right)-\alpha \sum_{k=1}^{n} \ln \left(a_{k}\right) \\
& =\sum_{k=1}^{n} \ln \left(\frac{a_{k+1}}{a_{k}^{\alpha+1}}\right)+\ln \left(a_{1}\right) \\
& \geq \sum_{k=1}^{n} \ln \left(\frac{a_{k+1}}{a_{k}^{\alpha+1}}\right) .
\end{aligned}
$$

Since $\frac{a_{n+1}}{a_{n}^{\alpha+1}}>1$, then there exists $\delta>0$ such that $\frac{a_{n+1}}{a_{n}^{\alpha+1}}>1+\delta$. Therefore, we get

$$
\ln \left(\frac{1}{b_{n}}\right) \geq n \ln (1+\delta) .
$$

From this, we deduce that, $\lim _{n \rightarrow+\infty} \ln \left(\frac{1}{b_{n}}\right)=+\infty$, then $\lim _{n \rightarrow+\infty} b_{n}=0$.
(ii) According to the hypothesis, the series $\sum_{n} \frac{1}{a_{n}}$ is convergent.

Set $\theta=\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ and $\frac{p_{m}}{q_{m}}=\sum_{n=1}^{m} \frac{1}{a_{n}}$. From the equality,

$$
\left|\theta-\frac{p_{m}}{q_{m}}\right|=\sum_{n=m+1}^{\infty} \frac{1}{a_{n}},
$$

we obtain

$$
q_{m}^{\alpha}\left|\theta-\frac{p_{m}}{q_{m}}\right|=\sum_{n=m+1}^{\infty} \frac{q_{m}^{\alpha}}{a_{n}} .
$$

The relationship (5) implies that

$$
\begin{gathered}
q_{m}^{\alpha}\left|\theta-\frac{p_{m}}{q_{m}}\right| \leq\left(a_{1} a_{2} \ldots a_{m}\right)^{\alpha} \\
\sum_{n=m+1}^{\infty} \frac{1}{a_{n}} \leq b_{m} \sum_{n=m+1}^{\infty} \frac{a_{m+1}}{a_{n}},
\end{gathered}
$$

with $b_{m}=\frac{\left(a_{1} a_{2} \ldots a_{m}\right)^{\alpha}}{a_{m+1}}$.
Furthermore, for all $n \geq 1$, we have

$$
\begin{equation*}
\frac{a_{n}}{a_{n+1}}<\frac{1}{a_{n}^{\alpha}}<\frac{1}{a_{n}} . \tag{7}
\end{equation*}
$$

Then, we obtain

$$
\begin{aligned}
q_{m}^{\alpha}\left|\theta-\frac{p_{m}}{q_{m}}\right| & <b_{m}\left(1+\sum_{k=1}^{\infty} \frac{a_{m+1}}{a_{m+k+1}}\right) \\
& <b_{m}\left(1+\sum_{k=1}^{\infty} \frac{a_{m+k}}{a_{m+k+1}}\right) \\
& <b_{m}\left(1+\sum_{k=1}^{\infty} \frac{1}{a_{m+k}}\right) \\
& <b_{m}(1+\theta)
\end{aligned}
$$

According to the relationship (6), and for m sufficiently large, we get $b_{m}<(1+\theta)^{-1}$.

Therefore for m sufficiently large, we have

$$
q_{m}^{\alpha}\left|\theta-\frac{p_{m}}{q_{m}}\right|<1
$$

Finally we find

$$
\begin{equation*}
\left|\theta-\frac{p_{m}}{q_{m}}\right|<\frac{1}{q_{m}^{\alpha}} \tag{8}
\end{equation*}
$$

Lemma 3.5. (i) The hypothesis $a_{n}^{\alpha+1} \leq a_{n+1}$ implies that for all $n \geq 1$, we have

$$
\begin{equation*}
q_{n} \leq a_{n}^{\frac{\alpha+1}{\alpha}} \tag{9}
\end{equation*}
$$

(ii) The hypothesis $a_{n+1}<a_{n}^{k \alpha}$ implies that

$$
\begin{equation*}
q_{n+1}<q_{n}^{k(\alpha+1)}, \text { for all } n \geq 1 \tag{10}
\end{equation*}
$$

Proof. (i) The hypothesis of (i) implies that

$$
a_{n} \leq a_{n+1}^{\frac{1}{\alpha+1}}
$$

Then for all $1 \leq j \leq n-1$, we obtain

$$
a_{j} \leq a_{n}^{\left(\frac{1}{\alpha+1}\right)^{n-j}}
$$

On the other hand, according to the relationship (5), one has

$$
q_{n} \leq a_{1} \ldots a_{n-1} \cdot a_{n}
$$

this implies

$$
q_{n} \leq a_{n}^{1+\frac{1}{\alpha+1}+\frac{1}{(\alpha+1)^{2}}+\ldots+\frac{1}{(\alpha+1)^{n-1}}}
$$

