ESSENTIALLY HYPONORMAL OPERATORS WITH ESSENTIAL SPECTRUM CONTAINED IN A CIRCLE

SHQIPE I. LOHAJ - MUHIB R. LOHAJ

In this paper two results are given . It is proved that if the essential spectrum $\sigma(\pi(T))$ of the bounded hyponormal operator *T* is contained in a circle, then *T* is essentially normal operator. Based on this result it is proved that if $T \in L(H)$ with ind T = 0 then $T = \lambda U + K$ (where $\lambda \in \mathbb{R}^+$, *U* is a unitary operator and *K* is a compact operator) if and only if TT^* is quasi-diagonal with respect to any sequence $\{P_n\}$ in PF(H) such that $P_n \to I$, strongly.

1. Introduction

Let L(H) be the algebra of all bounded linear operators acting on a separable Hilbert space H and let K(H) be the ideal of all compact operators. Denote by A(H) = L(H)/K(H) the cosset and let $\pi : L(H) \to A(H)$ be the canonical projection. A(H) is a Banach algebra with respect to the norm $||\pi(T)|| =$ $inf\{||T - K|| : K \in K(H)\}$. π is a continuous linear map and A(H) is a C^* algebra with respect to the involution $* : \pi(T) \to [\pi(T)]^* = \pi(T^*)$, called Calkin Algebra.

We say that an operator $T \in L(H)$ is Fredholm if $\pi(T)$ is invertible element in Calkin algebra A(H). Denote by $F_0(H)$ the set of all Fredholm operators and $\sigma(\pi(T)) = \{\lambda \in \mathbb{C} : T - \lambda I \notin F(H)\}$ the spectrum of element $\pi(T)$ in

AMS 2000 Subject Classification: 47Bxx.

Keywords: essential spectrum, quasidiagonal operator.

Entrato in redazione: 15 gennaio 2009

A(H) which is called the essential spectrum of operator T. Further, we say that an operator T is essentially unitary operator, if $\pi(T)$ is unitary element in A(H). An operator is said to be hyponormal (essentially hyponormal) if $TT^* \leq T^*T(\pi(TT^*) \leq \pi(T^*T))$.

2. Main Results

Theorem 2.1. Let $T \in L(H)$ be an essentially hyponormal operator. If the essential spectrum $\sigma(\pi(T))$ of the operator T is contained in a circle then T is an essentially normal operator.

Before proving Theorem 2.1 we need to prove the following result:

Proposition 2.2. Let A be C^* -algebra and $a \in A$ an invertible element, then

$$||a|| \cdot ||a^{-1}|| = 1 \Leftrightarrow a = \lambda u, \quad \lambda \in \mathbf{R}^+$$

where u is a unitary element in A.

Proof. Suppose that $||a|| \cdot ||a^{-1}|| = 1$. Since aa^* is a positive self-adjoint element in algebra A, its spectrum $\sigma(aa^*) \subset [0,\infty)$. Further, $||a||^2 = ||aa^*||$ and the spectral radius $r(aa^*) = ||aa^*|| = ||a||^2$. Now

$$\sigma(aa^*) \subseteq \left\{ \lambda \in \mathbf{R} : 0 \le \lambda \le \|a\|^2 \right\}$$
(1)

On the other hand, $(aa^*)^{-1}$ is also positive self-adjoint element and because $||a|| \cdot ||a^{-1}|| = 1$ we will have

$$\sigma\left(\left(aa^*\right)^{-1}\right) \subseteq \left\{\lambda \in \mathbf{R} : 0 \le \lambda \le \frac{1}{\|a\|^2}\right\}$$
(2)

(since $r((aa^*)^{-1}) = \frac{1}{\|a\|^2}$). From the above inclusions (1) and (2) we obtain $\sigma(aa^*) = \{\|a\|^2\}$. Since the spectrum of element aa^* contains only one point, we conclude that $aa^* - \|a\|^2 e = q$ is a quasi-nilpotent element in *A*. Moreover, *q* is a self adjoint element in *A*, which implies q = 0. Therefore, $aa^* = \|a\|^2 e$ and $a/\|a\| = u$ is a unitary element in *C*^{*} -algebra *A* by which we have proved the necessary condition of the proposition.

The proof of the sufficient condition of the proposition is trivial. \Box

Remark 2.3. Since L(H) is a C^* -algebra from the Proposition 2.2 we observe that every invertible operator $T \in L(H)$ that satisfies the property $||T|| \cdot ||T^{-1}|| = 1$ is a scalar multiple of some unitary operator $U \in L(H)$.

