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TRANSCENDENCE OF SOME INFINITE SERIES

F. SGHIOUER - K. BELHROUKIA - A. KACHA

In the present paper and as an application of J. Hančl criterion for tran-
scendental sequences which gave a sufficient conditions that will assure
us that a series of positive rational terms is a transcendental number. With
the same conditions, we establish a transcendental measure of ∑

∞
n=1 1/an.

1. Introduction

The theory of transcendental numbers has a long history. We know since J. Li-
ouville in 1844 that the very rapidly converging sequences of rational numbers
provide examples of transcendental numbers. So, in his famous paper [7], Li-
ouville showed that a real number admitting very good rational approximation
can not be algebraic, then he explicitly constructed the first examples of tran-
scendental numbers.

There are a number of sufficient conditions known within the literature for
an infinite series, ∑

∞
n=1 1/an, of positive rational numbers to converge to an ir-

rational number, see [2, 9, 11]. These conditions, which are quite varied in
form, share one common feature, namely, they all require rapid growth of the
sequence (an) to deduce irrationality of the series. As an illustration consider
the following results of J. Sándor which have been taken from [11] and [12].
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From this direction, the transcendence of some infinite series has been stud-
ied by several authors such as M.A. Nyblom [8], J. Hančl and J. Štepnicka [4].
we also note that the transcendence of some power series with rational coeffi-
cients is given by some authors such as J. P. Allouche [1] and G. K. Gözer [3].
The following Theorem gives Roth’s Criterion for transcendental numbers, see
[10].

Theorem 1.1. Let α be a real number, δ a real number > 2, if there exists an
infinity rational numbers

p
q

with gcd(p,q) = 1 such that

∣∣∣∣α − p
q

∣∣∣∣< 1
qδ

,

then α is a transcendental number.

2. Transcendence

We recall that the concept of a transcendental sequence is defined by J. Hančl
in [5] where he gave a criterion for transcendental series which depends only on
the speed of convergence. This criterion is expressed in the following Theorem.

Theorem 2.1. Let ε,γ and c be three positive real numbers satisfying

γ > 2ε >
log2(3+2ε)

log2(3+2γ)
.

Let (an)
∞
n=1 and (bn)

∞
n=1 be two sequences of positive integers, with (an)

∞
n=1

nondeacresing, such that

limsupa
1

(3+γ)n
n > 1, (1)

an > n1+ε , (2)

bn < a
ε

1+ε

n .2−(log2 an)
c

(3)

hold for every sufficiently large positive integer n. Then the sequence (
an

bn
)∞

n=1 is

transcendental.

Proof. See Theorem 2.1 of [5].

Our first result is given in the following Theorem.
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Theorem 2.2. Let (an)n≥1 be a sequence of non-zero natural integers and α be
a positive real > 2 such that

an+1 > aα+1
n , for all n ≥ 1. (4)

Then, the series
+∞

∑
n=1

1/an

converges to a transcendental number.

Proof. It is an immediate consequence of the previous Theorem 2.1 of J. Hančl.

We will now give a corollary as an application of the previous result.

Corollary 2.3. Any subseries of the series ∑
+∞

n=1 1/an, where the terms an ∈ N∗

satisfy (4) will have a transcendental sum.

Proof. Consider an arbitrary subseries ∑n≥1 1/cn then by definition there must
exist a strictly monotone increasing function g : N → N such that cn = ag(n).
Clearly as g(n+1)≥ g(n)+1, one has

cn+1

cα+1
n

=
ag(n+1)

aα+1
g(n)

≥
ag(n)+1

aα+1
g(n)

> 1,

and by Theorem 2.2 the subseries has a transcendental sum.

Example 2.4. We consider the following sequence{
an = 2n!+1, n ≥ 1
an+1 > a3

n, n ≥ 3.

By applying Theorem 2.2, the series

∑
n

1
2n!+1

converges to a transcendental number.

3. Transcendental measure

Definition 3.1. Let P ∈ Z[X ]/{0} be a polynomial of degree d. The height of
polynomial P is maximum of the absolute value of its coefficients.
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The second main result of this paper is to give a transcendental measure of

θ = ∑
∞
n=1

1
an

. In this section, we keep the same notations as in the second sec-

tion.

Theorem 3.2. Let P ∈ Z[X ]/{0} be a polynomial of degree d ≥ 2 and height
H. Let α > d and k > 1 be two real numbers such that

aα+1
n ≤ an+1 < akα

n , for all n ≥ 1.