Which gives

$$
q_{n} \leq a_{n}^{\frac{1}{1-\frac{1}{\alpha+1}}}
$$

Finally we obtain

$$
q_{n} \leq a_{n}^{\frac{\alpha+1}{\alpha}}, \quad \text { for all } n \geq 1
$$

(ii) According to the relationship (9), we have

$$
q_{n} \leq a_{n}^{\frac{\alpha+1}{\alpha}}<a_{n-1}^{\frac{\alpha+1}{\alpha} k \alpha}=a_{n-1}^{k(\alpha+1)}
$$

Since $a_{n}<q_{n}$ for all $n \geq 1$, we obtain

$$
q_{n}<q_{n-1}^{k(\alpha+1)}
$$

Proof of Theorem 3.2. Set

$$
\theta_{n}=\frac{p_{n}}{q_{n}}=\sum_{k=1}^{n} \frac{1}{a_{k}}
$$

From the equality,

$$
P\left(\theta_{n}\right)=P\left(\theta_{n}\right)-P(\theta)+P(\theta)
$$

we get

$$
\left|P\left(\theta_{n}\right)\right| \leq\left|P\left(\theta_{n}\right)-P(\theta)\right|+|P(\theta)|
$$

Therefore,

$$
\begin{equation*}
|P(\theta)| \geq\left|P\left(\theta_{n}\right)\right|-\left|P(\theta)-P\left(\theta_{n}\right)\right| \tag{11}
\end{equation*}
$$

Set $P=\sum_{k=1}^{d} e_{k} X^{k}$, then

$$
\begin{equation*}
P\left(\theta_{n}\right)=P\left(\frac{p_{n}}{q_{n}}\right)=\sum_{k=1}^{d} e_{k} \frac{p_{n}^{k}}{q_{n}^{k}}=\frac{1}{q_{n}^{d}} \sum_{k=1}^{d} e_{k} p_{n}^{k} q_{n}^{d-k} \tag{12}
\end{equation*}
$$

Notice that

$$
\sum_{k=1}^{d} e_{k} p_{n}^{k} q_{n}^{d-k} \neq 0
$$

because, if we assume that

$$
\sum_{k=1}^{d} e_{k} p_{n}^{k} q_{n}^{d-k}=0
$$

then we would have

$$
q_{n}^{d} \cdot P\left(\theta_{n}\right)=0
$$

which implies that

$$
P\left(\theta_{n}\right)=0
$$

We also have

$$
P(\theta)=P\left(\lim _{n \rightarrow+\infty} \theta_{n}\right)=\lim _{n \rightarrow+\infty} P\left(\theta_{n}\right)=0
$$

which contradicts the fact that θ is a transcendental number. Therefore,

$$
\left|\sum_{k=1}^{d} e_{k} p_{n}^{k} q_{n}^{d-k}\right| \geq 1
$$

According to equality (12), we get

$$
\begin{equation*}
\left|P\left(\theta_{n}\right)\right| \geq \frac{1}{q_{n}^{d}} \tag{13}
\end{equation*}
$$

On the other hand, according to the mean value theorem applied to P, there exists a real number $F \in] \theta_{n}, \theta[$ or $] \theta, \theta_{n}[$ such that

$$
P(\theta)-P\left(\theta_{n}\right)=P^{\prime}(F)\left(\theta-\theta_{n}\right)
$$

From this, we obtain

$$
\begin{equation*}
\left|P(\theta)-P\left(\theta_{n}\right)\right|=\left|P^{\prime}(F)\right|\left|\theta-\theta_{n}\right| \tag{14}
\end{equation*}
$$

Furthermore, as

$$
P^{\prime}(F)=\sum_{k=1}^{d} k F^{k-1} e_{k}
$$

which implies that

$$
\begin{aligned}
\left|P^{\prime}(F)\right| & \leq \sum_{k=1}^{d} k|F|^{k-1}\left|e_{k}\right| \\
& \leq \sum_{k=1}^{d} k\left|e_{k}\right| \leq H \sum_{k=1}^{d} k \\
& \leq H \frac{d(d+1)}{2}
\end{aligned}
$$

Therefore, equality (14) becomes

$$
\begin{equation*}
\left|P(\theta)-P\left(\theta_{n}\right)\right|<H \frac{d(d+1)}{2}\left|\theta-\theta_{n}\right| \tag{15}
\end{equation*}
$$

According to relationship (8), we have

$$
\left|\theta-\theta_{n}\right|<\frac{1}{q_{n}^{\alpha}}
$$

then

$$
\begin{equation*}
\left|P(\theta)-P\left(\theta_{n}\right)\right|<\frac{H d(d+1)}{2 q_{n}^{\alpha}} \tag{16}
\end{equation*}
$$

By combining (13) and (14), the relationship (11) becomes

$$
|P(\theta)|>\frac{1}{q_{n}^{d}}-\frac{H d(d+1)}{2 q_{n}^{\alpha}}, \text { for } \mathrm{n} \text { sufficiently large. }
$$

