ESSENTIALLY HYPONORMAL OPERATORS
WITH ESSENTIAL SPECTRUM CONTAINED IN A CIRCLE

SHQIPE I. LOHAJ - MUHIB R. LOHAJ

In this paper two results are given. It is proved that if the essential spectrum \(\sigma(\pi(T)) \) of the bounded hyponormal operator \(T \) is contained in a circle, then \(T \) is essentially normal operator. Based on this result it is proved that if \(T \in L(H) \) with ind \(T = 0 \) then \(T = \lambda U + K \) (where \(\lambda \in \mathbb{R}^+ \), \(U \) is a unitary operator and \(K \) is a compact operator) if and only if \(TT^* \) is quasi-diagonal with respect to any sequence \(\{P_n\} \) in \(PF(H) \) such that \(P_n \to I \), strongly.

1. Introduction

Let \(L(H) \) be the algebra of all bounded linear operators acting on a separable Hilbert space \(H \) and let \(K(H) \) be the ideal of all compact operators. Denote by \(A(H) = L(H)/K(H) \) the coset and let \(\pi : L(H) \to A(H) \) be the canonical projection. \(A(H) \) is a Banach algebra with respect to the norm \(\|\pi(T)\| = \inf\{\|T - K\| : K \in K(H)\} \). \(\pi \) is a continuous linear map and \(A(H) \) is a \(C^* \)-algebra with respect to the involution \(* : \pi(T) \to [\pi(T)]^* = \pi(T^*) \), called Calkin Algebra.

We say that an operator \(T \in L(H) \) is Fredholm if \(\pi(T) \) is invertible element in Calkin algebra \(A(H) \). Denote by \(F_0(H) \) the set of all Fredholm operators and \(\sigma(\pi(T)) = \{\lambda \in \mathbb{C} : T - \lambda I \notin F(H)\} \) the spectrum of element \(\pi(T) \) in the

AMS 2000 Subject Classification: 47Bxx.
Keywords: essential spectrum, quasidiagonal operator.
A(H) which is called the essential spectrum of operator T. Further, we say that an operator T is essentially unitary operator, if \(\pi(T) \) is unitary element in \(A(H) \). An operator is said to be hyponormal (essentially hyponormal) if \(TT^* \leq T^*T \left(\pi(TT^*) \leq \pi(T^*T) \right) \).

2. Main Results

Theorem 2.1. Let \(T \in L(H) \) be an essentially hyponormal operator. If the essential spectrum \(\sigma(\pi(T)) \) of the operator \(T \) is contained in a circle then \(T \) is an essentially normal operator.

Before proving Theorem 2.1 we need to prove the following result:

Proposition 2.2. Let \(A \) be \(C^* \)-algebra and \(a \in A \) an invertible element, then

\[
\|a\| \cdot \|a^{-1}\| = 1 \iff a = \lambda u, \quad \lambda \in \mathbb{R}^+
\]

where \(u \) is a unitary element in \(A \).

Proof. Suppose that \(\|a\| \cdot \|a^{-1}\| = 1 \). Since \(aa^* \) is a positive self-adjoint element in algebra \(A \), its spectrum \(\sigma(aa^*) \subset [0, \infty) \). Further, \(\|a\|^2 = \|aa^*\| \) and the spectral radius \(r(aa^*) = \|aa^*\| = \|a\|^2 \). Now

\[
\sigma(aa^*) \subseteq \left\{ \lambda \in \mathbb{R} : 0 \leq \lambda \leq \|a\|^2 \right\} \quad (1)
\]

On the other hand, \((aa^*)^{-1} \) is also positive self-adjoint element and because \(\|a\| \cdot \|a^{-1}\| = 1 \) we will have

\[
\sigma((aa^*)^{-1}) \subseteq \left\{ \lambda \in \mathbb{R} : 0 \leq \lambda \leq \frac{1}{\|a\|^2} \right\} \quad (2)
\]

(since \(r((aa^*)^{-1}) = \frac{1}{\|a\|^2} \)). From the above inclusions (1) and (2) we obtain \(\sigma(aa^*) = \{\|a\|^2\} \). Since the spectrum of element \(aa^* \) contains only one point, we conclude that \(aa^* - \|a\|^2e = q \) is a quasi-nilpotent element in \(A \). Moreover, \(q \) is a self adjoint element in \(A \), which implies \(q = 0 \). Therefore, \(aa^* = \|a\|^2e \) and \(a/\|a\| = u \) is a unitary element in \(C^* \)-algebra \(A \) by which we have proved the necessary condition of the proposition.