Then, we have

|P(θ)|> 1

(Hd (d +1))
kd(α+1)

α−d

.

In order to prove this Theorem, we need the following Lemmas.

Lemma 3.3. Let
pm

qm
=

m

∑
k=1

1
ak

such that (pm,qm) = 1. Then, we have

qm ≤ a1a2...am. (5)

Proof. Since (pm,qm) = 1, the lowest common denominator of the fraction
1
a1

· · · 1
am

must be greater than or equal to qm. So we deduce qm ≤ a1a2 · · ·
am.

Lemma 3.4. Let (an)n≥1 be a sequence of natural integers ¿ 0, and α be a given
real > 2. The hypothesis an+1 > aα+1

n implies that

(i) lim
n→∞

(a1a2...an)
α

an+1
= 0. (6)

(ii)
∣∣∣∣θ − pm

qm

∣∣∣∣< 1
qα

m
.

Proof. (i) We set

bn =
(a1a2...an)

α

an+1
,
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and we show that lim
n→∞

bn = 0. We have

ln
(

1
bn

)
= ln(an+1)−α

n

∑
k=1

ln(ak)

=
n

∑
k=1

ln
(

ak+1

ak

)
+ ln(a1)−α

n

∑
k=1

ln(ak)

=
n

∑
k=1

ln

(
ak+1

aα+1
k

)
+ ln(a1)

≥
n

∑
k=1

ln

(
ak+1

aα+1
k

)
.

Since
an+1

aα+1
n

> 1, then there exists δ > 0 such that
an+1

aα+1
n

> 1+δ . Therefore, we

get

ln
(

1
bn

)
≥ n ln(1+δ ) .

From this, we deduce that, lim
n→+∞

ln
(

1
bn

)
=+∞, then lim

n→+∞
bn = 0.

(ii) According to the hypothesis, the series ∑n
1
an

is convergent.

Set θ = ∑
∞
n=1

1
an

and
pm

qm
= ∑

m
n=1

1
an

. From the equality,∣∣∣∣θ − pm

qm

∣∣∣∣= ∞

∑
n=m+1

1
an

,

we obtain

qα
m

∣∣∣∣θ − pm

qm

∣∣∣∣= ∞

∑
n=m+1

qα
m

an
.

The relationship (5) implies that

qα
m

∣∣∣∣θ − pm

qm

∣∣∣∣≤ (a1a2...am)
α

∞

∑
n=m+1

1
an

≤ bm

∞

∑
n=m+1

am+1

an
,

with bm =
(a1a2...am)

α

am+1
.

Furthermore, for all n ≥ 1, we have

an

an+1
<

1
aα

n
<

1
an

. (7)
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Then, we obtain

qα
m

∣∣∣∣θ − pm

qm

∣∣∣∣< bm

(
1+

∞

∑
k=1

am+1

am+k+1

)

< bm

(
1+

∞

∑
k=1

am+k

am+k+1

)

< bm

(
1+

∞

∑
k=1

1
am+k

)
< bm (1+θ) .

According to the relationship (6), and for m sufficiently large, we get
bm < (1+θ)−1 .

Therefore for m sufficiently large, we have

qα
m

∣∣∣∣θ − pm

qm

∣∣∣∣< 1.

Finally we find ∣∣∣∣θ − pm

qm

∣∣∣∣< 1
qα

m
. (8)

Lemma 3.5. (i) The hypothesis aα+1
n ≤ an+1 implies that for all n≥ 1, we have

qn ≤ a
α+1

α
n . (9)

(ii) The hypothesis an+1 < akα
n implies that

qn+1 < qk(α+1)
n , for all n ≥ 1. (10)

Proof. (i) The hypothesis of (i) implies that

an ≤ a
1

α+1
n+1.

Then for all 1 ≤ j ≤ n−1, we obtain

a j ≤ a(
1

α+1)
n− j

n .

On the other hand, according to the relationship (5), one has

qn ≤ a1...an−1.an,
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this implies

qn ≤ a
1+ 1

α+1+
1

(α+1)2
+...+ 1

(α+1)n−1
n .

Which gives

qn ≤ a
1

1− 1
α+1

n .

Finally we obtain

qn ≤ a
α+1

α
n , f or all n ≥ 1.

