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ESSENTIALLY HYPONORMAL OPERATORS
WITH ESSENTIAL SPECTRUM CONTAINED IN A CIRCLE

SHQIPE I. LOHAJ - MUHIB R. LOHAJ

In this paper two results are given . It is proved that if the essential
spectrum σ(π(T )) of the bounded hyponormal operator T is contained in
a circle, then T is essentially normal operator. Based on this result it is
proved that if T ∈ L(H) with ind T = 0 then T = λU +K (where λ ∈R+

, U is a unitary operator and K is a compact operator) if and only if T T ∗

is quasi-diagonal with respect to any sequence {Pn} in PF(H) such that
Pn→ I, strongly.

1. Introduction

Let L(H) be the algebra of all bounded linear operators acting on a separable
Hilbert space H and let K(H) be the ideal of all compact operators. Denote
by A(H) = L(H)/K(H) the cosset and let π : L(H) → A(H) be the canoni-
cal projection. A(H) is a Banach algebra with respect to the norm ‖π(T )‖ =
in f{‖T −K‖ : K ∈ K(H)}. π is a continuous linear map and A(H) is a C∗

-algebra with respect to the involution ∗ : π(T ) → [π(T )]∗ = π(T ∗) , called
Calkin Algebra.

We say that an operator T ∈ L(H) is Fredholm if π(T ) is invertible element
in Calkin algebra A(H) . Denote by F0(H) the set of all Fredholm operators
and σ(π(T )) = {λ ∈ C : T − λ I /∈ F(H)} the spectrum of element π(T ) in

Entrato in redazione: 15 gennaio 2009

AMS 2000 Subject Classification: 47Bxx.
Keywords: essential spectrum, quasidiagonal operator.



94 SHQIPE I. LOHAJ - MUHIB R. LOHAJ

A(H) which is called the essential spectrum of operator T . Further, we say
that an operator T is essentially unitary operator, if π(T ) is unitary element in
A(H). An operator is said to be hyponormal (essentially hyponormal) if T T ∗ ≤
T ∗T

(
π(T T ∗)≤ π(T ∗T )

)
.

2. Main Results

Theorem 2.1. Let T ∈ L(H) be an essentially hyponormal operator. If the
essential spectrum σ

(
π(T )

)
of the operator T is contained in a circle then T is

an essentially normal operator.

Before proving Theorem 2.1 we need to prove the following result:

Proposition 2.2. Let A be C∗ -algebra and a ∈ A an invertible element, then

‖a‖ ·
∥∥a−1∥∥= 1⇔ a = λu, λ ∈ R+

where u is a unitary element in A.

Proof. Suppose that ‖a‖·
∥∥a−1

∥∥= 1. Since aa∗ is a positive self-adjoint element
in algebra A, its spectrum σ

(
aa∗
)
⊂ [0,∞). Further, ‖a‖2 =

∥∥aa∗
∥∥ and the

spectral radius r
(

aa∗
)

=
∥∥aa∗

∥∥= ‖a‖2. Now

σ
(

aa∗
)
⊆
{

λ ∈ R : 0≤ λ ≤ ‖a‖2
}

(1)

On the other hand,
(

aa∗
)−1 is also positive self-adjoint element and because

‖a‖ ·
∥∥a−1

∥∥= 1 we will have

σ

((
aa∗
)−1
)
⊆
{

λ ∈ R : 0≤ λ ≤ 1
‖a‖2

}
(2)

(since r
((

aa∗
)−1
)

= 1
‖a‖2 ). From the above inclusions (1) and (2) we obtain

σ
(

aa∗
)
=
{
‖a‖2

}
. Since the spectrum of element aa∗ contains only one point,

we conclude that aa∗−‖a‖2e = q is a quasi-nilpotent element in A. Moreover,
q is a self adjoint element in A , which implies q = 0. Therefore, aa∗ = ‖a‖2e
and a/‖a‖ = u is a unitary element in C∗ -algebra A by which we have proved
the necessary condition of the proposition.

The proof of the sufficient condition of the proposition is trivial.

Remark 2.3. Since L(H) is a C∗ -algebra from the Proposition 2.2 we observe
that every invertible operator T ∈ L(H) that satisfies the property ‖T‖·

∥∥T−1
∥∥=

1 is a scalar multiple of some unitary operator U ∈ L(H).
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Proof of Theorem 2.1. Let T be an essentially hyponormal operator. It is
easy to see that the translation and inverse of essentially hyponormal operator is
essentially hyponormal. For this reason without loss of generality suppose that

σ
(
π(T )

)
⊆
{

λ ∈ C : |λ |= l
}

Then, r
(
π(T )

)
= l and r

(
π(T )−1

)
= 1

l . Further, since the element π(T ) is
normal in the Calkin algebra, we will have r

(
π(T )

)
= ‖π(T )‖ (see [3] ) and

therefore
‖π(T )‖ ·

∥∥π(T )−1∥∥= 1

Now, by Proposition 1 and the latter relation we conclude that the operator T is
essentially normal. By which we have completed the proof of Theorem 2.1.

Further on, let (QD){Pn} be a class of quasidiagonal operators such that the
quasidiagonality is assumed with a common sequence of orthogonal projections
{Pn} (see[6] , [7] ). Then we can give the following result:

Proposition 2.4. Let T ∈ L(H) with indT = dimKerT −dimKerT ∗ = 0 then

T T ∗ ∈ ∩
{Pn}⊂PF(H)

Pn
s→I

(QD){Pn}⇔ T = λU +K

where λ ∈ R+ , U is a unitary operator and K is a compact operator.

Proof. Let

T T ∗ ∈ ∩
{Pn}⊂PF(H)

Pn
s→I

(QD){Pn}.

It means that T T ∗ ∈ (QD){Pn} for every sequence {Pn} in PF(H) such that
Pn→ I, strongly. Hence, operator T T ∗ is uniformly quasidiagonal and thus T T ∗

is thin(see [5]). Therefore, T T ∗= αI +K, where α ≥ 0 and K ∈K(H) . Further,

π(T T ∗) = π(T )π(T ∗) = απ(I)

Hence π(T )/
√

α is a unitary element in Calkin Algebra L(H)/K(H) . Since
ind T = 0, there exists a unitary operator U ∈ L(H), and a compact operator
K ∈ L(H) such that T/

√
α = U +K (see Theorem 3.1 in [2]).

Conversely. If T = λU +K then

T T ∗ =
(
λU +K

)(
λ̄U∗+K∗

)
= |λ |2I +λUK∗+ λ̄KU∗+KK∗ = |λ |2I +K1,

where K1 ∈ K(H), which completes the proof of Proposition 2.4, because the
operators I, K1 ∈ (QD){Pn}, for every sequence {Pn} in PF(H), such that Pn→
I, strongly.
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