The proof of the sufficient condition of the proposition is trivial. \(\square \)

Remark 2.3. Since \(L(H) \) is a \(C^* \)-algebra from the Proposition 2.2 we observe that every invertible operator \(T \in L(H) \) that satisfies the property \(\|T\| \cdot \|T^{-1}\| = 1 \) is a scalar multiple of some unitary operator \(U \in L(H) \).
Proof of Theorem 2.1. Let T be an essentially hyponormal operator. It is easy to see that the translation and inverse of essentially hyponormal operator is essentially hyponormal. For this reason without loss of generality suppose that

$$\sigma(\pi(T)) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = l\}$$

Then, $r(\pi(T)) = l$ and $r(\pi(T)^{-1}) = \frac{1}{l}$. Further, since the element $\pi(T)$ is normal in the Calkin algebra, we will have $r(\pi(T)) = \|\pi(T)\|$ (see [3]) and therefore

$$\|\pi(T)\| \cdot \|\pi(T)^{-1}\| = 1$$

Now, by Proposition 1 and the latter relation we conclude that the operator T is essentially normal. By which we have completed the proof of Theorem 2.1.

Further on, let $(QD)\{P_n\}$ be a class of quasidiagonal operators such that the quasidiagonality is assumed with a common sequence of orthogonal projections $\{P_n\}$ (see [6], [7]). Then we can give the following result:

Proposition 2.4. Let $T \in L(H)$ with $\text{ind}T = \dim \ker T - \dim \ker T^* = 0$ then

$$TT^* \in \bigcap_{\{P_n\} \subset PF(H)} (QD)\{P_n\} \iff T = \lambda U + K$$

where $\lambda \in \mathbb{R}^+$, U is a unitary operator and K is a compact operator.

Proof. Let

$$TT^* \in \bigcap_{\{P_n\} \subset PF(H)} (QD)\{P_n\}.$$

It means that $TT^* \in (QD)\{P_n\}$ for every sequence $\{P_n\}$ in $PF(H)$ such that $P_n \to I$, strongly. Hence, operator TT^* is uniformly quasidiagonal and thus TT^* is thin(see [5]). Therefore, $TT^* = \alpha I + K$, where $\alpha \geq 0$ and $K \in K(H)$. Further,

$$\pi(TT^*) = \pi(T)\pi(T^*) = \alpha \pi(I)$$

Hence $\pi(T)/\sqrt{\alpha}$ is a unitary element in Calkin Algebra $L(H)/K(H)$. Since $\text{ind} T = 0$, there exists a unitary operator $U \in L(H)$, and a compact operator $K \in L(H)$ such that $T/\sqrt{\alpha} = U + K$ (see Theorem 3.1 in [2]).

Conversely. If $T = \lambda U + K$ then

$$TT^* = (\lambda U + K)\left(\bar{\lambda}U^* + K^*\right) = |\lambda|^2 I + \lambda UK^* + \bar{\lambda}KU^* + KK^* = |\lambda|^2 I + K_1,$$

where $K_1 \in K(H)$, which completes the proof of Proposition 2.4, because the operators $I, K_1 \in (QD)\{P_n\}$, for every sequence $\{P_n\}$ in $PF(H)$, such that $P_n \to I$, strongly. □
REFERENCES

SHQIPE I. LOHAJ
Electronic Faculty
University of Prishtina
e-mail: shqipe_lohaj@yahoo.com

MUHIB R. LOHAJ
Faculty of Natural Science
University of Prishtina
e-mail: muhib_lohaj@yahoo.com