(ii) According to the relationship (9), we have

qn ≤ a
α+1

α
n < a

α+1
α

kα

n−1 = ak(α+1)
n−1 .

Since an < qn for all n ≥ 1, we obtain

qn < qk(α+1)
n−1 .

Proof of Theorem 3.2. Set

θn =
pn

qn
=

n

∑
k=1

1
ak
.

From the equality,
P(θn) = P(θn)−P(θ)+P(θ) ,

we get
|P(θn)| ≤ |P(θn)−P(θ)|+ |P(θ)| .

Therefore,

|P(θ)| ≥ |P(θn)|− |P(θ)−P(θn)| . (11)

Set P = ∑
d
k=1 ekXk, then

P(θn) = P
(

pn

qn

)
=

d

∑
k=1

ek
pk

n

qk
n
=

1
qd

n

d

∑
k=1

ek pk
nqd−k

n . (12)

Notice that
d

∑
k=1

ek pk
nqd−k

n ̸= 0,

because, if we assume that

d

∑
k=1

ek pk
nqd−k

n = 0,
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then we would have

qd
n .P(θn) = 0,

which implies that

P(θn) = 0.

We also have

P(θ) = P
(

lim
n→+∞

θn

)
= lim

n→+∞
P(θn) = 0,

which contradicts the fact that θ is a transcendental number. Therefore,∣∣∣∣∣ d

∑
k=1

ek pk
nqd−k

n

∣∣∣∣∣≥ 1.

According to equality (12), we get

|P(θn)| ≥
1
qd

n
. (13)

On the other hand, according to the mean value theorem applied to P, there
exists a real number F ∈]θn,θ [ or ]θ ,θn[ such that

P(θ)−P(θn) = P′ (F)(θ −θn) .

From this, we obtain

|P(θ)−P(θn)|=
∣∣P′ (F)

∣∣ |θ −θn| . (14)

Furthermore, as

P′ (F) =
d

∑
k=1

kFk−1ek,

which implies that

∣∣P′ (F)
∣∣≤ d

∑
k=1

k |F |k−1 |ek|

≤
d

∑
k=1

k |ek| ≤ H
d

∑
k=1

k

≤ H
d(d +1)

2
.
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Therefore, equality (14) becomes

|P(θ)−P(θn)|< H
d(d +1)

2
|θ −θn| . (15)

According to relationship (8), we have

|θ −θn|<
1

qα
n
,

then

|P(θ)−P(θn)|<
Hd(d +1)

2qα
n

. (16)

By combining (13) and (14), the relationship (11) becomes

|P(θ)|> 1
qd

n
− Hd(d +1)

2qα
n

, for n sufficiently large.

In order to have |P(θ)|> 1
2qd

n
, it suffices to have

1
qd

n
− Hd(d +1)

2qα
n

>
1

2qd
n
,

which is equivalent to

1
2qd

n
>

Hd(d +1)
2qα

n
⇐⇒ qα−d

n > Hd(d +1).

So that, we take n1 the smallest integer such that

qα−d
n1−1 < Hd(d +1)< qα−d

n1
. (17)

Remark 3.6. The natural number n1 exists because lim
n→∞

qα−d
n = +∞, then, we

obtain
qα−d

n1
> Hd(d +1).

Therefore, we get

|p(θ)|> 1
2qd

n1

. (18)

Using (ii) from Lemma 3, the relationship (18) becomes

|P(θ)|> 1
2qd

n1

>
1

2qkd(α+1)
n1−1

. (19)
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According to the relationship (17), we have

1
qα−d

n1−1

>
1

Hd(d +1)
,

then

1

qkd(α+1)
n1−1

>
1

(Hd (d +1))
kd(α+1)

α−d

.

So, relationship (19) becomes

|P(θ)|> 1

(Hd (d +1))
kd(α+1)

α−d

,

which completes the proof of Theorem 3. □

Example 3.7. Let 
a0 = 0,a1 = 2,
an+1 = a4

n, n ≥ 1,
α = 4,k = 2.

Let P ∈ Z[X ]n{0} be a quadratic polynomial of height H. By applying
Theorem 3, a transcendental measure of θ = ∑

∞
n=1 1/an is given by

|P(θ)|> 1
(6H)10 .
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[3] G. K. Gözer, A. Pekin and A. Kiliçman, On the transcendence of some power
series, Adv. Difference Equ., 17 (2013), 1-8.



TRANSCENDENCE OF SOME INFINITE SERIES 211
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