In order to have $|P(\theta)|>\frac{1}{2 q_{n}^{d}}$, it suffices to have

$$
\frac{1}{q_{n}^{d}}-\frac{H d(d+1)}{2 q_{n}^{\alpha}}>\frac{1}{2 q_{n}^{d}},
$$

which is equivalent to

$$
\frac{1}{2 q_{n}^{d}}>\frac{H d(d+1)}{2 q_{n}^{\alpha}} \Longleftrightarrow q_{n}^{\alpha-d}>H d(d+1)
$$

So that, we take n_{1} the smallest integer such that

$$
\begin{equation*}
q_{n_{1}-1}^{\alpha-d}<H d(d+1)<q_{n_{1}}^{\alpha-d} \tag{17}
\end{equation*}
$$

Remark 3.6. The natural number n_{1} exists because $\lim _{n \rightarrow \infty} q_{n}^{\alpha-d}=+\infty$, then, we obtain

$$
q_{n_{1}}^{\alpha-d}>H d(d+1)
$$

Therefore, we get

$$
\begin{equation*}
|p(\theta)|>\frac{1}{2 q_{n_{1}}^{d}} \tag{18}
\end{equation*}
$$

Using (ii) from Lemma 3, the relationship (18) becomes

$$
\begin{equation*}
|P(\theta)|>\frac{1}{2 q_{n_{1}}^{d}}>\frac{1}{2 q_{n_{1}-1}^{k d(\alpha+1)}} \tag{19}
\end{equation*}
$$

According to the relationship (17), we have

$$
\frac{1}{q_{n_{1}-1}^{\alpha-d}}>\frac{1}{H d(d+1)}
$$

then

$$
\frac{1}{q_{n_{1}-1}^{k d(\alpha+1)}}>\frac{1}{(H d(d+1))^{\frac{k d(\alpha+1)}{\alpha-d}}}
$$

So, relationship (19) becomes

$$
|P(\theta)|>\frac{1}{(H d(d+1))^{\frac{k d(\alpha+1)}{\alpha-d}}}
$$

which completes the proof of Theorem 3.
Example 3.7. Let

$$
\left\{\begin{array}{l}
a_{0}=0, a_{1}=2 \\
a_{n+1}=a_{n}^{4}, \quad n \geq 1 \\
\alpha=4, k=2
\end{array}\right.
$$

Let $P \in \mathbb{Z}[X] n\{0\}$ be a quadratic polynomial of height H. By applying Theorem 3, a transcendental measure of $\theta=\sum_{n=1}^{\infty} 1 / a_{n}$ is given by

$$
|P(\theta)|>\frac{1}{(6 H)^{10}}
$$

Acknowledgements

We deeply thank the anonymous referee and the editor for their constructive suggestions, which improve the quality of this manuscript.

REFERENCES

[1] J.P. Allouche, Transcendence of formal power series with rational coefficients, Theor. Comput. Sci., 218 (1999), 143-160.
[2] P. Erdös", Some problems and result on the irrationality of the sum of infinite series, J. Math. Sci., 10 (1975), 1-7.
[3] G. K. Gözer, A. Pekin and A. Kiliçman, On the transcendence of some power series, Adv. Difference Equ., 17 (2013), 1-8.
[4] J. Hančl and J. Štepnicka, On the transcendence of some infinite series, Glasg. Math. J, 50 (2008), 33-37.
[5] J. Hančl, Two criteria for Transcendental sequences, Le Matematiche, vo. LVI, no.1, (2001), 149-160.
[6] J. Hančl, S. Dodulíková and R. Nair, On the irrationality of infinite series of reciprocals of square roots, Rocky Mt. J. Math., (2017), 1-11.
[7] J. Liouville, sur des classes très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationnelles algèbriques, C. R. Acad. Sci. Paris, 18 (1844), 883-885, 910-911.
[8] M. A. Nyblom, A theorem on transcendence of infinite series II, J. Number Theory, 91 (2001), 71-80.
[9] A. Oppenheim, The irrationality or rationality of certain infinite series, in "Studies in Pure Math. (presented to Richard Rado)", Academic Press, London (1971), 195-201.
[10] K. F. Roth, Rational approximations to algebraic numbers, Mathematika, 2 (1955), 1-20.
[11] J. Sándor, Some classes of irrational numbers, Studia Univ. Babes-Bolyai Math., 29 (1984), 3-12.
[12] J. Sándor, On some irrationality factorial series, Studia Univ. Babes-Bolyai Math., 32 (1987), 13-17.

> F. SGHIOUER Mathematics Department Ibn Tofail University 14000 Kenitra, Morocco. e-mail: fedoua.sghiouer@uit.ac.ma K. BELHROUKIA Mathematics Department Ibn Tofail University 14000 Kenitra, Morocco.

$$
\begin{array}{rr}
\text { A. KACHA } \\
& \text { Mathematics Department } \\
\text { Ibn Tofail University } \\
& 14 \text { 000 Kenitra, Morocco. } \\
\text { e-mail: } \quad \text { ali.kacha@uit. ac.ma }
\end{array}
$$

[^0]: Received on January 30, 2023