Proof of Theorem 2.1. Let T be an essentially hyponormal operator. It is easy to see that the translation and inverse of essentially hyponormal operator is essentially hyponormal. For this reason without loss of generality suppose that

$$\sigma(\pi(T)) \subseteq \big\{ \lambda \in \mathbf{C} : |\lambda| = l \big\}$$

Then, $r(\pi(T)) = l$ and $r(\pi(T)^{-1}) = \frac{1}{l}$. Further, since the element $\pi(T)$ is normal in the Calkin algebra, we will have $r(\pi(T)) = ||\pi(T)||$ (see [3]) and therefore

$$\|\pi(T)\| \cdot \|\pi(T)^{-1}\| = 1$$

Now, by Proposition 1 and the latter relation we conclude that the operator T is essentially normal. By which we have completed the proof of Theorem 2.1.

Further on, let $(QD)\{P_n\}$ be a class of quasidiagonal operators such that the quasidiagonality is assumed with a common sequence of orthogonal projections $\{P_n\}$ (see[6], [7]). Then we can give the following result:

Proposition 2.4. Let $T \in L(H)$ with $indT = dimKerT - dimKerT^* = 0$ then

$$TT^* \in \bigcap_{\frac{\{P_n\} \subset PF(H)}{P_n \stackrel{s}{\to} I}} (QD)\{P_n\} \Leftrightarrow T = \lambda U + K$$

where $\lambda \in \mathbf{R}^+$, U is a unitary operator and K is a compact operator.

Proof. Let

$$TT^* \in \bigcap_{\substack{\{P_n\} \subseteq PF(H)\\ P_n \stackrel{s}{\sim} I}} (QD)\{P_n\}.$$

It means that $TT^* \in (QD)\{P_n\}$ for every sequence $\{P_n\}$ in PF(H) such that $P_n \rightarrow I$, strongly. Hence, operator TT^* is uniformly quasidiagonal and thus TT^* is thin(see [5]). Therefore, $TT^* = \alpha I + K$, where $\alpha \ge 0$ and $K \in K(H)$. Further,

$$\pi(TT^*) = \pi(T)\pi(T^*) = \alpha\pi(I)$$

Hence $\pi(T)/\sqrt{\alpha}$ is a unitary element in Calkin Algebra L(H)/K(H). Since ind T = 0, there exists a unitary operator $U \in L(H)$, and a compact operator $K \in L(H)$ such that $T/\sqrt{\alpha} = U + K$ (see Theorem 3.1 in [2]).

Conversely. If $T = \lambda U + K$ then

$$TT^* = (\lambda U + K) (\bar{\lambda} U^* + K^*) = |\lambda|^2 I + \lambda U K^* + \bar{\lambda} K U^* + K K^* = |\lambda|^2 I + K_1,$$

where $K_1 \in K(H)$, which completes the proof of Proposition 2.4, because the operators $I, K_1 \in (QD)\{P_n\}$, for every sequence $\{P_n\}$ in PF(H), such that $P_n \rightarrow I$, strongly.

REFERENCES

- [1] W. B. Arveson, An invitation to C* -algebras, Springer-Verlag, New York, 1976.
- [2] L. G. Brown R. G. Douglas P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C* - algebras, L. N. M. n. 345, 58–128, Springer–Verlag, New York, 1973.
- [3] J. Dixmier, Les C^{*} algèbres et leurs représentations, Paris, Gauthier-Villars, 1969.
- [4] P. A. Fillmore J. G. Stampfli J.P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192.
- [5] G. R. Luecke, A note on quasidiagonal and quasitriangular operators, Pacific. J. Math. 56 (1975), 179–185.
- [6] M. R. Lohaj, Necessary conditions for quasidiagonality of some special nilpotent operators, Rad. Mat. 10 (2001), 209–217.
- [7] M. R. Lohaj, Necessary conditions for quasidiagonality of certain bounded operators defined in the direct sum $H \bigoplus H \bigoplus H$, Rad. Mat. 11 n. 1 (2002), 113-117.

SHQIPE I. LOHAJ Electronic Faculty University of Prishtina e-mail: shqipe_lohaj@yahoo.com

MUHIB R. LOHAJ Faculty of Natural Science University of Prishtina e-mail: muhib_lohaj@yahoo.com